稻瘟病菌Rab蛋白功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Rab族蛋白是小G蛋白Ras家族最大的亚家族之一。研究表明它主要参与细胞内的囊泡运输,调节生物体内各种蛋白在细胞内外的正确运输和分配。为明确Rab族蛋白在稻瘟病菌等丝状真菌生长发育和侵染过程的作用,对稻瘟病菌Rab蛋白进行了生物信息学、基因表达和功能分析。
     生物信息学分析表明,在稻瘟病菌基因组中有11个Rab蛋白家族成员,这些Rab家族成员都具有其保守的结构域并且与其它物种间的Rab族蛋白存在着高度的同源性。
     荧光实时定量PCR分析表明,稻瘟病菌11个假定的Rab蛋白MoRab1、MoRab4、MoRab52、MoRab53和MGG_07191相对于其它发育阶段,均是孢子发育阶段表达最高;MoRab6、MoRab7和MoSec4在菌丝发育阶段表达最高;MoRab51和MoRab8在芽管发育阶段表达最高;MGG_01079附着胞阶段的表达量最高。
     本研究利用同源重组方法,获得一个MoRab51(Mgg01185.6)和MoRab7(Mgg08144.6)的基因敲除突变体。表型分析发现两个基因敲除突变体的气生菌丝较野生菌株明显减少,菌丝生长速度明显减慢,致病力丧失。Rab51敲除突变体分生孢子形成减少,而MoRab7的敲除突变体不形成分生孢子。MoRab7的敲除突变体菌丝块接种洋葱表皮可以形成附着胞,但无法成功侵入洋葱表皮细胞。以孢子悬浮液和菌丝块分别接种水稻叶片结果表明,MoRab51和MoRab7敲除突变体均失去了对水稻的致病能力。透射电子显微镜观察发现,MoRab51和MoRab7敲除突变体相对对照菌株WT细胞内部囊泡数目增多,变小。
     综上所述,稻瘟病菌MoRab51和MoRab7蛋白可能参与了稻瘟病菌极性生长相关蛋白的转运,该蛋白的缺失阻碍细胞的极性生长,表现为菌丝生长速度、产孢能力丧失,进一步导致其致病力丧失。
Rab family proteins (also called Rab GTPases) belong to small GTPases Ras superfamily. It has been shown that Rab-GTPase plays a critical role in mediating vesicular transport between different cytoplasmic membranes, so it also plays a key role in fungal development and is involved in regulation of cell polarity growth.
     To characterize the function of Rab GTPases in Magnaporthe oryzae, we conducted functional analysis of Rab GTPases of the fungus at whole genome level. There are 11 putative members of Rab family in Magnaporthe grisea genome database, all of which have the conserved domains and display high homology with Rab members in other organisms. Then, we designed primers according to gene sequences of the putatitve Rab genes, and conducted Real-time PCR to obtain the expression profile during the different stages including hypha, spore, germ tube and appressorium. In order to identify the gene function, we constructed a series of gene knock-out vectors for gene deletion through homologous recombination approach. TheΔMorab51 andΔMorab7 mutants were confirmed by PCR and Real-time PCR. Further, we analyzed the phenotype ofΔMorab51 andΔMorab7 mutants. It showed that growth rate of the mycelia reduced dramatically.ΔMorab7 mutants,as well asΔMorab51 failed to cause lesions on infected rice leaves. The conidiation of theΔMorab51 mutant decreased remarkably, while theΔMorab7 mutant failed to produce conidia. The mycelia still formed normal appressoira and didn’t penetrate the onion epidermics. TheΔMorab51 andΔMorab7 mutants lost pathogenicity to rice. TEM observation showed that the vacuole maturation was blocked either inΔMorab51 or inΔMorab7 mutant.
     Our results suggested that MoRab51 and MoRab7 participates in the transportation of proteins related to cell polarity growth and pathogenicity, which were involved in regulation of vegetative growth and conidiation in M.oryzae.
