茶叶抗坏血酸过氧化物酶(APX)的生理学与分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗坏血酸过氧化物酶(ascorbate peroxidase,APX)是植物活性氧代谢中重要的抗氧化酶之一,又是维生素C代谢的主要酶类。茶叶中富含维生素C,作为茶叶中重要活性营养成分,维生素C在茶叶加工和储存过程中易造成大量损失。开展茶叶中维生素C代谢相关基因的研究,将有助于了解茶叶中维生素C代谢的机制,为调控茶叶维生素C水平提供理论依据。
     本研究以茶叶(Camellia sinensis)为供试材料,研究了茶叶抗坏血酸过氧化物酶的生理特性及分子机理。通过对茶叶APX活性测定条件的探讨和建立,研究茶树不同品种、茶叶新梢不同生育时期、茶叶加工过程APX活性、同工酶的动态变化以及及维生素C含量的变化特点,探讨茶叶APX的代谢生理和作用机制;克隆了茶叶cAPX基因,并利用生物信息学方法对它的结构和功能进行预测和分析;在此基础上应用荧光定量PCR技术分析了茶叶cAPX基因的定量表达。研究结果如下:
     1.茶叶抗坏血酸过氧化物酶(APX)活性的测定方法建立
     探讨了茶树鲜叶抗坏血酸过氧化物酶(APX)活性的测定条件。结果表明,茶叶APX测定的最佳条件为,聚乙烯聚吡咯烷酮(PVPP)加入量约为鲜叶重的1.5倍,酶提取液pH为7.8,反应液pH为7.0,抗坏血酸(AsA)浓度为0.50 mmol/L时茶树鲜叶APX活性最高。试验样品APX活性随冷冻贮藏天数增加,不断降低,样品应可能保持芽叶的新鲜度。
     2.不同茶树品种、新梢不同生育时期APX酶活性研究
     选择福建代表性的绿茶品种(福鼎大白茶、福云6号)和乌龙茶品种(铁观音、毛蟹、黄旦、本山、肉桂),分析了不同茶树品种以及茶树鲜叶不同叶位APX活性的变化。结果表明,福建主要7个茶树品种以福云6号的APX活性最高,铁观音的APX活性最低,绿茶品种的APX活性高于乌龙茶品种,不同品种APX活性大小依次为福云6号>福鼎大白茶>肉桂>毛蟹>黄旦>本山>铁观音;茶树鲜叶不同叶位APX活性变化趋势为:芽>第一叶>第二叶>第三叶>老叶>嫩茎,随着鲜叶成熟度增加,APX活性下降。
     3.茶叶加工过程中APX活性及维生素C动态变化研究
     探讨茶叶不同萎凋程度及乌龙茶加工过程APX和维生素C的动态变化。结果表明,茶叶萎凋过程中APX活性呈“下降—上升—下降”趋势,相对活性由100%降至1.7%,萎凋不同阶段APX活性差异显著;萎凋过程中茶叶维生素C含量呈缓慢减少趋势,维生素C保留在鲜叶的80%以上,只经过萎凋的茶类(传统白茶)维生素C保留较为丰富。乌龙茶加工过程APX活性也呈“下降—上升—下降”趋势,相对活性由100%降至17.45%,炒青前各工序茶叶的APX活性差异显著,炒青后各工序茶叶的APX活性差异不显著;维生素C含量呈减少趋势,相对保留量由100%降至9.01%,揉捻工序维生素C含量下降幅度最大,其次是摇青工序。
     4.不同茶树品种及茶叶加工过程中APX同工酶的研究
     运用同工酶技术分析福建代表性绿茶、乌龙茶品种APX同工酶差异,分析探讨茶叶不同萎凋程度APX同工酶动态变化。结果表明,不同茶树品种APX同工酶存在差异,茶叶APX同工酶共有6条谱带,其中A2、A4、A5和A6四条为不同品种茶树所共有,A4、A5谱带为茶叶APX的重要同工酶。7个不同茶树品种的酶带,福鼎大白茶与毛蟹的酶带最亮最强,铁观音、黄旦与福云6号酶带最弱,除福云6号外,其他品种同工酶的表达量与APX活性存在相关性。茶叶萎凋茶叶APX同工酶谱带数量减少,起主要作用的为A4、A5同工酶也逐渐减弱,但萎凋18 h同工酶谱带强度与数量增加。同工酶的变化与APX酶活性具有相关性。
     5.茶叶APX的cDNA克隆
     从茶叶中克隆出了一个长度为1 083 bP的cAPX基因的cDNA序列,经测序分析,其包含750 bP的开放读码框,编码250个氨基酸。该基因在3’RACE与保守区重叠碱基数为321 bp,与5’RACE重叠碱基数是77 bp,非编码区5’有94 bp,3’有136 bp。已将该基因序列登录Genbank,登录号为Eu547804。
     6.茶叶APX基因的生物信息学分析
     利用生物信息学的方法对克隆的茶树cAPX基因的核酸序列及对应氨基酸序列的理化性质、结构特征、功能及系统演化关系等进行预测分析。结果表明,茶叶cAPX是一分子量27.53 kDa,等电点pI 5.59,比较稳定的酸性蛋白,属于亲水性蛋白,不含有跨膜信号,不具有信号肽;茶叶cAPX磷酸化位点有10个,丝氨酸(Ser)、酪氨酸(Tyr)磷酸化位点的各4个,苏氨酸(Thr)磷酸化位点2个,蛋白氨基酸序列9-31区域最有可能形成卷曲螺旋结构,α螺旋和不规则卷曲是茶叶cAPX蛋白最大量的结构元件。茶叶cAPX基因参与的生物过程主要是响应化学刺激和应激反应,具有四吡咯结合、过氧化物酶活性和氧化活性分子功能。蛋白的功能预测进一步证实茶叶cAPX属植物抗坏血酸过氧化物酶(Plant ascorbate-peroxidase)的蛋白质家族成员。
     7.茶叶主要品种及茶叶加工中APX基因的定量表达
     应用荧光定量PCR的方法对不同茶树品种APX基因的表达以及萎凋工艺过程中APX基因的表达进行定量分析。结果表明,茶树不同品种APX基因表达量存在显著差异,相对表达量变化范围为0.65-5.69,6个茶树品种APX基因相对表达量的大小为毛蟹>福云6号>肉桂>福鼎大白茶>黄旦>铁观音。茶叶萎凋过程中APX基因的表达量呈现“升高—降低—再升高—再降低”的趋势,相对表达量变化范围为0.02-7.46,茶叶APX基因的表达明显受到萎凋工艺处理的影响。
Ascorbate peroxidase (APX) is one of the key antioxidases in the process of activeoxygen metabolism in plants,furthermore,it is a major family of enzymes in the processof vitamin C (VC) metabolism.Tea contains abundant VC,which is an important activecomponent with abundant nutrition in tea.However,there will be a great loss of VC in teaduring processing and storage.Studies on related genes of VC metabolism in the tea plant(Camellai sinensis) will be helpful to uncover the mechanism of VC metabolism in tea,andwill provide theoretical basis for regulating VC level in tea.
