无人机电磁兼容专家系统软件平台中若干关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于无人机对机载设备体积、重量、功耗的限制,使许多电磁兼容性设计方案都无法实施,而且并没有现存的标准和设计规范可以参考。在此背景下,承担了某“十五”科学技术预先研究项目,其中一部分就是无人机电磁兼容专家系统软件平台的研究。根据无人机电磁兼容性的特点,对该专家系统中几个具有重要意义的关键问题进行了分析。
     首先,分析了国军标GJB151A、GJB152A所提出的理论依据,这也是一切无人机电磁兼容设计的出发点。充分理解国军标中各项指标的意义和极限值的合理性,有利于对国军标进行合理的剪裁和应用。
     其次,提出了一种新的设备级电磁兼容测试法――六基组测试法。这一新的测试法方法可以极大地节省设备级电磁兼容测试的时间和费用。
     分析了实际电磁环境对无人机的影响,通过在实际飞行环境中对各地面发射机的辐射和场地电磁环境的测试,得到对无人机造成伤害的电磁环境场强极限值在0.1~8×10~3MHz频段中为60~200V/m。将不同频段下传导干扰与辐射干扰进行结合分析,并根据无人机中存在的辐射干扰和传导干扰的共性特征,得到无人机系统级电磁辐射极限场强在0.1~2×10~3MHz频段中为60dBμV/m~100dBμV/m。该指标的制定为无人机系统的电磁兼容设计提供了一个有效的评估准则。并由此提出了无人机系统级电磁兼容测试法。
     基于偶极子的相关性运算法则,计算得出了在不同测试场地中辐射发射测试结果的相关系数,该系数对于提高无人机电磁兼容测试的精度有极大的帮助。
     根据各种电磁兼容设计手册和多位无人机设计专家的经验,总结出了各种有效的无人机电磁兼容设计方法。在设计初期就采用这些方法,可以有效地降低电磁干扰,提高系统的电磁兼容性,明显的缩短设计周期和减少设计经费。
     然后,根据无人机电磁兼容专家系统的要求,提出了几种新颖有效的计算方法,可以对无人机电磁兼容设计的各个方面进行准确的分析和预测。
     ⑴提出了机载天线——天线之间电磁干扰分析的数学模型,该模型的计算误差在通常使用的范围内小于2%。
     ⑵提出了对复杂电路结构的布线间距的计算方法,该方法的误差在取值很大的情况下也不会超过9%。
     ⑶采用分布元素法的原理,提出了一种新的预测电路板辐射的方法,它的计算结果和实际测试结果十分相近,证明了该计算方法是比较准确的。
     ⑷提出了一种基于非标准曲线算子的三维高阶FDTD算法,用于解决复杂介质结构的电磁兼容性问题。通过计算结果可以看出,高阶非标准FDTD算法的准确度极高,而且没有任何色散情况出现,并且高阶非标准FDTD算法还可以节省大约85%的CPU和内存使用。
     最后,提出了无人机系统级电磁兼容专家系统的设想,它力图模拟电磁兼容专家的思考过程而且不需要使用者具有丰富的设计经验。由于专家系统的复杂性,只是给出了该专家系统的基本结构及一些关键问题的解决方法和主要的计算方法。
Many electromagnetic compatibility (EMC) design methods cannot be applied on unmanned aerial vehicle (UAV) for volume, weight and power restrictions of airborne equipments. And there is no existing standard or design criterion of UAV to follow. Therefore, the EMC pre-research task of UAV was advanced, which included research on EMC expert system of UAV. Based on characteristics of EMC of UAV, author analyses several important problems in EMC expert system of UAV.
     Firstly,the theory foundation of national military standard is analyzed, which is the basis of whole EMC design of UAV. It is propitious to national military standard tailoring and application by fully understanding the meaning and rationality of each item and limit in national military standard.
     Then, a novel sub-system EMC test method-rule of six test method was raised. This new method can save a lot of testing time and expenses.
     The real electromagnetic (EM) environment effects on unmanned aerial vehicle is analyzed. And the max harmful outside word EM environment level to UAV is gained after many electromagnetic compatibility tests in darkroom and in actual flying field, which is 60-200V/m in 0.1-8×103MHz bandwidth. The EMC standard at the system level of UAV is advanced as 160dBμV/m-100dBμV/m in 0.1-2×103MHz bandwidth after analyzing the combined effects of conducted and radiated interferences based on the common EM radiated and conducted characteristics of UAV. The standard can provide an effective evacuating rule for EMC of UAV.