引文
[1] Dufresne M, Osbourn AE: Definition of tissue-specific and general requirements for plant infection in a phytopathogenic fungus, Mol Plant Microbe Interact 2001, 14:300-307
    [2] Gu Y, Wang Z, Yang Z: ROP/RAC GTPase: an old new master regulator for plant signaling, Curr Opin Plant Biol 2004, 7:527-536
    [3] Yang Z: Small GTPases: versatile signaling switches in plants, Plant Cell 2002, 14 Suppl:S375-388
    [4] Vetter IR, Wittinghofer A: The guanine nucleotide-binding switch in three dimensions, Science 2001, 294:1299-1304
    [5] Exton JH: Small GTPases minireview series, J Biol Chem 1998, 273:19923
    [6] Day GJ, Mosteller RD, Broek D: Distinct subclasses of small GTPases interact with guanine nucleotide exchange factors in a similar manner, Mol Cell Biol 1998, 18:7444-7454
    [7] Cox AD, CJ. D: Ras family signaling: therapeutic targeting, Cancer Biology and Therapy 2002, 1:599-606
    [8] Seabra MC, Wasmeier C: Controlling the location and activation of Rab GTPases, Curr Opin Cell Biol 2004, 16:451-457
    [9] Wennerberg K, Rossman KL, Der CJ: The Ras superfamily at a glance, J Cell Sci 2005, 118:843-846
    [10] Colicelli J: Human RAS superfamily proteins and related GTPases, Sci STKE 2004, 2004:RE13
    [11] Takai Y, Sasaki T, Matozaki T: Small GTP-binding proteins, Physiol Rev 2001, 81:153-208
    [12] Bischoff F, Molendijk A, Rajendrakumar CS, Palme K: GTP-binding proteins in plants, Cell Mol Life Sci 1999, 55:233-256
    [13] Przybojewska B, Jagiello A, Jalmuzna P: H-RAS, K-RAS, and N-RAS gene activation in human bladder cancers, Cancer Genet Cytogenet 2000, 121:73-77
    [14] Couce ME, Bautista D, Costa J, Carter D: Analysis of K-ras, N-ras, H-ras, and p53 in lung neuroendocrine neoplasms, Diagn Mol Pathol 1999, 8:71-79
    [15] McDonald JS, Jones H, Pavelic ZP, Pavelic LJ, Stambrook PJ, Gluckman JL: Immunohistochemical detection of the H-ras, K-ras, and N-ras oncogenes in squamous cell carcinoma of the head and neck, J Oral Pathol Med 1994, 23:342-346
    [16] Matallanas D, Arozarena I, Berciano MT, Aaronson DS, Pellicer A, Lafarga M, Crespo P:Differences on the inhibitory specificities of H-Ras, K-Ras, and N-Ras (N17) dominant negative mutants are related to their membrane microlocalization, J Biol Chem 2003, 278:4572-4581
    [17] Etienne-Manneville Sandrine , Alan. H: Rho GTPases in cell biology, Nature 2002, 420:629-635
    [18] Ridley AJ: Rho family proteins:coordinating cell responses, Trends Cell Biol 2001, 11:471-477
    [19] Lanzetti L: Actin in membrane trafficking, Curr Opin Cell Biol 2007, 19:453-458.