     In this experiment,the tea leaves were used as the materials to study physiological andmolecular mechanism of APX in tea.After exploration and establishment test conditions oftea APX activity,changes in activity of APX were not only analyzed in different teacultivars but also during different growth periods of tea shoots.Moreover,the dynamicchanges of isoenzymes of APX were analysed both in different tea cultivars and during teaprocessing.Furthermore,the changes of VC contents were conducted during tea processing.cAPX gene was cloned from the leaf and the structure and functions were predicted andanalyzed by bioinformatics.On the basis of the studies above,the quantitative expressionof cAPX gene in tea was analyzed by fluorescence quantitative PCR technology.The mainresults showed as follows:
     1.Establishment of the test method of analysis of APX activity in tea
     The test conditions of APX activity from tea fresh leaves were established in this study.And the optimal conditions of APX testing were as follows:amount ofpolyvinylpolypyrrolidone (PVPP) used was about 1.5 times the weight of fresh leaves;pHvalue of the enzyme extracting buffer was 7.8;pH value of reaction system was 7.0;thebest concentration of ascorbic acid (AsA) was 0.50 mmol/L.APX of high activity could beextracted by this method.It was found that APX activity of samples decreased continuouslywith the days of freezing storage prolonging,so the sample used should be as fresh aspossible.
     2.Analysis on APX activity both in different tea cultivars and during different growthperiods of tea shoots
     Fujian representational green tea cultivars (FudingDabaicha,Fuyun 6) and oolong teacultivars(Tieguanyin,Maoxie,Huangdan,Benshan and Rougui) were selected to analyzethe changes of APX activity of different tea cultivars and tea fresh leaves from different positions.The results showed that APX activity of Funyun 6 was the highest among sevencultivars in Fujian and that of Tieguanyin was the lowest;APX activity of green teacultivars was higher than that of oolong tea cultivars;the ranking list of APX activity ofdifferent cultivars was as follows:Funyun 6>Fudingdabaicha>Rougui>Maoxie>Huangdan>Benshan>Tieguanyin.The ranking list of APX activity of tea fresh leaves indifferent positions was as shown below:the bud>the first leaf>the second leaf>the thirdleaf>the old leaf>the young stemt,and the APX activity decreased along with the increaseof maturity of the fresh leaves.
     3.Analysis of the dynamic changes of APX activities and VC contents in tea during teaprocessing
     The dynamic changes of the VC content and APX activity of leaves in differentwithering degrees and during oolong tea processing were explored.The results showed that:the change trend of APX activity during tea withering went up firstly,then down and upfinally,like a wave;the relative activity decreased from 100% to 1.7% during tea withering;the difference of APX activity at different withering phases was significant.Moreover,thecontent of VC decreased slowly during tea withering,and more than 80% of the VC contentwas not destroyed in the fresh leaf;the reserved quantity was more abundant in fresh leaf ofwhite tea,whose processing technique was only withering.The change trend of APXactivity during oolong tea processing was also“decrease-increase-decrease”,and therelative activity decreased from 100% to 17.45%.The difference of APX activity wassignificant in the techniques before chaoqing,while after was not,and the VC contentdecreased,and the relative contents decreased from 100% to 9.01%.The loss of VC contentwas the greatest in rolling technique,and yaoqing technique followed.
     4.Studies on APX isoenzymes both in different tea cultivars and during tea processing
     The difference of APX isoenzymes of representational green and oolong tea cultivarsin Fujian was analyzed by isozyme technology,also the dynamic change of APXisoenzymes in different withering degrees was also explored.The results indicated thatthere were differences in expression of APX isoenzymes among different tea cultivars;and6 bands existed in the tea APX isoenzyme spectrum,among these,4 bands including A2,A4,A5 and A6 were in common in APX isoenzyme spectrum of different tea cultivars,andA4,A5 were more important isoenzymes in the tea plant.Enzyme belts of Fudingdabaichaand Maoxie were the brightest and strongest,and those of Tieguanyin,Huangdan andFunyun 6 were the weakest.Expression amount and activity of APX isoenzymes werecorrelative in different tea cultivars except the Fuyun 6 cultivar.Isoenzyme belts decreasedin the process of tea withering,and A4,A5 which played a major role were also weakengradually,but the strength and the amount ofAPX isoenzymes increased after withering for 18 hours.The changes of APX isoenzymes and its activity were correlative.
     5.cDNA cloning of tea APX
     The full length of cDNA sequence(1083 bP) of cAPX gene from the tea plant wasobtained which contained 750 bp open reading frame,encoded 250 amino acids.Theoverlapped base of this cloned gene and the conserved region in 3′RACE and 5′RACE were 321 bp and 77 bp respectively.5′non-coding region were 94 bp,and 3′non-coding region were 136 bp.This gene was registered in GenBank,and the registeredNo.was EU547804.6.Analysis of bioinformatics of tea APX gene
     The physicochemical properties,structure characteristics,functions and phylogeneticrelationship of tea APX gene nucleotide sequence and its amino acid sequences werepredicted and analyzed by bioinformatics in this experiment.The results showed that themolecular weight of cAPX was 27.53 kDa;and the theoretical isoelectric point (pI) was5.59.cAPX was a kind of steady and hydrophilic acidic protein without transmembranedomain and signal peptide.The phosphorylation sites of tea cAPX were 10,among these,the phosphorylation sites of both Set and Tyr were 4 and that of Thr were 2.The 9-31region of the protein amino acid sequences was the region most likely forming coiled-coilstructure.While the major structure components in the tea cAPX protein wereαspiral andirregular curl.The biological processes which tea APX gene participated in were mainly inresponse to chemical stimulation and stress response and antioxidant defense.Tea APXgene had the functions with tetrapyrrole combining,peroxidase activity and oxidizingbioactive molecule.Function prediction results further proved that tea cAPX proteinbelonged to the family of plant APX protein.