     According to the dipole model, the correlation coefficients of different testing conditions were calculated. The coefficients will help to improve the precision of EMC test.
     Based on EMC design manual and experiences from UAV experts, many effective EMC design method of UAV were summarized. Adopting these methods at the beginning of design can reduce radiation, enhance EMC of system, shorten design period and cut down design outlays. Subsequently, based on the requirement of EMC expert system of UAV, several novel and effective algorithmic methods were proposed. These methods can help designers to analyze and prognosticate various aspects of EMC design of UAV.
     (1)The mathematics model of EM interference between airborne antennas was established. The error of this model is normally less than 2%.
     (2)A calculation method of distance between lines of complicated circuit structure was put forward. The error of this method will not exceed 9% even at large values.
     (3)Based on distribution method, a novel method to predict the radiation of printed circuit board(PCB) was present. The calculation result is very close to the real test result, which proves the accuracy of this method.
     (4)A higher order finite-difference time-domain (FDTD) algorithm based on which based on non-standard curvilinear operator was introduce to resolve EMC problems in complex material structure. It can be seen from the calculation results this higher order FDTD method highly improves accuracy and significantly suppresses the artificial dispersion errors. And this method can also save 85% consumption of central processing unit (CPU) and memories approximately.
     Finally, the perspective of EMC expert system of UAV is proposed. The expert system is trying to simulate the thinking process of real EMC experts without requirements for abundant experiences of designers. Only the basic structure and resolvents of some key problems are mentioned, along with several main algorithmic methods.
引文
[1]王定华,赵家升.电磁兼容原理与设计.北京:电子科技出版社, 1994.
    [2]刘鹏程,邱扬.电磁兼容原理及技术.北京:高等教育出版社, 1993.
    [3]中华人民共和国国家军用标准GJB151A-97.国防科学技术工业委员会批准, 1997.
    [4]中华人民共和国国家军用标准GJB152A-97.国防科学技术工业委员会批准, 1997.
    [5]张松春.电子控制设备抗干扰技术及其应用.北京:机械工业出版社.
    [6] Haarlacher B L, Stewart R W. Comparison of common mode impedance measurements using 2 current probe technique versus V/I technique for CISPR 22 conducted emissions measurements. IEEE International Symposium on Electromagnetic Compatibility, New York: IEEE Press, 2001, 1: 17-20.
    [7] Anatoly T, Dheena M. Remote conducted emission testing using mached lisn power cable assembly. IEEE International Symposium on Electromagnetic Compatibility, New York: IEEE Press, 1990: 431-434.
    [8]唐仕平.军用设备电磁兼容性测量的一般要求.安全与电磁兼容,2002(3): 28-32.
    [9]陈淑凤,马蔚宇,马晓庆.电磁兼容实验技术.北京:北邮出版社, 2001.
    [10] Mariscott A, Pozzobon P. Proposal of an artificial traction line network for the measurement of locomotive conducted emissions. IEEE International Symposium on Electromagnetic Compatibility, New York: IEEE Press, 2003(2): 1188-1191.
    [11] Fiori F, Musolino F. Comparison of IC conducted emission measurement methods. IEEE Transactions on Electromagnetic Compatibility, 2003, 52(3): 839-845.
    [12] Paul C R. The concept of dominant effect in EMC. IEEE Transactions on Electromagnetic Compatibility, 1992, 34(3): 363-367.
    [13] Anthony B Bruno. Conducted emission model for switching power supplies. IEEE Transactions on Electromagnetic Compatibility, 1987, 11(3): 211-216.
    [14] Mark J. Prediction of conducted emission in switched mode power supplied. IEEE Transactions on Electromagnetic Compatibility, 1996, 21(2): 456-461.
    [15] Zainal M S, Jenu M Z M. Reduction of conducted emission noise using various power supply filters. Asia-Pacific Conference 2003, New York: IEEE Press, 2003: 100-104.
    [16]张国峰,张维.实用稳定电源150例.北京:人民邮电出版社, 1989.
    [17] Robert G Siefker. Taloring MIL-STD-461B for avionics applications. IEEE Transactions onElectromagnetic Compatibility, 1989, 13(2): 321-328.
    [18] Corcoran R P. Extremely low frequency exposure limits relative to military electrical/electronic system environments. IEEE International Symposium on Electromagnetic Compatibility, New York: IEEE Press, 1992:62-67.