    [20]Tourkova IL, Shurin GV, Wei S, Shurin MR: Small rho GTPases mediate tumor-induced inhibition of endocytic activity of dendritic cells, J Immunol 2007, 178:7787-7793
    [21] Krause S, Stendel C, Senderek J, Relvas JB, Suter U: Small Rho GTPases are key regulators of peripheral nerve biology in health and disease, J Peripher Nerv Syst 2008, 13:188-199
    [22] Klein RM, Aplin AE: Rnd3 regulation of the actin cytoskeleton promotes melanoma migration and invasive outgrowth in three dimensions, Cancer Res 2009, 69:2224-2233
    [23] Touchot N, Chardin P, Tavitian A: Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library, Proc Natl Acad Sci U S A 1987, 84:8210-8214
    [24] Pereira-Leal JB, Seabra, M. C: Evolution of the Rab family of small GTP-binding proteins, Mol. Biol 2001, 313:889-901
    [25] Sakamoto K, Honda T, Yokoya S, Waguri S, Kimura J: Rab-small GTPases are involved in fluvastatin and pravastatin-induced vacuolation in rat skeletal myofibers, FASEB J 2007, 21:4087-4094
    [26] Lundquist EA: Small GTPases, WormBook 2006, 1-18
    [27] Ghittoni R, Patrussi L, Pirozzi K, Pellegrini M, Lazzerini PE, Capecchi PL, Pasini FL, Baldari CT: Simvastatin inhibits T-cell activation by selectively impairing the function of Ras superfamily GTPases, FASEB J 2005, 19:605-607
    [28] Zerial M, McBride H: Rab proteins as membrane organizers, Nat Rev Mol Cell Biol 2001, 2:107-117
    [29] Stenmark H, Olkkonen VM: The Rab GTPase family, Genome Biol 2001, 2:REVIEWS3007
    [30] Pereira-Leal JB, Seabra MC: The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily, J Mol Biol 2000, 301:1077-1087
    [31] Fu Z, Lee SH, Simonetta A, Hansen J, Sheng M, Pak DT: Differential roles of Rap1 and Rap2 small GTPases in neurite retraction and synapse elimination in hippocampal spiny neurons, JNeurochem 2007, 100:118-131
    [32] Boettner B, Van Aelst L: The Rap GTPase activator Drosophila PDZ-GEF regulates cell shape in epithelial migration and morphogenesis, Mol Cell Biol 2007, 27:7966-7980
    [33] Molendijk AJ, Ruperti B, Palme K: Small GTPases in vesicle trafficking, Curr Opin Plant Biol 2004, 7:694-700
    [34] El-Annan J, Brown D, Breton S, Bourgoin S, Ausiello DA, Marshansky V: Differential expression and targeting of endogenous Arf1 and Arf6 small GTPases in kidney epithelial cells in situ, Am J Physiol Cell Physiol 2004, 286:C768-778
    [35] Park JB, Kim JW, Lee JY: Dissociation of RalA from synaptic membranes by Ca2+/calmodulin, Biochemical and Biophysical Research Communications 1999, 263:765-769
    [36] Reuther GW, Der CJ: The Ras branch of small GTPases: Ras family members don't fall far from the tree, Curr Opin Cell Biol 2000, 12:157-165
    [37] Gromov PS, Madsen P, Tomerup N, Celis JE: A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of rheb, FEBS Lett 1995, 377:221-226
    [38] Zhu J, Reynet C, Caldwell JS, Kahn CR: Characterization of Rad, a new member of Ras/GTPase superfamily, and its regulation by a unique GTPase-activating protein (GAP)-like activity, J Biol Chem 1995, 270:4805-4812
    [39] Wennerberg K, Der CJ: Rho-family GTPases: it 's not only Rac and Rho(and I like it) Cell Sci 2004 117:1301-1312
    [40] d'Enfert C, Gensse M, Gaillardin C: Fission yeast and a plant have functional homologues of the Sar1 and Sec12 proteins involved in ER to Golgi traffic in budding yeast, EMBO J 1992, 11:4205-4211
    [41] Cheon CI, Lee NG, Siddique AB, Bal AK, Verma DP: Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis, EMBO J 1993, 12:4125-4135