     7.Quantitative expression of APX gene in main tea cultivars and during teaprocessing
     Expression of APX gene in different tea cultivars and in the process of withering wasanalyzed by the fluorescence quantitative PCR technology.It was showed that theexpression amounts of APX gene in different tea cultivars were significantly different.Thechange range of relative expression amounts was from 0.65-5.69.The ranking list ofrelative expression amounts of APX gene in 6 tea cultivars was:Maoxie>Fuyun 6>Rougui>Fudingdabaicha>Huangdan>Tieguanyin.During tea withering,the expressionamounts of APX gene increased at first,followed by a decline,and then increased again,finely decreased.And the change range of relative expression amounts was from 0.02 to7.46.At the same time,the expression of APX gene was affected by the treatment ofwithering technique.
引文
1.安华明,陈力耕,樊卫国,等.高等植物中维生素C的功能、合成及代谢研究进展[J].植物学通报,2004,2 1(5):608-617.
    2.安华明,陈力耕,樊卫国,等.刺梨果实中维生素C积累与相关酶活性的关系[J].植物生理与分子生物学学报,2005,31(4):431-436.
    3.曹宛虹.作为叶绿体H_2O_2分解系统关键酶的抗坏血酸过氧化物酶[J].植物生理学通讯,1994,30(6):452-458.
    4.车建美,郭志雄,赖钟雄,等.利用半干技术进行水平板不连续聚丙烯酰胺凝胶电泳的同工酶分析[J].福建农林大学学报:自然科学版,2003,32(1):134-135.
    5.陈宗道,宋玮.茶叶片遭损伤时的脂性过氧化作用[J].贵州茶叶,1988,(4):35-37.
    6.陈春林,梁晓岚.茶叶杂交F_1代多酚氧化酶同工酶研究[J].广东茶叶,1995,(3):6-7.
    7.陈沁,王伟,刘友良.细胞质型APX的纯化、抗体的制备及放线菌素D对APX活性的影响[J].上海大学学报(自然科学版),2006,12(2):211-215.
    8.程强,张新叶,黄敏仁.实时定量RT-PCR技术在植物基因表达分析中的应用[J].中国生物工程杂志,2005,(增刊):86-90.
    9.崔凯荣,戴若兰.植物体细胞胚发生的分子生物学[M].北京:科学出版社,2000:38-110.
    10.丁勇.茶叶中糖苷酶类的研究进展[J].中国茶叶加工,2001,(4):34-36.
    11.杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,2:121-125.
    12.冯艳飞,梁月荣.茶树S-腺苷甲硫氨酸合成酶基因的克隆和序列分析[J].茶叶科学,2001,21(1):21-25.
    13.冯晴,徐朗莱,叶茂炳,等.小麦叶片衰老过程中CAT和APX活力及其同工酶谱的变化[J].南京农业大学学报,1997,20(2):95-99.
    14.付春华,陈孝平,余龙江.实时荧光定量PCR的应用和进展[J].激光生物学报,2005,14(6):466-471.
    15.顾谦,严洁,谢长征.提高红碎茶品质的新探索:增压处理茶萎凋叶的研究报告[J].中国茶叶加工,1995,(1):17-20.
    16.顾谦,严景华,李纯.红碎茶加压萎凋对多酚氧化酶活性及其同工酶谱的影响[J].中国茶叶加工,1997,(3):35-38.
    17.韩立敏.丹参APX和GPX基因克隆及其表达分析[D].陕西师范大学,2007.
    18.韩瑞丽,陆海.转APX基因烟草抗旱能力研究[J].成都大学学报(自然科学版),2007,26(2):93-96.
    19.侯林,姜丽娟,孙文静,等.中国卤虫actin基因的实时荧光定量PCR方法的建立和优化[J].辽宁师范大学学报,2006,29(4):466-470.
    20.侯渝嘉.茶树杂交后代的过氧物酶同工酶分析[J].茶叶科技,1989,(1):24-25.
    21.胡振长.绿茶杀青中多酚氧化酶活性的变化[J].中国茶叶,1988,(1):22-23.
    22.黄福平,梁月荣,陈荣冰,等.做青强度对做青叶蛋白质组成、多酚氧化酶和酯酶同工酶谱的影响[J].茶叶科学,2004,24(1):70-74.
    23.黄福平,陈伟,陈荣冰,等.乌龙茶做青过程脂质过氧化及其对茶叶品质的影响[J].茶叶科学,2002,22(2):147-151.
    24.黄福平,陈伟,陈洪德,等.做青强度对乌龙茶做青叶生化成分的影响[J].福建农林大学学报(自科版),2002,31(2):199-202.
    25.黄惠华,陈兴琰,陈国本,等.茶树秋梢芽、叶间几种同工酶的比较研究[J].茶叶科学,1986,6(1):49-54.
    26.江昌俊,李叶云,王朝霞.茶树鲜叶中β-葡萄糖苷酶提取条件的研究[J].南京农业大学学报,2000,23(2):93-96.
    27.江昌俊,李叶云.茶叶中β-葡萄糖苷酶酶活性测定条件的研究[J].安徽农业大学学报,1999,6(2):212-215.
    28.姜慧芳,任小平.干旱胁迫对花生叶片SOD活性和蛋白质的影响[J].作物学报,2004,30(2):169-174.
    29. 金基石,李永红,单宁伟,等.抗坏血酸提高月季切花失水胁迫耐性与增加APX活性的关系[J]园艺学报,2006,33(2):333-337.
    30.赖明志,黄志强,赵梅华,等.铁观音、本山的过氧化物酶同工酶[J].福建茶叶,.986,(4):25-26.
    31.李惠华,赖钟雄.植物抗坏血酸过氧化物酶研究进展[J].亚热带植物科学,2006,35(2):66-69.
    32.李惠华,赖钟雄.龙眼体胚发生过程中抗坏血酸过氧化物酶活性的变化[J].亚热带植物科学,2006,35(3):9-11.
    33.李军.紫外分光光度法测定果蔬中的维生素C[J].可北职业技术师范学院学报,2000,14(1):41-44.
    34.李名君.茶叶酶学研究进展[J].国外农学·茶叶,1983,(2):1-5.
    35.李素芳,虞富莲,杨亚军.茶树优质资源的同工酶遗传稳定性研究[J].茶叶科学,2001,21(1):76-77.
    36.李远华,江昌俊,余有本.茶树β-葡萄糖苷酶基因mRNA的表达[J].南京农业大学学报,2005,28(2):103-106.
    37.刘家忠,龚明家.植物抗氧化物酶系统究进展[J].云南师范大学学报,1999,19(6):1-11.
    38.刘莉华,宛晓春,文勇,等.祁门红茶加工过程中β-葡萄糖苷酶活性变化研究[J]安徽农业大学学报,2003,30(4):386-389.
