装备测试性虚拟验证试验关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
测试性指标是装备重要总体指标之一,是装备采办必须考虑的指标,越来越受到订购、设计、试验、使用部门的重视。随着装备研制及测试性工程的推进,国内不少装备型号正面临设计定型,承制方和订购方都迫切需要一种“快、准、好、省”的测试性验证试验技术。如何在减少测试性验证试验风险、成本、周期的同时,科学合理地对装备测试性水平进行验证和评价是工程中亟待解决的问题。
     本文在部委级项目和国家自然科学基金项目的支持下,针对测试性实物验证试验故障注入困难、风险大、周期长、代价高等问题,提出一种基于小子样理论与虚拟验证试验相结合的测试性综合验证总体方案,系统深入地研究其中的测试性虚拟验证试验关键技术问题。论文的主要研究内容和结论包括:
     1.测试性综合验证总体方案设计
     针对测试性小子样实物验证存在故障注入困难、先验信息不足,而复杂的整机系统建模较困难等问题,利用小子样理论和虚拟验证试验的技术优势,采取虚实结合的总体技术思路,提出基于小子样理论和虚拟验证试验相结合的测试性综合验证总体方案。重点阐述其中的测试性虚拟验证技术思路,分析指出测试性虚拟验证试验主要包括两项关键技术——功能-故障-行为-测试-环境一体化建模技术和故障样本模拟生成技术。
     2.功能-故障-行为-测试-环境一体化建模技术
     (1)针对测试性虚拟验证试验对测试性模型提出的新要求,提出一种功能-故障-行为-测试-环境一体化模型(Function-fault-behavior-test-environment model,FFBTEM),FFBTEM主要由功能、故障、行为、测试、环境等要素及其相互关联关系构成,阐述了FFBTEM的定义、数学描述和关联关系,指出各类子模型在仿真时通过变量、参数传递发生联系。
     (2)提出一种循序渐进的FFBTEM构建策略,并提出FFBTEM的构建过程与方法。针对定性FFBTEM,提出基于扩展多信号流图模型的构建流程和方法;针对FFBTEM具有分层、分块、跨领域的特点,采取面向对象和分层的建模策略以及基于相似原理的多领域统一建模理论,提出基于多领域统一建模法的定量FFBTEM构建方法,较好地解决了定量FFBTEM的构建。
     (3)为了检验并评价FFBTEM的准确性和可信度,提出FFBTEM校核、验证与确认方法,给出FFBTEM校核、验证及确认的概念及应用过程。针对FFBTEM确认中的可信度评估问题,提出基于层次分析法和模糊综合评判法的FFBTEM可信度综合评估方法。
     3.环境-故障-测试关联分析与建模
     (1)为模拟生成更逼近实际情况的故障样本,考虑环境对故障发生强度的影响,研究环境-故障耦合建模方法。提出基于故障模式、机理、环境应力分析的环境-故障定性关联分析方法和基于灰色关联分析的环境-故障定量关联分析方法,综合加权计算得到环境-故障关联因子,该因子能较准确衡量不同等级环境应力对故障发生强度的影响,该因子将引入故障统计模型,用于故障样本模拟生成。
     (2)为使测试性虚拟验证试验更接近真实情况,考虑测试的不确定性,研究测试不确定性建模理论和方法。分析指出影响测试不确定性的主要因素是环境影响、被测对象参数和测试仪器参数自身的不确定性。针对环境的影响,提出基于最小二乘法的环境-参数关联建模方法,研究表明,基于环境-参数关联模型可计算得到环境对参数的影响量。针对参数自身不确定,提出基于启发式统计建模法的参数随机性建模方法。研究表明,基于参数随机性模型可模拟得到参数不确定性偏差。将影响量及随机偏差代入FFBTEM中参与测试性虚拟验证试验可模拟测试的不确定性行为。
     4.基于故障统计模型的故障样本模拟生成技术
     为使测试性虚拟验证试验中的故障样本尽量逼近实际故障发生样本,全面考虑装备实际服役、维修及环境,研究基于故障统计模型的故障样本模拟生成技术。
     (1)针对维修效果为完美维修、维修模式为事后维修、寿命服从指数分布、考虑环境影响的情况,提出基于齐次泊松过程的故障样本模拟生成技术,通过统计仿真模拟生成故障样本。
     (2)针对维修效果为完美维修、维修模式为事后维修或定期维修、考虑多种寿命分布及环境影响的情况,提出基于更新过程的故障样本模拟生成技术,借助逆变换法模拟生成故障样本。
     (3)针对维修效果为最小维修或非完美维修、维修模式为事后维修或定期维修、考虑环境影响的情况,提出基于非齐次泊松过程的故障样本模拟生成技术,借助逆变换法和稀疏法模拟生成故障样本。
     研究表明,基于故障统计模型模拟生成的故障样本与实际故障统计样本的统计特征值很接近,故障样本量、样本结构较合理。
     5.技术应用与验证研究
     以某型导弹控制系统及其测试系统为对象开展技术应用与验证研究,建立虚实结合的半实物仿真平台,构建混合FFBTEM,对本文所研究的测试性虚拟验证试验关键技术进行了应用和验证。结果表明,本文所提出的测试性虚拟验证试验理论与技术正确可行、科学合理,具有风险少、成本低、效率高、故障注入受限少等优点,具有很好的工程应用前景。
As the important system indicators of new equipment which should be assessed inequipment acquisition, testability indices are attracting more and more attention frompurchaser, development unit and user. With the development of testability design andtestability engineering, many newly designed types of equipment have adopted thetestability technology and transferred to the verification stage. To accelerate thedemonstration of the equipments, both the producer and the consumer are seeking atestability verification technology which has the advantages such as short test period,better accuracy and lower cost. So the testability verification plays an important role intestability engineering. It is a theoretical and practical problem that to implement thetestability verification and evaluation considering the risk, cost, time and other testfactors.