    [19] Howard Kohlbacher, William Walker. Military applications of emission and suseptibility data . IEEE Transactions on Electromagnetic Compatibility, 1987:121-126.
    [20] Edelman L. Tailoring MIL-STD-461 RE02 electric field radiated emission limit. IEEE International Symposium on Electromagnetic Compatibility, New York: IEEE Press, 1991:328-331.
    [21]曾延光.欧盟新电磁兼容指令2004/108/EC实施指南.电子质量, 2008, 08: 63-67.
    [22] American National Standards Institute. American national standard for limits and methods of measurement of radio disturbance characteristics of information technology equipment . American National Standards Institute Press, 1997: 23.
    [23] Hanigovszki N, Petersen E, Poulsen, J. Evaluation of a method used for measuring high-frequency common-mode noise at the output of an adjustable speed drive. IEEE International Symposium on Electromagnetic Compatibility, New York: IEEE Press, 2003, 2: 548-552.
    [24] US Military Department. Department of Defense Interface Standard:“Electromagnetic Environmental Effects–Requirements for Systems”[EB/OL], http://cryptome.quintessenz.org/mirror/mil-std-464.htm. 2007.
    [25] Zamir R, Bar-Natan V, Recht E. System level EMC - From theory to practice. IEEE International Symposium on Electromagnetic Compatibility, New York: IEEE Press, 2005, 3(2): 741-743.
    [26] Parmantier J P. Numerical coupling models for complex systems and results. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(3): 359-367.
    [27] Armstrong E K. Specifying lifecycle electromagnetic and physical environments - To help design and test for EMC for functional safety . IEEE International Symposium on Electromagnetic Compatibility, 2005, 2(1): 495 - 500.
    [28]苏东林,王冰切,金得琨.电子战特种飞机电磁兼容预设计技术.北京航空航天大学学报,2006,32(10): 1241-1245.
    [29] Zago F, Pissolatofilho J, Mesa M H. Study of EMC problems caused by lightning using cartesian analytical expressions. IEEE International Symposium on Electromagnetic Compatibility, New York: IEEE Press, 2006, 2(4): 329-332.
    [30] Armstrong E K. Why EMC immunity testing is inadequate for functional safety. IEEE International Symposium on Electromagnetic Compatibility, New York: IEEE Press, 2004, 1(2): 145-149.
    [31] Raghu K R. Overcoming effects of electromagnetic interference in warships through multi-sensor data fusion. Proceedings of the International Conference on Electromagnetic Interference and Compatibility, New York: IEEE Press, 2004: 152-156.
    [32] Kelander I, Uusimaki M, Arslan A N. EMC analysis on stacked packages. EMC-Zurich 2006 17th International Zurich Symposium, New York: IEEE Press, 2006: 602-605.
    [33] Mee S, Ranganathan S, Taylor R. Effective use of EMC analysis tools in the automotive product development process. IEEE International Symposium on Electromagnetic Compatibility, New York: IEEE Press, 2005, 3(4): 744-749.
    [34] Hanigovszki N, Landkildehus J, Spiazzi G, et al . An EMC evaluation of the use of unshielded motor cables in AC adjustable speed drive applications. IEEE Transactions on Electromagnetic Compatibility, 2006, 21(1): 273-281.
    [35] Sreenivasiah I, Chang D, Ma M. Emission characteristics of electrically small radiating sources from inside a TEM cell. IEEE Transactions on Electromagnetic Compatibility, 1989, 23(3): 113-121.
    [36] Wilson P. On correlating TEM cell and OATS emission measurement. IEEE Transactions on Electromagnetic Compatibility, 1995, 37(1): 1-16.
    [37] Kanda M, Hill D. A three-loop method for determining the radiation characteristics of an electrically small source. IEEE Transactions on Electromagnetic Compatibility, 1992, 34(1): 1-2.
    [38] Holloway C, Wilson P, Koepke G, Candidi M. Total radiated power limits for emission measurements in a reverberation chamber. IEEE International Symposium on Electromagnetic Compatibility on Electromagnetic, New York: IEEE Press, 2003: 838-843.
    [39] Electromagnetic Compatibility part 4-testing and measurement techniques section 20: Emission and immunity testing in transverse electromagnetic waveguides. International Electrotechnical Commission Press, 2003: 13.