    39.刘乾刚,林智,蔡建明.茶叶酶研究的方法与进展[J].福建农林大学学报(自然科学版),2003,32(1):74-78.
    40.刘仲华,施兆鹏.红茶制造中多酚氧化酶同工酶谱与活性的变化[J].茶叶科学,1989,9(2):141-150.
    41.刘仲华,黄建安,施兆鹏.黑茶初制中主要酶类的变化[J].茶叶科学,1991,11(增刊):17-22.
    42.刘彧,丁同楼,王宝山.不同盐渍生境下盐地碱蓬叶片肉质化研究[J].山东师范大学学报(自然科学版),2006,2 1(2):102-104.
    43.柳荣祥,朱全芬,夏春华.龙井茶游离脂肪酸组成的研究[J].中国茶叶,1991,(6):20-21.
    44.骆耀平,董尚胜,童启庆,等.7个茶树品种新梢生育过程中β-葡萄糖苷酶活性变化[J].茶叶科学,1997,17(增刊):104-107.
    45.骆耀平,童启庆,屠幼英,等.龙井茶摊放过程中β-葡萄糖苷酶活性的变化[J].茶叶科学,1999,19(2):136-138.
    46.陆德彪,童启庆.茶鲜叶摊放过程中脂质过氧化作用特点初探[J].浙江农业大学学报,1999,25(2):179-182.
    47.陆建良,林晨,骆颖颖,等.茶树重要功能基因克隆研究进展[J].茶叶科学,2007,27(2):95-103.
    48.鲁成银,刘维华,李名君.茶种系间的亲缘关系及进化的酯酶同功酶分析[J].茶叶科学,1992,12(1):15-20.
    49.马长乐,王萍萍,曹子谊,等.盐地碱蓬(Suaeda salsa)APX基因的克隆及盐胁迫下的表达[J].植物生理与分子生物学学报,2002,28(4):261-266.
    50.马凌波,张凤英,马春艳,等.条斑紫菜抗坏血酸过氧化物酶基因的eDNA克隆和序列分析[J].中国水产科学,2005,12(3):281-287.
    51.潘宇,王坤波,徐仲溪,等.茶叶多酚氧化酶的序列分析与结构预测[J].茶叶科学,2008,28(3):157-165.
    52.庞彩红,冯兰东,王宝山.高等植物中编码APX的基因特点及其与逆境响应的关系[J].山东师范大学学报(自然科学版),2007,22(4):114-116.
    53.阮宇成.红碎茶制造过程中多酚氧化酶活性及同工酶的变化[J].茶叶科学研究报告,杭州:中国农科院茶叶研究所,1980-1981:209-214.
    54.阮宇成译:制茶工艺学与生物化学,杭州,中国农科院茶叶研究所情报资料室,1982:73-78.
    55.邵巍,赖钟雄,赖呈纯,等.龙眼胚性培养物APX同工酶的分析方法建立及其在龙眼体胚发生过程中的变化[J].福建农林大学学报(自科版),2008,37(2):140-144.
    56.邵巍.龙眼胚性培养物胞质型apx基因克隆及其表达研究[D].福建农林大学,2008.
    57.邵艳军,山仑.植物耐旱机制研究进展[J].中国生态农业学报,2006,14(4):16-20.
    58.沈文飚,徐朗莱,叶茂炳,等.抗坏血酸过氧化物酶活性测定的探讨[J].植物生理学通讯,1996,32(3):203-205.
    59.沈文飚,黄丽琴,徐朗莱.植物抗坏血酸过氧化物酶[J].生命的化学,1997,17(5):24-26.
    60.施兆鹏.茶叶加工学[M].北京:中国农业出版社,1997.
    61.史成颖,宛晓春,江昌俊,等.提取高质量茶树总RNA的方法研究[J].安徽农业大学学报,2007,34(3):360-363.
    62.孙卫红,王伟青,孟庆伟.植物抗坏血酸过氧化物酶的作用机制、酶学及分子特性[J].植物生理学通讯,2005,41(2):143-147.
    63.覃松林,陈兴琰,陈国本.茶树抗寒性及其同工酶特征的研究[J]茶叶科学,1988,8(1):33-36.
    64.唐继平.茶树过氧化物酶和多酚氧化酶同工酶的遗传研究[J].贵州茶叶,1986,(3):46-47.
    65.唐颢.乌龙茶做青工艺的相关酶学及生化机理研究[D].湖南农业大学:2003.
    66.屠幼英.不同品种鲜叶多酚氧化酶活性及其在萎凋过程中的变化[J].中国茶叶,1988(4):26-27.
    67.屠幼英.红茶萎凋过程中多酚氧化酶生化特性的变化[J].茶叶科学简报,1990(4):16-19.
    68.屠幼英,童启庆,骆耀平,等.茶叶香气释放的机理研究:龙井茶炒制过程中β-葡萄糖苷酶和醇系香气的关系[J].茶叶,1999,25(1):20-23.
    69.屠幼英,童启庆.龙井茶叶加工过程中醇系香气释放机理研究[J].浙江大学学报(农业与生命科学版),1999,25(5):535-536.
    70.Thomas D S.实时荧光定量PCR.EastwinTechnical Notes—实时荧光定量PCR专辑.2004:2.
    71.宛晓春.茶叶生物化学[M].北京:农业出版社,2003:236-244.
    72.汪东风.茶叶中糖苷化学及其研究进展[J].中国茶叶加工,1997,(4):32-36.
    73.王宝山,赵思齐.干旱对小麦幼苗膜脂过氧化及保护酶活性的影响[J].山东师范大学学报(自然科学版),1987,2(11):29-39.
    74.王宝山.生物自由基与生物膜伤害[J].植物生理学通讯,1988,2:12-16.
    75.王冬梅.Substrate Specificityof GlycosidasesinTea Leaves[J].中国国际茶技术与茶文化交流会:北京,中国国际科学技术合作协会,1997:33-34.
    76.王敦元,叶银芳,肖伟祥.茶叶中多酚氧化酶同工酶分析方法的研究[J].安徽农学院学报,1983,(1):17-23.
    77.王凤华,赖钟雄.龙眼胚性愈伤组织维生素C过氧化物酶基因(apx)及NADH脱氢酶(nad2)基因部分序列的克隆[J].应用与环境生物学报.2005,11(1):45-48
    78.王海滨,包先进.茶树脂肪氧化酶对亚油酸的降解作用[J].贵州茶叶,1990,(4):22-23.