     This research is supported by a ministerial pre-research project and national naturalscience foundation. This thesis is aiming to solve the problems involved in the practicaltestability tests, including difficult fault injection, high risk and cost, and long period.An overall testability verification scheme is proposed based on small sample theory andvirtual test. The key technologies of testability virtual verification are studiedsystematically.
     The major contents and conclusions of the dissertation are as follows.
     1. Design for overall testability verification scheme
     Some faults injections are difficult both in small sample tests and entire equipmentmodeling. An overall testability verification scheme, which combines the advantages ofsmall sample test and virtual test, is proposed to settle the difficulties. The technologyroute of virtual testability verification is emphatically illustrated. There are two keytechnologies in the virtual testability verification test which include the integratedfunction-fault-behavior-test-environment modeling technology and the fault samplesimulation technology.
     2. Integrated function-fault-behavior-test-environment modeling technology
     (1) According to the requirements of the virtual testability verification tests, anintegrated function-fault-behavior-test-environment model (FFBTEM) is proposed. Theconstituents of the FFBTEM including function, fault, behavior, test and environmentare analyzed and discussed. The mathematical definition and description of theFFBTEM and its submodels are provided. The relationships among the submodels areestablished and analyzed.
     (2) The modeling process and strategy of FFBTEM are discussed. The qualitativeFFBTEM modeling method and process based on extended multi-signal flow model arepresented. The object-oriented and hierarchical modeling strategy and multi-domain modeling theory are used to construct the quantitative FFBTEM. This method isfeasible in quantitative FFBTEM modeling.
     (3) The verification, validation and accreditation (VV&A) for FFBTEM is studiedin order to evaluate its accuracy and credibility. The concept and application procedureof FFBTEM VV&A are given. Credibility evaluation method based on analytichierarchy process and fuzzy synthetic evaluation is proposed.
     3. Environment-fault-test relation analysis and modeling
     (1) Aiming to measure the impact of the environment on the fault occurrence, anenvironment-fault coupling modeling method is studied. A qualitativeenvironment-fault relationship analysis method based on failure mode, mechanism,environment stress analysis and quantitative environment-fault relationship analysismethod based on grey relationship analysis are provided. The environment-fault factorcalculation method is given. This factor reflects the relationship between environmentstress and fault occurrence rate, which can be introduced to the fault statistical model tosimulate the generation of the fault sample.