    [42] Pfeffer S: A model for Rab GTPase localization, Biochem Soc Trans 2005, 33:627-630
    [43] Schimmoller F, Simon I, Pfeffer SR: Rab GTPases, directors of vesicle docking, J Biol Chem 1998, 273:22161-22164
    [44] Battey NH, James NC, Greenland AJ, Brownlee C: Exocytosis and endocytosis, Plant Cell 1999, 11:643-660
    [45] Starai VJ, Jun Y, Wickner W: Excess vacuolar SNAREs drive lysis and Rab bypass fusion, Proc Natl Acad Sci U S A 2007, 104:13551-13558
    [46] Ungermann C, Price A, Wickner W: A new role for a SNARE protein as a regulator of the Ypt7/Rab-dependent stage of docking, Proc Natl Acad Sci U S A 2000, 97:8889-8891
    [47] Spaargaren M, Bos JL: Rab5 induces Rac-independent lamellipodia formation and cell migration, Mol Biol Cell 1999, 10:3239-3250
    [48] Simonsen A, Gaullier JM, D'Arrigo A, Stenmark H: The Rab5 effector EEA1 interacts directly with syntaxin-6, J Biol Chem 1999, 274:28857-28860
    [49] Rauma T, Tuukkanen J, Bergelson JM, Denning G, Hautala T: rab5 GTPase regulates adenovirus endocytosis, J Virol 1999, 73:9664-9668
    [50] Nielsen E, Severin F, Backer JM, Hyman AA, Zerial M: Rab5 regulates motility of early endosomes on microtubules, Nat Cell Biol 1999, 1:376-382
    [51] Lanzetti L, Palamidessi A, Areces L, Scita G, Di Fiore PP: Rab5 is a signalling GTPase involved in actin remodelling by receptor tyrosine kinases, Nature 2004, 429:309-314
    [52] Nakaya M, Tanaka M, Okabe Y, Hanayama R, Nagata S: Opposite effects of rho family GTPases on engulfment of apoptotic cells by macrophages, J Biol Chem 2006, 281:8836-8842
    [53] Masahiro Kitano MN, Takeshi Nakamura, Shigekazu Nagata, Michiyuki Matsuda: Imaging of Rab5 activity identifies essential regulators for phagosome maturation, Nature, 2008, 453:241-245
    [54] Pereira-Leal JB, Seabra MC: Evolution of the Rab family of small GTP-binding proteins, J Mol Biol 2001, 313:889-901
    [55] Roberts RL, Barbieri MA, Pryse KM, Chua M, Morisaki JH, Stahl PD: Endosome fusion in living cells overexpressing GFP-rab5, J Cell Sci 1999, 112 ( Pt 21):3667-3675
    [56] Rybin V, Ullrich O, Rubino M, Alexandrov K, Simon I, Seabra MC, Goody R, Zerial M: GTPase activity of Rab5 acts as a timer for endocytic membrane fusion, Nature 1996, 383:266-269
    [57] Stenmark H, Parton RG, Steele-Mortimer O, Lutcke A, Gruenberg J, Zerial M: Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis, EMBO J 1994, 13:1287-1296
    [58] Bucci C, Parton RG, Mather IH, Stunnenberg H, Simons K, Hoflack B, Zerial M: The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway, Cell 1992, 70:715-728
    [59] Opdam FJ, Kamps G, Croes H, van Bokhoven H, Ginsel LA, Fransen JA: Expression of Rab small GTPases in epithelial Caco-2 cells: Rab21 is an apically located GTP-binding protein in polarisedintestinal epithelial cells, Eur J Cell Biol 2000, 79:308-316
    [60] Hunziker W, Peters PJ: Rab17 localizes to recycling endosomes and regulates receptor-mediated transcytosis in epithelial cells, J Biol Chem 1998, 273:15734-15741
    [61] Zacchi P, Stenmark H, Parton RG, Orioli D, Lim F, Giner A, Mellman I, Zerial M, Murphy C: Rab17 regulates membrane trafficking through apical recycling endosomes in polarized epithelial cells, J Cell Biol 1998, 140:1039-1053
    [62] Lutcke A, Parton RG, Murphy C, Olkkonen VM, Dupree P, Valencia A, Simons K, Zerial M: Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression, J Cell Sci 1994, 107 ( Pt 12):3437-3448