    79.王家利,丁同楼,王宝山.肉质植物及其对盐渍和干旱环境的适应[J].山东师范大学学报(自然科学版),2005.20(4):74-75.
    80.王若仲,杨伟丽,禹利君.乌龙茶加工中蛋白酶活性与相关生化成分的变化[J].茶叶科学,2001,21(1):30-34.
    81.王若仲,杨伟丽,禹利君.乌龙茶加工中淀粉酶活性与相关生化成分的变化[J].茶叶科学,2002,22(1):83-86.
    82.王庆斌,王方正,薛庆中,等.APX基因转化水稻及其功能的研究[J].中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编.杭州.2003:318.
    83.王朝霞,李叶云,江昌俊,等.茶树巯基蛋白酶抑制剂基因的cDNA克隆与序列分析[J].茶叶科学, 2005,25(3):177-182.
    84.王朝霞,江昌俊,蔡海云.茶树β-1,3-葡聚糖酶基因cDNA片段的克隆与序列分析[J].安徽教育学院学报,2006,24(3):67-69.39.
    85.王伟青,李滨,孟庆伟,等.番茄类囊体膜抗坏血酸过氧化物酶基因TtAPX序列[J].植物生理与分子生物学学报,2002,28(6):491-492.
    86.王艳颖,胡文忠,庞坤.机械损伤对富士苹果抗氧化酶活性的影响[J].食品与机械,2007,23(5):26-30.
    87.王泽农.中国农业百科全书-茶叶卷[M].北京:农业出版社,1988.
    88.吴小崇.萎凋中可溶性多酚氧化酶活性的变化[J].茶叶科学,1990,10(1):40.
    89.夏涛,童启庆,董尚胜,等.红茶萎凋发酵中β-葡萄糖苷酶的活性变化[J].茶叶科学,1996,16(1):63-66.
    90.夏涛,童启庆.冷冻萎凋对茶叶中多酚氧化酶和β-葡萄糖苷酶活性的影响初探[J].浙江农业大学学报,1997,23(1):108-110.
    91.萧伟祥.红茶中残留酶的研究[J].中国茶叶,1985,(6):16-17.
    92.肖纯,梁照.绿茶制造中果胶甲酯酶活性的变化[J].中国茶叶加工,2001,(1):34-36.
    93.谢寅峰,沈惠娟.水分胁迫下3种针叶树幼苗抗早性与硝酸还原酶和超氧化物歧化酶活性的关系[J].浙江林学院学报,2000,17(1):24-27.
    94.须海荣,童启庆,庄晚芳.浙江12个茶树良种酯酶同工酶谱聚类分析[J].茶叶科学,1988,8(1):65-66.
    95.杨锐.β-葡萄糖苷酶对暑秋季新工艺乌龙茶品质影响研究[D].福建农林大学:2007.
    96.杨伟丽,禹利君,王若仲,等.乌龙茶加工过程中内源酶活性的变化规律[J].食品与机械,2004,20(6):5-7.
    97.杨跃华,孙涛.茶树诱变育种中酯酶同工酶的研究[J]中国茶叶,1994,(4):9.
    98.叶庆生.红茶萎凋发酵中多酚氧化酶、过氧化物酶同工酶的活性变化与儿茶素、茶黄素组分的消长[J].安徽农学院学报,1986,(2):19-29.
    99.尹军峰,林智,谭俊峰,等.花茶窨制过程中主要化学成分的变化规律[J].中国茶叶,2004,(2):14-15.
    100.易国斌,崔英德,廖列文,等.PVPP吸附绿茶饮料中茶多酚的研究[J].食品科学,2001,22(5):14-46.
    101.游小清,王华夫.茶叶中萜烯醇配糖体的释放作用[J].茶叶科学,1994,14(1):70.
    102.岳晓翔,陈敏,段迪,等.绿色和紫红色表型盐地碱蓬叶片抗氧化系统比较研究[J].山东师范大学学报(自然科学版),2008,23(1):121-124.
    103.禹利君,杨伟丽.茶叶加工中的酶学研究进展[J].茶叶通讯,1998,(2):31-34.
    104.禹利君,杨伟丽.茶树及红茶加工中PPO和POD的研究进展[J].湖南农业大学学报,1999,25(5):421-425.
    105.禹利君,史云峰,杨伟丽,等.乌龙茶做青期间多酚氧化酶、过氧化物酶的活性变化[J].茶叶科学, 2001,21(2):30-133.
    106.袁弟顺.中国白茶[M].厦门:厦门大学出版社,2006
    107.张丽霞,施兆鹏.红茶和绿茶初制过程中维生素C变化动态研究[J].湖南农学院学报,1991,(17):627-632.
    108.张石革,程建娥.维生素C(抗坏血酸)缺乏症(坏血病)与补充维生素C[J].中国药房,2003,14(4):255-256.
    109.张维静,陆海,杜希华.抗坏血酸过氧化物酶在植物抵抗氧化胁迫中的作用[J].山东师范大学学报(自然科学版),2008,23(4):113-115.
    110.张正竹,施兆鹏,宛晓春.茶叶中的脂氧合酶[J].中国茶叶加工,1998,(3):31-34.
    111.张正竹,施兆鹏,宛晓春.绿茶贮藏过程中脂肪酸的变化及对香气的影响[J].中国茶叶加工,1999,(2):39-41.
    112.张正竹,宛晓春,坂田完三.茶叶β-葡萄糖苷酶亲和层析纯化与性质研究[J].茶叶科学,2005,25(1):16-20.
    113.詹梓金,郭彤,江林.应用同工酶技术研究福云F_1代茶的遗传动态[J].福建农学院学报(自然科学版),1993,22(1):49-52.
    114.赵东,刘祖生,奚彪.茶树多酚氧化酶基因的克隆及其序列比较[J].茶叶科学,2001,21(2):94-98.
    115.曾韶西,王以柔.低温胁迫对黄瓜子叶抗坏血酸过氧化物酶活性和谷胱甘肽含量的影响[J].植物生理与分子生物学学报,1990,16(1):39-44.
    116.曾韶西,王以柔,刘鸿先.低温光照下与黄瓜子叶叶绿素降低有关的酶促反应[J].植物生理与分子生物学学报,1991,17(2):177-182.
    117.祝冬青.绿茶加工中的酶学研究与应用[J].蚕桑茶叶通讯,2001,(1):5-8.
    118.竹尾忠一.红茶制造中多酚氧化酶活性变化研究[J].农业科技译丛,1973,(3):99-102.
    119.Asada K.Ascorbate peroxidase:A hydrogen peroxide-scavenging enzyme in plants[J].Plant Physiologia Plantarum,1992,85:235-241.