     (2) In order to ensure similarity between virtual testability verification tests and thepractical tests, the uncertainty test modeling method is studied considering uncertainfactors. It is analyzed and pointed out that the main factors of uncertainty areenvironment effect, and uncertainty of parameters of the under test unit and testinstrument. An environment-parameter relation modeling method is provided based onleast square method considering the effect of the environment. The proposed methodcan be used to calculate the effect of the environment on the parameters. A randomparameter modeling method is proposed based on heuristic statistical modeling methodconsidering the uncertainty of the parameters. The parameters random deviation can besimulated based on this model. It is shown that the uncertain behavior of the test in thevirtual testability test can be simulated after introducing the quantitative effect of theenvironment and the parameters random deviation into the FFBTEM.
     4. Fault sample simulation technology based on fault statistical model
     In order to make the fault simulation sample more similar to the actual fault sample,more actual factors are considered in fault sample simulation, such as various repaireffects, maintenance modes, lifetime distributions and the effects of the environment.
     (1) In case of perfect repair, breakdown maintenance, exponential lifetimedistribution, and considering environmental effect, fault sample simulation approachbased on homogeneous Poisson process is proposed. The fault sample is carried out bystochastic simulation.
     (2) In case of perfect repair, breakdown maintenance or scheduled maintenance,various lifetime distributions, and considering environmental effect, fault samplesimulation approach based on renewal process is proposed. The fault sample is carriedout based on inverse transform method.
     (3) In case of minimal or imperfect repair, breakdown maintenance or scheduledmaintenance, and considering environmental effect, fault sample simulation approachbased on nonhomogeneous Poisson process is proposed. The fault sample is carried outbased on inverse transform method and thinning algorithm.
     The study indicates that the sample size and structure of fault sample simulationresults are similar to the actual results and reasonable.
     5. Case study
     A missile control system is taken as the subject of application. FFBTEM and asemi-physical simulation test-bed are developed, on which the proposed virtualtestability verification test technologies are demonstrated. The application exampleindicates that the proposed theory and technologies in virtual testability verification testare scientific and feasible. They have good prospects for engineering applications owingto low risk and cost, high efficiency, and few restrictions on fault injection.
引文
[1] GJB2547-95.装备测试性大纲[S].
    [2] GJB2072-94.维修性试验与评定[S].
    [3] GJB451A-2005.可靠性维修性保障性术语[S].
    [4] GJB3385-98.测试与诊断术语[S].
    [5] QSI. Teams11.0User's Guide[M].2010:5-24.
    [6] Simpson W R, Sheppard J W. System Test and Diagnosis[M]. Boston: KluwerAcademic Publishers,1994:1-85.
    [7] Greenspan A M. Establishing Testability Standards[C]. Proceeding of the IEEEInternational Automatic Testing Conference,1978:275-281.
    [8] Pattipati K R, Raghavan V, Shakeri M. TEAMS: Testability Engineering andMaintenance System[C]. Proceedings of the American Control Conference,Baltimore,Maryland,USA,1994:1989-1995.
    [9]魏忠林,黄考利.导弹发射装置测试性验证方法研究[C].2010振动与噪声测试峰会,中国北京,2010:256-259.
    [10]常春贺,杨江平,王杰.雷达装备测试性验证及应用研究[J].计算机测量与控制,2011(8):1943-1945,1949.
    [11]沈岭,周鸣岐.航天产品测试性试验验证方法[J].中国质量,2006(7):16-18.
    [12]王海波,王旭,侯同刚.空空导弹测试性验证应用研究[J].航空兵器,2005(3):40-42,46.
    [13]许宏泉.某型舰作战系统设备测试性验证技术[J].舰船电子工程,2010(3):136-139.
    [14]杨冬健,王红,刘金甫.航空设备的测试性设计和验证技术概述[J].测控技术,2006,25(10):1-5.
    [15] AD-A142075. F-16APG-66Control Radar Case Study Report[R].1983.
    [16] AD-A142103. F/A-18NA/APG-65Radar Case Study Report[R].1983.
    [17] ARINC. Guidance for Design&Use of Built-in Test Equipment[R].1988.
    [18] Byron J, Deight L, Stratton G. RADC Testability Notebook[R].1982.
    [19] MIL-STD-471A. Maintainbility Verification/Demonstration/Evaluation[S].