    [63] Erdman RA, Shellenberger KE, Overmeyer JH, Maltese WA: Rab24 is an atypical member of the Rab GTPase family. Deficient GTPase activity, GDP dissociation inhibitor interaction, and prenylation of Rab24 expressed in cultured cells, J Biol Chem 2000, 275:3848-3856
    [64] Meresse S, Gorvel JP, Chavrier P: The rab7 GTPase resides on a vesicular compartment connected to lysosomes, J Cell Sci 1995, 108 ( Pt 11):3349-3358
    [65]Lombardi D, Soldati T, Riederer MA, Goda Y, Zerial M, Pfeffer SR: Rab9 functions in transport between late endosomes and the trans Golgi network, EMBO J 1993, 12:677-682
    [66] Pereira-Leal JB: The Ypt/Rab family and the evolution of trafficking in fungi, Traffic 2008, 9:27-38
    [67] Furuta N, Fujimura-Kamada K, Saito K, Yamamoto T, Tanaka K: Endocytic recycling in yeast is regulated by putative phospholipid translocases and the Ypt31p/32p-Rcy1p pathway, Mol Biol Cell 2007, 18:295-312
    [68] Novick P, Field C, Schekman R: Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway, Cell 1980, 21:205-215
    [69] Gallwitz D, Donath C, Sander C: A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product, Nature 1983, 306:704-707
    [70] Fabry S, Steigerwald R, Bernklau C, Dietmaier W, Schmitt R: Structure-function analysis of small G proteins from Volvox and Chlamydomonas by complementation of Saccharomyces cerevisiae YPT/SEC mutations, Mol Gen Genet 1995, 247:265-274
    [71] Siniossoglou S: Affinity purification of Ypt6 effectors and identification of TMF/ARA160 as a Rab6 interactor, Methods Enzymol 2005, 403:599-607
    [72] Bottger G, Nagelkerken B, van der Sluijs P: Rab4 and Rab7 define distinct nonoverlapping endosomal compartments, J Biol Chem 1996, 271:29191-29197
    [73] Pellinen T, Arjonen A, Vuoriluoto K, Kallio K, Fransen JA, Ivaska J: Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins, J Cell Biol 2006, 173:767-780
    [74] Simpson JC, Griffiths G, Wessling-Resnick M, Fransen JA, Bennett H, Jones AT: A role for the small GTPase Rab21 in the early endocytic pathway, J Cell Sci 2004, 117:6297-6311
    [75] Miaczynska M, Christoforidis S, Giner A, Shevchenko A, Uttenweiler-Joseph S, Habermann B, Wilm M, Parton RG, Zerial M: APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment, Cell 2004, 116:445-456
    [76] Ohsumi K, Arioka M, Nakajima H, Kitamoto K: Cloning and characterization of a gene (avaA) from Aspergillus nidulans encoding a small GTPase involved in vacuolar biogenesis, Gene 2002, 291:77-84
    [77] Punt PJ, Seiboth B, Weenink XO, van Zeijl C, Lenders M, Konetschny C, Ram AF, Montijn R, Kubicek CP, van den Hondel CA: Identification and characterization of a family of secretion-related small GTPase-encoding genes from the filamentous fungus Aspergillus niger: a putative SEC4 homologue is not essential for growth, Mol Microbiol 2001, 41:513-525
    [78] Price A, Seals D, Wickner W, Ungermann C: The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein, J Cell Biol 2000, 148:1231-1238
    [79] Lee GJ, Sohn EJ, Lee MH, Hwang I: The Arabidopsis rab5 homologs rha1 and ara7 localize to the prevacuolar compartment, Plant Cell Physiol 2004, 45:1211-1220
    [80] Ueda T, Yamaguchi M, Uchimiya H, Nakano A: Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana, EMBO J 2001, 20:4730-4741
    [81] Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: conserved structure and molecular mechanism, Nature 1991, 349:117-127
    [82] Jason B. Bock HTM, Andrew A. Peden, Richard H. Scheller: Agenomic perspective on membrance compartment's organizer, Nature 2001, 409:839-841