    [40] Wilson P. Antenna gain equivalent for TEM cells. IEEE Transactions on Electromagnetic Compatibility, 2004, 26(1): 123-128.
    [41] Hill D. Electromagnetic theory of reverberation chambers. NIST Technical Note, 1998: 21-26.
    [42] Wilson P, Hill D, Holloway C. On Determining maximum emissions from electrically large sources. IEEE Transactions on Electromagnetic Compatibility, 2002, 44 (1): 79-86.
    [43]白运芳.电磁兼容与电磁兼容设计.无线电工程, 2008, 38(11): 34-36.
    [44]谢英.发射机的电磁兼容性设计.电子工程师, 2008, 34(10): 1-4.
    [45]林泽祥,兰强.天线的电磁兼容技术.电波科学学报, 2007, 22(1): 170-173.
    [46]赵勋旺,张玉,梁昌.洪舰载多天线系统电磁兼容性分析.电波科学学报, 2008, 23(2): 252-256.
    [47]施宏.舰船卫星设备电磁兼容性设计技术.无线电工程. 2007, 37(2): 61-64.
    [48]孙艳.军用便携式加固计算机的电磁屏蔽设计.计算机工程与应用, 2008, 44(1):238-240.
    [49]徐立颖.提高电子产品机箱接缝电磁屏效的方法.无线电工程, 2008, 38(05): 39-42.
    [50]钱照明,陈恒林.电力电子装置电磁兼容研究最新进展.电工技术学报, 2007, 22( 7): 1-11.
    [51]李建轩,马伟明.设备滤波器与系统干扰谐振特性关系研究赵治华.电力电子技术, 2007, 41(12): 20-23.
    [52]王尔申,胡青,张淑芳.基于GPRS和GPS船载终端系统的电磁兼容设计.仪器仪表学报, 2008, 29(3): 524-529.
    [53] Stievano I S, Siviero C, Canavero F G, Maio I A. Behavioral modeling of digital devices via composite local linear state–space relations. IEEE Transactions on Electromagnetic Compatibility, 2008, 57(8): 1757-1765.
    [54] Ker M D, Yen C C. Investigation and design of on-chip power-rail ESD clamp circuits without suffering latchup-like failure during system-level ESD test. Solid-State Circuits, 2008, 43(11): 2533-2545.
    [55] Chahine I, Kadi M, Gaboriaud E, et al. Characterization and modeling of the susceptibility of integrated circuits to conducted electromagnetic disturbances up to 1 GHz. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(2): 285-293.
    [56] Labussiere D C, Bendhia S, Sicard E, et al. Modeling the electromagnetic emission of a microcontroller using a single model. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(1): 22-34.
    [57] Aihan Y, Li L, Zhang X, et al. The design of EMI and EMC based on optical burst- module PCB. ICMMT 2008 International Conference, New York: IEEE Press, 2008, 2: 491-494.
    [58] Mihali F, Kos D. Reduced conductive EMI in switched-mode DC–DC power converters without EMI filters: PWM versus randomized PWM. IEEE Transactions on Electromagnetic Compatibility on Power Electronics, 2006, 21(6):1783-1794.
    [59] Hamza D, Jain P K. Conducted EMI noise mitigation in DC-DC converters using active filtering method. Power Electronics Specialists Conference, New York: IEEE Press, 2008, 1: 188-194.
    [60] Jakel B W, Muller A B. Evaluation of low-frequency emissions of switchgear by a type proof.16th International Conference and Exhibition, New York: IEEE Press, 2001, 2: 5-11.
    [61] Rousseau P R, Pathak P H. Time-domain uniform geometrical theory of diffraction for a curved wedge. IEEE Transactions on Electromagnetic Compatibility on Antennas and Propagation, 1995, 43(12): 1375-1382.
    [62] Lynch D R, Paulsen K D. Origin of vector parasites in numerical maxwell solutions. IEEE Transactions on Electromagnetic Compatibility, 1991,39: 383-394.
    [63] Paulsen K D, Lynch D R. Elimination of vector parasites in finite element maxwell solutions. IEEE Transactions on Electromagnetic Compatibility, 1991, 39: 395-404.
    [64] Kirschning M, Jansen R. Accurate wide-range design equations for the frequency-dependent characteristic of parallel coupled microstrip lines. IEEE Transactions on Electromagnetic Compatibility, 1984, 32(1): 83-90.