    [20] MIL-STD-470A. Military Standard Maintainability Program for Systems andEquipments[S].
    [21] MIL-STD-2165. Military Standard Testability Program for Electronic Systemsand Equipments[S].
    [22] Shakeri M. Advances in System Fault Modeling and Diagnosis[D]. Connecticut:University of Connecticut,1996:1-9.
    [23]李天梅.装备测试性验证试验优化设计与综合评估方法研究[D].长沙:国防科学技术大学,2010:1-131.
    [24]钱彦岭.测试性建模技术及其应用研究[D].长沙:国防科学技术大学,2002:1-19.
    [25]苏永定.机电产品测试性辅助分析与决策相关技术研究[D].长沙:国防科学技术大学,2004:1-20.
    [26]苏永定.装备系统测试性需求分析技术研究[D].长沙:国防科学技术大学,2011:1-59.
    [27]徐萍.测试性试验方法与试验平台研究[D].北京:北京航空航天大学,2006:1-60.
    [28]曾天翔.电子设备测试性及诊断技术[M].北京:航空工业出版社,1996:1-8.
    [29]田仲,石君友.系统测试性设计分析与验证[M].北京:北京航空航天大学出版社,2003:1-22.
    [30]石君友.测试性设计分析与验证[M].北京:国防工业出版社,2011:1-15.
    [31]代京,张平,李行善等.航空机电系统测试性建模与分析新方法[J].航空学报,2010,31(2):277-284.
    [32]胡政,韩乐,易晓山.基于多信号流图模型的飞行器电源系统测试性分析[C].2008年军民两用维修技术学术研讨会论文集,2008:358-363.
    [33]陈春良,邵思杰.基于多信号模型的火控系统测试性优化设计[J].火炮发射与控制学报,2010(4):95-98.
    [34]林志文,贺喆,杨士元.基于多信号模型的雷达测试性设计分析[J].系统工程与电子技术,2009,31(11):2781-2784.
    [35]张士刚,胡政,罗德明等.基于多信号模型的某惯测组合测试性分析与改进[C].第19届中国过程控制会议论文集,2008:542-545.
    [36]林志文,贺喆,刘松风.基于多信号模型的系统测试性分析与评估[J].计算机测量与控制,2006,14(2):3.
    [37]陈隽,蔡金燕,李刚.雷达使用测试性仿真验证系统设计[J].仪表技术,2010(9):58-60.
    [38]王成刚,周晓东,刘志远.面向ATE的电路板测试性分析及评估方法研究[J].电子器件,2008,31(5):1599-1602.
    [39]冯静,孙权,罗鹏程.装备可靠性与综合保障[M].长沙:国防科技大学出版社,2008:1-28.
    [40] Gould E. Modeling It Both Ways:Hybird Diagnostic Modeling and ItsApplication to Hierarchical System Designs[C]. Proceeding of the IEEEInternational Automatic Testing Conference, Orange, CA, USA,2004:576-582.
    [41] Kirkpatrick C L, Brien R R. F-15Readiness-the Maintainability Contribution[C].Proceedings of the IEEE Reliability and Maintainability Symposium,1984:499-504.
    [42] Zhao C X, Liu G X, Qiu J. Fault Samples Simulation Based on Monte CarloMethod in Testability Virtual Test[C]. Proceeding of the IEEE InternationalConference on Reliability, Maintainability and Safty, Guiyang, China,2011:358-362.
    [43] Alderighi M, Angelo D S,Mancini M,et al,. A Fault Injection Tool forSram-Based FPGA[C]. Proceedings of9th IEEE International On-Line TestingSymposium,2003:129-133.
    [44] Benso A, Prinetto P,Rebaudengo M,et al. A Fault Injection Environment forMicroprocessor-Based Boards[C]. IEEE International Test Conference,2001.
    [45] Liu L, Chang J Y, Zhou M G. Selection and Simulation of Fault Samples inWeapon Equipment's Maintainability Test[C].8th International Symposium onTest Measure,2009:3296-3299.
    [46]邱静,刘冠军,李天梅等.基于虚拟样机的可测性虚拟试验验证技术研究及发展[C].第二届国防科技工业试验与测试技术发展战略高层论坛论文集,2008.