    120.Agius F,Lamothe RG,Caballero JL,et al.Engineering increased vitamin C levels in plants by over-expression of a D-galacturonic acid reductase[J].Nature Biotech,2003,21:177-181.
    121.Bunkelmann JR,Trelease RN.Ascorbate peroxidase.A prominent membrane protein in oilseed glyoxisomes[J].Plant Physiol,1996,110:589-598.
    122.Cakmak I,Marschmer H.Magnesium deficiency and high light intensity enhance actions of superoside dismutase,ascorbate peroxidase,and glutathome reductase in bean leaves[J].Plant Physiol,1992,8:1222.
    123.Charles R,Frank J.Michael B.Identification of two cytosolic ascorbate peroxidase cDNAs from soybean leaves and characterization of their products by functional expression in E.coli[J].Planta, 1998,204:120-126.
    124.Chen GX,Asada K.Asorbate peroxidase in tea leaves occurrence of two isoenzymes and their differences in enzymatic and molecular properties[J].Plant Cell Physiol,1989,30:987-998.
    125.Chen GX,Sanom S,Asada K.The amino acid sequence of ascorbate peroxidase from tea has a high degree of homology to that of cytochrome c peroxidase from yeast[J].Plant Cell Physiol, 1992,33:109-116.
    126.Chen L,Ma CL,Zhao LP.Molecular cloning of full-length cDNA of the chalcone isomerase(CHI)gene from Camellia sinensis(L.)O.Kuntze.http://www.ncbi.nlm.nih.gov,Accessing No.DQ904329.
    127.Chen L,Zhang YL,Zhao LP.Molecular cloning of full-length cDNA of the ACC oxidase gene from Camellia sinensis(L.)O.Kuntze.http://www.ncbi.nlm.nih.gov,Accessing no.DQ904328.
    128.Conklin PL.Recent advance in the role and biosynthesis of ascorbic acid in plants[J].Plant Cell Environ,2001,24:383-94.
    129.Cvar B L,Ellis B E.Transgenic tobacco plants expressing antisense RNAfor cytosolic ascorbate peroxidase show increased susceptibility to ozone injury[J].The Plant Journal, 1997, 11(6):1297-1305.
    130.Dalton DA,Hanus FJ,Russell SA,et al.Purification,Properties and Distribution of Ascorbate Peroxidase in Legume Root Nodules[J].Plant Physiol. 1987,83:789-794.
    131.Dalton DA,Baird LM, Langeberg L,et al. Subcellular location of oxygen defense enzymes in soybean (Glycine max.) root nodules[J].Plant Physiol, 1993,102:481-489.
    132.Foyer CH,Hailiwell B.The presence of glutathione and glutathione reductase in chloroplasts proposed role in ascorbic acid metabolism[J].Planta,1976,133:21-25,
    133.Giacomelli L,Masi A,Ripoll DR,et al.Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light- induced necrosis when levelsof cellular ascorbate are low[J].Plant Mol Biol,2007,(65):627-644.
    134.Giovanna M,Paolo P,Anna M V,et al.stimating the number of integrations in transformed plants by quantitative real-time PCR[J],BMC Biotechnol.2002,2(l):20.
    135.Gossett D R, Banks S W, Millhollon E P.Antioxidant response to NaCl stress in a control and a NaCl tolerant cotton cell line grown in the presence of paraquat,buthionine sulfoxinmine and exogenous glutathione[J].Plant Physiol, 1996,112:803-809.
    136.Guo Wenfei,Ogawa K,Yamauchi K.et al.Isolation and Characterization of aβ- primeuCrosidase Concerned With Alcoholic Aroma Formation in Tea Leaves[J].Biosc Biotech,Biochem, 1996, 60(11):1810-1814.
    137. Guo W,Yamauchi K,Watanabe N,et al.A primeverosidase as a main glyeosidase concerned with the alcoholic aroma formation in tea leaves[J].Biosci Biotechnol Biochem,1995,59:962-964.
    138. Hernandez J A, Ferrer MA, Jimenez A, et al. Antioxidant system and O_2~-/H_2O_2 production in the apoplast of Pisum Sativum L.leaves:its relation with NaCl induced necrotic lesions in minor veins[J].Plant Physiol,2001,127:817-831.
    139. Hossain MA,Asada K.Inactivation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen peroxiderits protection by ascorbate[J].Plant Cell Physiol,1994,25:1285-1295.
    140.Ijima,Ogawa K,Watanabe N,et al.Characterization of β-primeverosidase,being concerned with alcoholic aroma formation in tea leaves to be processed into black tea,and preliminary observations on its substrate specificity[J].Agric Food Chem,1998,46:1712-1718.
    141. Jespersen HM,Kjaersgard Ⅳ,Ostergaard L, et al.From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure,function and evolution of seven types of ascorbate peroxidase[J].Biochemistry, 1997,326:305-310.
    142. Jiang CJ,Yang SL,Li YH,et al.Camellia sinensi beta-l,3-glucosidase-like mRNA.http://www. ncbi.nlm.nih.gov Accessing No.AF537127.
    143. Kato M,Mizuno K,Fujimura T,et al.Purification and characterization of caffeine synthase from tea leaves[J].Plant Physiology, 1999,120:579-586.
    144. Knox J P,Dodge A D.Singlet oxygen and plants[J],Phytochemistry.1985,24: 889-896.
    145. Koshiba KXytomlic ascorbate peroxidase in seedlings and leaves of maize(Zea mays)[J].Plant Cell Physiol,1993,34:713-721.
    146. Kornyeyev D,Dmytro K,Barry A,et al.Enhanced photochemical light utilization and decreased chilling-induced pbotoinhibition of photosystem Ⅱin cotton overexpression genes encoding chloroplast targeted antioxidant enzymes[J]. Physiol Plant,2001,133:323-331.
    147. Kubo A,Saji H.Tanaka K,et al.Cloning and sequencing of a cDNA encoding ascorbate peroxidase from[J].Plant Mot Boil,1992,18:691-701.
    148. Li B,Chen ZZ,Li QH.Cloning polyphenol oxidase in tea variety Camellia sinensis var.assamica cv.Yinghong 9.hrtp://www.ncbi.nlm.nih.gov.Accessing No.DQ513313.
    149. Liganage A C,Pungasiri PAN, Pererg P S F, et al. Study on the changes of polyphenol oxidase and peroxidase activity during drying and storage of tea[J].S L J Tea Sci,1997,65(l-2):58-66.