    [65] Hammerstad E, Jensen O. Accurate models for microstrip computer-aided design. IEEE Transactions on Electromagnetic Compatibility, 1980: 407-409.
    [66] Wadell B. Transmission line design handbook. Artech House, USA, 1981: 211-213.
    [67] Wei C, Harrington R, Mautz J. Multiconductor transmission lines in multilayered dielectric media. IEEE Transactions on Electromagnetic Compatibility, 1984, 32(4): 439-449.
    [68] Khazaka R, Nakhla M.. Analysis of high-speed interconnects in the presence of electromagnetic interface. IEEE Transactions on Electromagnetic Compatibility, 1998, 46: 940-947.
    [69] Dockey R W, German R F. New techniques for reducing printed circuit boards common-mode radiation. IEEE Conference on Electromagnetic compatibility, New York: IEEE Press, 1993: 334-339.
    [70] Hockason D M, Drewniak J L, Hubing T H, et al. Investigation of fundamental EMI source: Mechanisms driving common-mode radiation from printed circuit boards with attached cables. IEEE Transactions on Electromagnetic Compatibility,1996, 38: 557-565.
    [71] German R F, Ott H W, Paul C R. Effect of an image plane on printed circuit board radiation. IEEE Conference on Electromagnetic compatibility, New York: IEEE Press, 1990: 284-291.
    [72] Paul C R. A Comparison of the contributions of common-mode and differential-mode currents in radiations. IEEE Transactions on Electromagnetic Compatibility, 1989, 31: 189-193.
    [73] Tesche F M, Ianoz M V, Karlsson T. EMC analysis methods and computational methods. New York: Wiley, 1997.
    [74] Paul C R. Introduction to electromagnetic compatibility. New York: Wiley, 1992.
    [75] Cheng D K. Field and wave electromagnetics. New York: Addison Wesley, 1989.
    [76] Paul C R. Analysis of multiconductor transmission lines. New York: Wiley, 1994.
    [77] Leferink F B, Vandoorn M J. Inductance of printed circuit board ground plane. IEEE Conference on Electromagnetic compatibility, New York: IEEE Press, 1993: 327-329.
    [78] Loyka S L. A simple formula for the ground resistance calculation. IEEE Transactions on Electromagnetic Compatibility, 1999, 41: 152-154.
    [79] Mardiguian M. A Handbook series on electromagnetic interference and compatibility. New York: Addison Wesley, 1988.
    [80] Elliott R S. Antenna theory and design. Prentice-Hall: New Jersey, 1981.
    [81] Holloway C L, Kuester E F. Net and partial inductance of microstrip ground plane. IEEE Transactions on Electromagnetic Compatibility, 1998,40: 35-45.
    [82] Dockey R W. Asymmetrical mode radiation form multi-layer printed circuit boards. Proc. EMC/ESD Int: Denver, 1992: 22-24.
    [83] Fessler J T, Whites K W, Paul C R. The effectiveness of an image plane in radiated emissions. IEEE Transactions on Electromagnetic Compatibility, 1992, 38: 51–61.
    [84] Pozar D M. Microwave engineering. New York: Addison Wesley, 1990.
    [85] Mur G. Absorbing boundary conditions for finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Transactions on Electromagnetic Compatibility, 1981, 23: 1073-1077.
    [86] Kunz K S. The finite difference time domain method for electromagnetics. New York: IEEE Press, 1994..
    [87] Holl R, Simpson L, Kunz K S. Finite-difference analysis of EMP coupling to lossy dielectric structures. IEEE Transactions on Electromagnetic Compatibility, 1980, 22(3): 203.
    [88] Werner D H, Mittra R. Frontiers in electromagnetics, New Jersey: IEEE Press, 2000.
    [89] Cranganu-Cretu B, Hantila F I, Preda G, et al . Direct computation of static difference magnetic field in nonlinear magnetic materials and application to shape reconstruction of damaged areas in aging materials. IEEE Transactions on Electromagnetic Compatibility, 2002, 38(2): 1073-1076.
    [90] Gautham B, Goyal S, Gandhe A. Boundary controlled automatic remeshing for 2D simulation of metal forming. J. Mater. Process Technology, 2003, 134: 108-114.
    [91] A Taflove, Hagness S. Computational electrodynamics: The finite-difference time-domain method. Artech House, Boston, 2000.
    [92] Lee J F, Palendech R, Mittra R. Modeling three-dimensional discontinuities in waveguides using the nonorthogonal FDTD algorithm. IEEE Transactions on Electromagnetic Compatibility, 1992,40(2): 346-352.