    [47]郭丹.基于故障注入的测试性试验验证方法论述[J].飞机工程,2010(3):68-70.
    [48] Alart J, Amat L,Crouzet Y. Fault Injection for Dependability Validation:AMethodalogy and Some Applications[J]. IEEE Transactions on SoftwareEngineerings,1990,16(2):166-182.
    [49]陈隽,蔡金燕,李刚.基于Pspice的测试性验证与评估系统的设计[J].信息技术,2011(2):60-62.
    [50]任向隆,马捷中,曾宪炼.基于VHDL的故障注入技术研究[J].测控技术,2009,28(11):73-76.
    [51]石君友,田仲.机内测试定量要求的现场试验验证方法研究[J].航空学报,2006,27(5):883-887.
    [52]田仲,石君友.现有测试性验证方法分析与建议[J].质量与可靠性,2006(2):47-51.
    [53]徐萍,康锐.测试性试验验证中的故障注入系统框架研究[J].测控技术,2004,23(8):12-14.
    [54]徐应诗,刘斌,阮镰.基于故障注入的仿真测试方法过程框架[J].测控技术,2007,26(10):50-56.
    [55]张勇,邱静,刘冠军等.面向测试性虚拟验证的功能-故障-行为-测试-环境一体化模型[J].航空学报,2012,33(2):273-286.
    [56]周玉芬,徐松涛,高锡俊等.测试性验证的理论和方法研究[J].电子产品可靠性与环境试验,1998(2):10-15.
    [57] MIL-HDBK-2165. Military Standard Testability Program for Systems andEquipments[S].
    [58] MIL-STD-2165A. Military Standard Testability Program for Systems andEquipments[S].
    [59]高鑫宇.测试性虚拟验证中的故障建模技术研究[D].长沙:国防科学技术大学,2008:32-45.
    [60]王晓峰.基于EDA技术的电子线路故障诊断和测试性研究[D].北京航空航天大学,2001.
    [61] Deb S, Domagala C, Shrestha R. Model-Based Testability Assessment andDirected Troubleshooting of Shuttle Wiring Systems[C]. Proceedings of theIEEE Automatic Testing Conference,2003:163-173.
    [62]闰颖良,王平,徐香.基于ORCAD Pspice的电路故障建模方法研究[J].计算机测量与控制,2009,17(2):278-280.
    [63]王道震,邵家骏,王晓峰.基于HALT的测试性验证方法研究[J].电子产品可靠性与环境试验,2010(1):10-14.
    [64]王立兵,马彦恒,李泽天. Pspice仿真的测试性验证方法[J].火力与指挥控制,2009,34(12):131-134.
    [65] MIL-STD-1309D. Military Standard Definitions of Terms for Testing,Measurement and Diagnostics[S].
    [66] Parag K. The SMTA Testability Guidelines[R]. Advanced Test Engineering,2002.
    [67]陈希祥.装备测试性方案优化设计技术研究[D].长沙:国防科学技术大学,2011:1-13.
    [68]杨鹏.基于相关性模型的诊断策略优化设计技术[D].长沙:国防科学技术大学,2008:1-40.
    [69] Kenneth P, Parker P. The Boundary Scan Handbook[M]. Boston: KluwerAcademic Publishers,2003:3-16.
    [70] Lala P K. Digital Circuit Testing and Testability[M]. New York:: Elsevier,1997:1-56.
    [71]刘冠军.基于边界扫描的智能板级BIT技术研究[D].长沙:国防科学技术大学,2000:1-10.
    [72]胡政.边界扫描测试理论与方法研究[D].长沙:国防科学技术大学,1998:1-14.
    [73]陈光禹.可测性设计技术[M].北京:电子工业出版社,1997:1-32.
    [74]温熙森,徐永成,易晓山等.智能机内测试理论与应用[M].北京:国防工业出版社,2002:1-18.
    [75]连光耀,黄考利,吕晓明等.基于混合诊断的测试性建模与分析[J].计算机测量与控制,2008,16(5):601-603.
    [76] Sheppard J W, Simpson W R. A Mathematical Model for IntegratedDiagnostics[J]. Design&Test of Computers,2007,8(4):25-38.