    150. Lorence A,Chevone BI,Mendes P,Nessler CL.Myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis[J].Plant Physiol,2004,134:1200-1205.
    151. Luna M,Badiana M, Felici M, et al. Selective enzyme inactivation under water stress in maize (Zea mays L.) and wheat (Triticum aestivum L.)seedlings[J].Environ Exp Bot,1985,25: 153-156.
    152. Martens S,Knott J,Seitz CA,et al.Impact of biochemical pre-studies on specific engineering strategies of flavonoid biosynthesis in plant tissues[J].Biochemical Engineering Journal, 2003,14:227-235.
    153. Mathews MC,Summers CB, Felton GW.Ascorbate peroxidase: a novel antioxidant enzyme in insects[J].Archive of Insect Biochemistry and Physiology, 1997,34: 57-68.
    154. Matsumoto S,Takeuchi A,Hayatsu M,et al.Molecular cloning of phenylalanine ammonium lyase cDNA and classification of varieties and cultivars of tea plants(Camellia sinensis)using a tea PAL cDNAprobe[J].Theor.Appl.Genet,1994,89:671-675.
    155. Miyake C,Asada K.Thylak oid-bound ascorbate pe roxidase in spinach chloroplasts and photoreduction of its primary product monode hydroascofbate radical in thylak oids[J].Plant Cell Physiol.l992,33:541-553.
    156. Miyake C,Cao W H,Asada K.Purification and molecular properties of thylakoid-bound ascorbate peroxidase from spinach chloroplasts [J].Plant Cell Physiol.1993,34:881-889.
    157 . Miyake C,Asada K.Thiylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monode hydroascorbate radicalin spinach thtlakoids[J], Plant Cell Physiol.l994,33:541-553.
    158. Miyake C,Asada K.Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; hydrogen peroxide decomposes compound I of ascorbate peroxidase[J].Plant Cell Physiol. 1996,37:423-430.
    159. Mittler R,Zilinskas BA.Purification and characterization of pea cytosolic ascorbate peroxidase[J]. Plant Physiol. 1991,97:962.
    160. Mittler R,Zilinskas DA.Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase[J].FEBS Lett,1991,289:257-259(b).
    161. Mizutani M,Nakanishi H,Ema J,et al.Cloning of p-primeverosidase from tea Leaves,a key enzyme in tea aroma formation[J].Plant Physiology,2002,130:2164-2176.
    162. Mortia K,Wakabayashi M,Kubota K.Aglycone constituents if Fresh Tea Leaves Cultivated for Green and Black Tea[J]. Biosc ,Biotech,Biochem,1994,58(4):687-690.
    163. Murgia I,Tarantino D,Vannini C,et al.Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show in creased resistance to Paraquat2induced photooxidative stress and to nitric oxide induced cell death [J].Plant Journal,2004,38(6):940- 953.
    164. Nakano Y,Asada K.Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J].Plant CellPhysiol,1981.22:867-880.
    165. Nakano Y,Asada K.Purificationof ascorbate peroxidase in spinach chloroplasts,its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical[J],Plant Cell Physiology, 1987,28:131-140.
    166.Narendra S,Venkataramani S,Shen G, et al.The arabidopsis ascorbate peroxidase 3 is a peroxisomal membranebound antioxidant enzyme and is dispensable for Arabidopsis growth and development[J]. Exp Bot,2006,(57):3033-3042.
    167.Oba K,Ishikawa S,Nishikawa M, et al.Purification and properties of L-galactono-l,4-lactone dehydrogenase,a key enzyme for ascorbic acid biosynthesis,from sweet potato roots[J].J Biochem, 1995,117:120-124,
    168.Park JS,Kim JB,Kim YH.Camellia sinensis leucoanthocyanidin reductase(LCR)mRNA.http:// www.ncbi.nlm.nih.gov,Accessing No.AY169404.
    169.Pastori GM ,Trippi VS.Oxidative stress induces high rate of glutathione reductase synthesis in a drought - resistant maize strain[J ].Plant and Cell Physiology,1992,33(7):957-961.
    170.Paul A,Kumar S,Ahuja PS.Camellia sinensis ascorbate peroxidase mRNA.http://www. ncbi. nlm.nih.gov,Accessing No.DQ442272.
    171.Paul A,Kumar S,Ahuja PS.Camellia sinensi metallothionin 1 mRNA.http://www. ncbi. nlm.nih. gov, Accessing No.DQ442270.
    172.Paul A,Kumar S,Ahuja PS.Camellia sinensis metallothionin 2 mRNA.http://www.ncbi.nlm.nih.gov, Accessing No.DQ442271.
    173.Raizada J,Kumar S,Ahuja PS.Cloning and characterization of polyphenol oxidase gene in Camellia sinensis(L.)O.kuntze.http://www.ncbi.nlm.nih.gov,Accessing No.AY659975.
    174.Ranganath S R, M arimuthu S, Raju K. Freeze withering[J].Newsletter. UPASI, TR 1.1991,1(1):8.
    173.Rani A,Kumar S,Ahuja PS.Camellia sinensis 4-Coumaroyl CoA Ligase mRNA.http://www. ncbi. nlm.nih.gov,Accessing No.DQ194356.
    174.Rani A,Kumar S,Ahuja PS.Camellia sinensis Cultivar Upasi-10 Chalcone Isomerase(CHI)mRNA. http://www.ncbi.nlm.nih.gov,Accessing No.DQ 120521.
    175.Rani A,Kumar S,Ahuja PS.Camellia sinensis Flavonoid ',5'-Hydroxylase mRNA.http://www.ncbi. nlm.nih.gov,Accessing No.DQ 194358.
    176.Rawat R,Gulati A,Hallan V,et al.Molecula characterization of beta-glucosidase from regional Kangra tea clone(Camellia sinensis(L.)O Kuntze).AM285295.
    177.Rizhsky L, Hallak HE,Van BF,et al.Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase[J].Plant Journal,2002,32(3):329-342.
    178.Rutledge R G, Cote C. Mathematics of quantitative kinetic PCR and the application of standard curves[J]. Nucleic Acids Res,2003,31(16):e93.
    179.Sakta K,Ogawa K,Ijima Y.Molecular Basisof Alcoholic Aroma Forma2 tion in Tea Leaf[J].Tennen Yuki Kagobutsu Toronkai Koen Yoshishu, 1996,38th:511-516.
    180.Sarowar S,Kim EN,Kim YJ,et al.Overexpression of a pepper ascorbate peroxidase21ike 1 gene in tobacco plants enhances toler ance to oxidative stress and pathogens[J].Plant Science, 2005,169(l):55-63.