    [93] Cole J B. A high-accuracy realization of the Yee algorithm using non-standard finite differences. IEEE Transactions on Electromagnetic Compatibility, 1997, 45(6): 991-996.
    [94] Young J L, Gaitonde D V, Shang J S. Toward the construction of a fourth-order difference scheme for transient EM wave simulation: Staggered grid approach. IEEE Transactions on Electromagnetic Compatibility, 1997, 45(11): 1573-1580.
    [95] Kashiwa T, Kudo H, Sendo Y, et al. The phase velocity error and stability condition of three-dimensional nonstandard FDTD method. IEEE Transactions on Electromagnetic Compatibility, 2002, 38(2): 661-664.
    [96] Georgakopoulos S V, Birtcher C R, Balanis C A, et al. Higher order finite-difference schemes for electromagnetic radiation, scattering, and penetration, part I: Theory. IEEE Antennas Propagation Magazine, 2002, 44(1): 134-142.
    [97] Wang S, Teixiera F L, R Lee, et al. Dispersion-relationpreserving (DRP) 2-D finite-difference time-domain schemes. IEEE Antennas Propagation Magazine, 2002, 3: 267-274.
    [98] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. Computer Physics, 1994, 114: 185-200.
    [99] Petropoulos P G, Zhao L P, Cangellaris A C. A reflectionless sponge layer absorbing boundary condition for the solution of Maxwell’s equations with high-order staggered finite differences. Computer Physics, 1998, 139: 184-208.
    [100] Fan J, Drewniak J L, Knighten J. DC power-bus modeling and design with a mixed-potential integral-formulation and circuit extraction. IEEE Transactions on Electromagnetic Compatibility, 2001, 43(4): 426-436.
    [101] Lin G. EMC in China. IEEE International Symposium on Electromagnetic Compatibility on Electromagnetic Compatibility, New York: IEEE Press, 2002(2): 782-787.
    [102]高枚钢.大力开展我国电磁兼容技术的科研工作及若干建议.物理与工程, 2000, 10(5): 6-12.
    [103] Oto J. Knowledge acquisition for expert systems in accounting and financial problem domains. Knowledge-Based Systems, 2002, 15(8): 439-447.
    [104] L Nedovic. Expert systems in Finance-A Cross-section of the field. Expert Systems with Applications, 2002, 23(1): 49-66.
    [105] M Toussaint. A neural model for multi-expert architectures. Proceedings of the International Joint Conference on Neural Networks, 2002, (3): 2755-2760.
    [106] Muehlenfeld. Expert system acquires and generalizes experiences. International Conference on Knowledge-Based Intelligent Electronic Systems, New York: IEEE Press, 2000(1): 137-140.
    [107] Steinecke T. EMC modeling and simulation on chip level. IEEE International Symposium on Electromagnetic Compatibility on Electromagnetic Compatibility, New York: IEEE Press, 2001, (2): 1191-1196.
    [108] Hubing T, Drewniak J, Van Doren T, et al. An expert system approach to EMC modeling. IEEE International Symposium on Electromagnetic Compatibility on Electromagnetic Compatibility, New York: IEEE Press, 1996: 200-203.
    [109] Hubing T, Kashyap N, J Drewniak et al. Expert system algorithms for EMC analysis. Proceedings of the 14th Annual Review of Progress in Applied Computational Electromagnetics, New York: IEEE Press, 1998: 905-910.
    [110] Kashyap N, Hubing T, Drewniak J et al. An expert system for predicting radiated EMI from PCBs. IEEE International Symposium on Electromagnetic Compatibility on Electromagnetic Compatibility, New York: IEEE Press,1997: 444-449.
    [111] Nageswara K R, Ramana P V. EMC analysis in PCB designs using an expert System. Electromagnetic Interference and Compatibility International Conference, New York: IEEE Press 1995: 59-62.
    [112] Swain M. Database programming using Java. Conference Proceedings IEEE SOUTH EAST CON, New York: IEEE Press, 2002: 220-225.
    [113]贾翠霞,邱扬,田锦.互连电缆电磁兼容仿真软件的开发.计算机应用, 2003, 23(1): 89-91.
    [114]李富华,曹毅,李征帆.基于PEEC方法的平面电路EMC问题分析.上海交通大学学报, 2001, 15(11): 1606-1610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700