    [77] Deb S, Pattipati K R, Raghavan V. Multi-Signal Flow Graphs: A NovelApproach for System Testability Analysis and Fault Diagnosis[J]. Aerospace andElectronic Systems Magazine,1995(5):14-25.
    [78] Azam M, Tu F, Pattipati K R. A Dependency Model-Based Approach forIdentifying and Evaluating Power Quality Problems[J]. IEEE Transactions onPower Delivery,2004,19(3):1154-1166.
    [79] Luo J H, Ghoshal S, Pattipati K R. Distributed Fault Diagnosis UsingDependency Modeling without Revealing Subsystem Details[C]. AerospaceConference, Big Sky, MT,USA,2008:1-10.
    [80]邱静,刘冠军,杨鹏等.装备测试性建模与设计技术[M].北京:科学出版社,2012:1-14,136-208,387-466.
    [81] GJB2547A.装备测试性工作通用要求[S].
    [82]李天梅,邱静,刘冠军.基于多信号流图的测试性验证试验样本选取方法[J].系统工程与电子技术,2008,30(11):2284-2286.
    [83]李天梅,邱静,刘冠军.利用研制阶段试验数据制定测试性验证试验方案新方法[J].机械工程学报,2009,45(8):52-57.
    [84]李天梅,邱静,刘冠军等.基于故障扩散强度的故障样本选取方法[J].兵工学报,2008,29(7):829-833.
    [85]石君友,田仲.测试性研制阶段数据评估验证方法[J].航空学报,2009,30(5):901-905.
    [86]田仲.测试性验证方法研究[J].航空学报,1995,16(S1):65-70.
    [87]王新玲,杨占才.基于小子样数据的可测试性验证评估技术研究[C].2010年航空试验测试技术峰会,2010:187-190.
    [88] AD-A081128. BIT/External Test Figures of Merit and DemonstrationTechniques[R].1979.
    [89]石君友,康锐,田仲.测试性试验中样本集的功能覆盖充分性研究[J].电子测量与仪器学报,2006,20(3):23-27.
    [90] GJBz20045.地面无线电引信对抗设备试验场试验方法[S].
    [91] GJB1298-91.通用雷达、指挥仪维修性评审与试验方法[S].
    [92] GB/T5080.5-85.设备可靠性试验—成功率的验证试验方案[S].
    [93] Klion J. Testability Demonstration[C]. Proceeding of the IEEE InternationalAutomatic Testing Conference,1982:118-123.
    [94]徐忠伟,周玉芬,徐松涛等.测试性验证中抽样方案的精确算法及应用[J].航空学报,2000,21(1):68-70.
    [95]田松,周玉芬,高锡俊.测试性验证中正态分布法改进[J].电子测量技术,1999(3):13-15.
    [96]石君友.测试性试验验证中的样本选取方法研究[D].北京:北京航空航天大学,2004:1-92.
    [97] Zhao C, Liu G, Qiu J, Zhang Y. Fault Samples Simulation Based on Monte CarloMethod in Testability Virtual Test[C]. The9th International Conference onReliability, Maintainability and Safety, Guiyang, China,2011:358-362.
    [98]李天梅,邱静,刘冠军.基于故障率的测试性验证试验故障样本分配方案[J].航空学报,2009,30(9):1661-1665.
    [99]孙峻朝,王建莹,杨孝宗.管脚级故障模型的分析与生成技术的研究[J].计算机学报,1999,22(8):845-851.
    [100] Gunneflo U, Karlsson J, Torin J. Evaluation of Error Detection Schemes UsingFault Injection by Heavyion Radiation[C]. Proceeding of the19th IntenationalSymposiumon Fault-Tolerant Computing,1989:340-347.
    [101] Arlat J, Crouze Y, Fabre J C. Fault Injection for Dependability Validation ofFault-Tolerant Computer Systems[C]. Proceeding of the19th IntenationalSymposiumon Fault-Tolerant Computing,1989:348-355.
    [102] Chern H M. Fault Injection Techniques and Tools[J]. Computer,1997,30(4):75-82.
    [103]王胜文.基于软件的故障注入方法研究[D].哈尔滨:哈尔滨工业大学,2005:1-75.