    181.Scopes R K. Proteinpurification: Principles and practice.2nd ed.New York: Spring-Verlag New York Inc. 1988.306-307,28-29
    182.Schoner S, Krause GH.Protective systems against active oxygen species in spinach: response to cold cclimation in excess light[J]. Planta,1990,180:383-389.
    183.Sgherri CLM,Maffei M,Navari F.Antioxidative enzymes inwheat subjected to increasingwater deficit and rewatering[J] Plant Physiol,2000,157(3):273-279.
    184.Shigeru S,Takahiro I,Masahiro T.Regulation and function of ascorbate peroxidase isoenzymes[J]. Journal of Experimental Botany,2002,53(372):1305-1319.
    185.Shigeoka S,Ishikawa T, Tamoi M,et al.Regulation andfunction of ascorbate peroxidase isoenzymes [J].Exp Bot,2002,53 (372): 1305-1319.
    186.Singh K,Kumar S,Ahuja P S.Cloning and characterization of cDNA encoding trans-cinnamate 4-hydroxylase from Camellia sinensis(L.)O.Kuntze cv.UPASI-10.http://www.ncbi. nlm.nih.gov, Accessing No.AY641731.
    187.Singh K,Kumar S,Ahuja PS.2004 Molecular cloning of full length cDNA of flavanone 3-hydroxylase(f3h)gene from Camellia sinensis(L.)O.Kuntze cv.UPASI-10 http://www.ncbi. nlm.nih.gov,2004,Accessing No.AY641730.
    188.Singh K,Kumar S,Ahuja PS.Cloning of full length cDNA encoding anthocyanidin synthase (ANS)from Camellia sinensis(L.)O.Kuntze cv.UPASI-10.http://www.ncbi.nlm.nih.gov, Accessing No.AY830416.
    189.Singh K,Kumar S,Ahuja PS.Molecular cloning of full length cDNA of leucoanthocyanidin reductase(LAR) gene from Camellia sinensis(L.)O.Kuntze cv.UPASI-10. http:// www.ncbi. nlm.nih.gov, Accessing No.AY641729.
    190.Singh K,Kumar S,Ahuja PS.Cloning and sequencing ocatalase gene from Camellia sinensis (L.)O.Kuntze cv.UPASI-10.http://www.ncbi.nlm.nih.gov,Accessing No AY641732.
    191.Singh K,Kumar S,Ahuja PS.Camellia sinensis HSP70 (hsp70)mRNA(partial cd).http://www.ncbi. nlm.nih.gov Accessing No.AY694190.
    192.Singh K,Vyas D,Kumar S,et al.Cloning of cDNA encoding manganese superoxide dismutase (MnSOD)from Camellia sinensis (L.)O.Kuntze http://www.ncbi.nlm.nih.gov,Accessing No.AY641734.
    193.Singh K,Kumar S,Ahuja PS.Camellia sinensis Cu/Zn superoxide dismutase mRNA.http://www.ncbi. nlm.nih.gov Accessing No.AY694187.
    194.Stasolla C,Yeung EC.Ascorbic acid metabolism during white spruce somatic embryo maturation and germination[J].Physiol Plant, 2001,11:196-205.
    195.Takeuchi A,Matsumoto S,Hayatsu M.Chalcone synthase from Camellia sinensis:isolation of the cDNA and the organspecific and sugar responsive expression of the genes[J].Plant Cell Physiol, 1994(5):1011-1018.
    196.Takeuchi A,Matsumoto S.Dihydroflavonol 4-reductase mRNA from Camellia sinensis. http: // www.ncbi.nlm.nih.gov, Accessing No.AB018685.
    197.Tamuly P,Roy P. Distribution of polyphenoloxidase activity in defferent cellular fractions during black teamanufacture[J]. Two andA Bud, 1995,42(2):48-50.
    198.Tanaks K,Masuda R,Sugimoto T,et al.Water deficiency-induced changes in the contents of defensive substances against active oxygen in spinach leave[J].Agric Biol chem,1990,54:2629.
    199.Tanaka K,Takeuchi E,Kubo A,et al.Two immunologically diferent isozymes of ascorbate peroxidase from spinach leaves[J].Arch Biochim Biophys,1991,286:371-375.
    200.Tarantino D,Vannini C,Bracale M,et al.Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances paraquat- induced photooxidative stress and nitric oxideinduced cell death[J]. Planta,2005,221(6): 757-765.
    201.Tomimoto Y,Ikehashi H,Kakeda K,et al.A pistil-specific PR-1 like protein of Camellia,its expression,sequence and genealogical position[J].Breeding Sci,1999,49:97-104.
    202.Uefuji H,Ogita S,Yamaguchi Y,et al.Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants[J].PlantPhysiology,2003,132:372-380.
    203.Walker MA,Mckersic BD.Role of the ascorbate-gtutathione antioxidant system in chilling resitance of tomato[J].PlantPhysiol, 1993,141:234.
    204.Wang D,Kurasawa E,Yamaguchi,et al.Analysis oglycosidically bound aroma precursors in tea leaves.2 Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process[J]. Agric Food Chem,2001,49:1900-1903.
    205.Welinder KG.Bacterial.Catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily[J].Biochim.Biophys. Acta, 1991,1080:215-220.
    206.Wheeler GL,Jones MA,Smirnoff N.The biosynthetic pathway of vitamin C in higher plants[J]. Nature, 1998,393:365-369.
    207.Yamaguchi K,Mori H,Nishimura M A.Novel isoenzyme of ascorbate peroxidase localized on glyoxysomal an d leaf peroxisomal membranes in pumpkin[J].Plant Cell Physiol, 1995,36:1157-1162.
    208.Yano M,Okada K,Kubota K,et al.Studies on the precursors of monoterpene alcohols in tea leaves[J].Agric Biol Chem,1990,54(4):1023-1028.
    209.Yabuta Y,Motoki T,Yoshimura K,et al.Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress[J].Plant Journal,2002,32(6):915-925.
    210.Yoshimura K,Yabuta Y,Ishikawa T,et al.Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses[J].Plant Physiol,2000,123:223-233.
    211.Yoshimura K, Yabuta Y, Ishikawa T, et al.Expressionof spinach ascorbate peroxidase isoenzymesin response tooxidative stresses[J].Plant Physiology,2000,123 (l):223-234.
    212.Yoshimura K, Yabuta Y, Ishikawa T, et al.Identification of a cis element for tissuespecific alternative splicing of chloroplast ascorbate peroxidase premRNA in higher plants[J].Biol Chem,2002,(277): 40623-40 632

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700