    [83] Goff SA RD, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L,Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S.: A draft sequence of the rice genome, Science 2002, 296(5565):92-100
    [84] Sambrook J RD:分子克隆实验指南(第三版)(上册),科学出版社2002,
    [85] Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method, Nat Protoc 2008, 3:1101-1108
    [86] Applied BA: Relative Quantitation of Gene Expression, User Bulletin 2001, 2:
    [87] Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL, Mohammed S, Heck AJ, Raposo G, van der Sluijs P, Bonifacino JS: Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7, J Cell Biol 2008, 183:513-526
    [88] Rink J, Ghigo E, Kalaidzidis Y, Zerial M: Rab conversion as a mechanism of progression from early to late endosomes, Cell 2005, 122:735-749
    [89] Del Conte-Zerial P, Brusch L, Rink JC, Collinet C, Kalaidzidis Y, Zerial M, Deutsch A: Membrane identity and GTPase cascades regulated by toggle and cut-out switches, Mol Syst Biol 2008, 4:206
    [90] Lakadamyali M, Rust MJ, Zhuang X: Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes, Cell 2006, 124:997-1009
    [91] Vonderheit A, Helenius A: Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes, PLoS Biol 2005, 3:e233
    [92] Zerial M MH: Rab proteins as membrane organizers, Nat Rev Mol Cell Biol 2001, :107–117
    [93] Ferrell JE, Jr.: Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability, Curr Opin Cell Biol 2002, 14:140-148
    [94]Saito-Nakano Y, Yasuda T, Nakada-Tsukui K, Leippe M, Nozaki T: Rab5-associated vacuoles play a unique role in phagocytosis of the enteric protozoan parasite Entamoeba histolytica, J Biol Chem 2004, 279:49497-49507
    [95]Hall B, Allen CL, Goulding D, Field MC: Both of the Rab5 subfamily small GTPases of Trypanosoma brucei are essential and required for endocytosis, Mol Biochem Parasitol 2004, 138:67-77
    [96]Schnatwinkel C, Christoforidis S, Lindsay MR, Uttenweiler-Joseph S, Wilm M, Parton RG, Zerial M: The Rab5 effector Rabankyrin-5 regulates and coordinates different endocytic mechanisms, PLoSBiol 2004, 2:E261
    [97] Mukhopadhyay A, Barbieri AM, Funato K, Roberts R, Stahl PD: Sequential actions of Rab5 and Rab7 regulate endocytosis in the Xenopus oocyte, J Cell Biol 1997, 136:1227-1237
    [98] Doe CL, Whitby MC: The involvement of Srs2 in post-replication repair and homologous recombination in fission yeast, Nucleic Acids Res 2004, 32:1480-1491
    [99] Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR: Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea, Plant Cell 2006, 18:2822-2835
    [100] Decottignies A: Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination, Genetics 2007, 176:1403-1415
    [101] Duro E, Vaisica JA, Brown GW, Rouse J: Budding yeast Mms22 and Mms1 regulate homologous recombination induced by replisome blockage, DNA Repair (Amst) 2008, 7:811-818
    [102] Iida K, Tada T, Iida H: Molecular cloning in yeast by in vivo homologous recombination of the yeast putative alpha1 subunit of the voltage-gated calcium channel, FEBS Lett 2004, 576:291-296
    [103] Bhambra GK, Wang ZY, Soanes DM, Wakley GE, Talbot NJ: Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea, Mol Microbiol 2006, 61:46-60
    [104] Mukhopadhyay A, Funato K, Stahl PD: Rab7 regulates transport from early to late endocytic compartments in Xenopus oocytes, J Biol Chem 1997, 272:13055-13059
    [105] Meresse S, Steele-Mortimer O, Finlay BB, Gorvel JP: The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells, EMBO J 1999, 18:4394-4403
    [106]刘淑燕:稻瘟病菌中一个假定的Rab族蛋白RAB8之功能分析,福建农林大学2008届硕士研究生学位论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700