    [104] Stott D T, Ries G L, Hsuer M C. Dependability Analysis of a High-SpeedNetwork Using Software-Implemented Fault Injection and Simulated FaultInjection[J]. IEEE Transactions on Computers,1998,47(1):108-119.
    [105] Clark J A, Pradhan D K. Fault Injection: A Method for Validating ComputerSystem Dependability[J]. IEEE Computer,1995,28(6):47-56.
    [106] Czeck E W. On the Prediction of Fault Behavior Based on Workload[D].Pittsburgh: Camegie Mellon University,1991:1-19.
    [107]张晓杰,王晓峰,王琳.基于TMS320C54x的机内测试测试性验证系统[J].河北工业大学学报,2005,34(06):10-15.
    [108]石君友,李郑,刘骝.自动控制故障注入设备的设计与实现[J].航空学报,2007,28(3):556-560.
    [109]黄永飞,彭欣洁.常用电路的故障注入方法[J].航空兵器,2007(2):59-61.
    [110]卞春江.航空发动机电子控制器BIT设计及验证技术研究[D].南京:南京航空航天大学,2005:1-8.
    [111]李天梅,胡昌华,周鑫.基于故障传递特性的位置不可访问故障注入方法[J].航空学报,2011,32(12):2277-2286.
    [112]王成刚,周晓东,彭顺堂,阎松涛.一种基于多信号模型的测试性评估方法[J].测控技术,2006,25(10):13-15.
    [113]徐赫,王宝龙,武建辉.基于贝叶斯网络的测试性预计方法[J].导弹与制导学报,2007,27(4):232-235.
    [114]王成刚,周晓东,王学伟.基于贝叶斯网络的复杂装备测试性评估[J].电子测量与仪器学报,2009,23(5):17-21.
    [115]常春贺,杨江平.基于层次模糊决策的雷达装备测试性综合评估[J].雷达科学与技术,2011(4):293-299.
    [116]周昊,赵修平,吴文军.基于Bayes理论的发射装置测试性评估方法研究[J].弹箭与制导学报,2010,30(3):253-256.
    [117]郭德卿.电液伺服系统故障仿真研究[D].河北工业大学,2001:1-27.
    [118]黄柯棣,张金槐,李剑川等.系统仿真技术[M].长沙:国防科技大学出版社,1998:1-30.
    [119] USA, DoD. Mandatory Procedures for Major Defense Acquisition Programs(Mdaps) and Major Automated Information System (Mais) Acquisition Programs[J/OL]2010, http://www.acq.osd.mil.
    [120] USA, DoD. Modeling and Simulation (M&S) Master Plan[R].1994.
    [121]中国国防科技信息中心.国防采办辞典[M].北京:国防工业出版社,2001.
    [122] Hubble's Optics [J/OL]2011, http://hubblesite.org/discoveries.
    [123]汪凯,张恒喜,王卓健.基于Petri网的复杂可修复系统可靠性仿真研究[J].电光与控制2006,13(5):50-53.
    [124]王圣金,苏春,许映秋.基于petri网和蒙特卡洛仿真的液压系统可靠性研究[J].机械科学与技术,2006,25(10):1206-1209.
    [125]苏春,王圣金,许映秋.复杂系统动态可靠性建模及其数值仿真研究[J].机械设计,2007,24(2):4-7.
    [126] Patrick D T, Connor O. Commentary:Reliability—Past,Present,and Future[J].IEEE Transon Reliability,2000,49(4):335—341.
    [127] Rao R, Rahman A, Johnson B W. Reliability Analysis Using the Adept-RestInterface[C]. Proceeding of the Reliability and Maintainability Symposium,Anaheim,California,1994. IEEE:73-81.
    [128]孙宇峰.功能可靠性仿真技术研究[D].北京:北京航空航天大学,2000:1-37.
    [129] Lisnianski A, Levitin G. Multi-State System Reliability: Assessment,Optimization and Applications[M]. Singapore: World Scientific,2003:65-154.
    [130] Tian Z. Multi-State System Reliability Analysis and Optimization[D]. Alberta:University of Alberta,2007:1-8.
    [131] Levitin G. The Universal Generating Function in Reliability Analysis andOptimization[M]. London: Springer,2005:15-39.
    [132]王国权.车辆平顺性虚拟试验技术的研究[D].北京:中国农业大学,2002:1-5.
    [133]江振宇.虚拟试验理论、方法及其应用研究[D].长沙:国防科学技术大学,2007:1-18,79-100.
    [134]杜湘瑜.基于综合集成的虚拟样机测试与评估理论和方法研究[D].长沙:国防科学技术大学,2005:1-32.
    [135] Haynes L, Kelley B, Chujen L, et al. Automatic Dependency Model Generatorfor Mixed-Signal Circuits[C]. Proceeding of the IEEE International AutomaticTesting Conference,1998:91-96.
    [136] Haynes L, Levy R, Chujen L, et al. Automatic Generation of DependencyModels Using Autonomous Intelligent Agents[C]. Proceeding of the IEEEInternational Automatic Testing Conference,1996:303-308.
    [137]王晓峰.基于EDA技术的电子线路故障诊断和测试性研究[R].北京,2001:10-13,43-63.
    [138]赵伟.基于仿真的模拟电路故障诊断技术研究[D].武汉:华中科技大学,2006:9-34.
    [139]姜为学,程远增,李鸣.电子装备固有测试性分析系统设计[J].弹箭与制导学报,2009,29(3):205-208.
    [140] Paul R D. Logic Modeling as a Tool for Testability[C]. IEEE InternationalAutomatic Testing Conference,1985:203-207.
    [141] Pattipati K R, Deb S, Dontamsetty M. Start: System Testability Analysis andResearch Tool[J]. Aerospace and Electronic Systems Magazine,1991,6(1):13-20.
    [142]苏永定,刘冠军,邱静.基于DSPN的多阶段任务系统测试性需求建模与分析[J].系统工程理论与实践,2010,30(7):1272-1278.
    [143]连光耀,黄考利,郭瑞等.基于结构模型的测试性设计与分析技术研究[J].系统工程与电子技术,2007,29(10):1777-1780.
    [144]张波,张景肖.应用随机过程[M].北京:清华大学出版社,2004:24-63.
    [145] Karlin S, Taylor H M. A First Course in Stochastic Processes[M]. Singapore:Elsevier,2007:5-50.
    [146] Ross S M. Introduction to Probability Models[M]. Singapore: Elsevier,2007:281-340.
    [147] Ross S M. Stochastic Processes[M]. Singapore: Elsevier,1997:1-164.
    [148]柳金甫,孙洪祥,王军.应用随机过程[M].北京:清华大学出版社,北京交通大学出版社,2006:76-109.
    [149] Rausand M. System Reliability Theory: Models, Statistical Methods, andApplications (Second Edition)[M]. Wiley,2003:231-297.
    [150]邓永录,梁之舜.随机点过程及其应用[M].北京:科学出版社,1992:17-159.
    [151]方兆本,缪柏其.随机过程[M].合肥:中国科技大学出版社,1993:17-30.
    [152]陆廷孝,郑鹏洲,何国伟等.可靠性设计与分析[M].北京:国防工业出版社,1997:1-40.
    [153] Lawless J F.寿命数据中的统计模型与方法[M].茆诗松,濮晓龙,刘忠译.北京:中国统计出版社,1995:14-30,80-133,437-476,486-510.
    [154]于涛.面向对象的多领域复杂机电系统键合图建模和仿真的研究[D].北京:机械科学研究院,2006:1-40.
    [155]孙庆华,刘秀珍,黄先祥.多领域建模仿真的软件接口研究[J].系统仿真学报,2006,18(S2):203-206.
    [156]孙世霞.复杂大系统建模与仿真的可信性评估研究[D].长沙:国防科学技术大学,2005:17-100.
    [157] Peter F, Peter B. Modelica-a General Object-Oriented Language for Continuousand Discrete-Event System Modeling and Simulation[C]. Proceedings of the35thAnnual Simulation Symposium,2002:235-240.
    [158] Michael M T. Introduction to Physical Modeling with Modelica[M]. Newyork:Kluwer Academic Publishers,2001:1-29.
    [159]奚旺.航空发动机模块化建模与系统级仿真[D].上海:上海交通大学,2004:15-45.
    [160] Gao M, Hu N Q, Qin G J. Modeling and Fault Simulation of Propellant FillingSystem Based on Modelica/Dymola[C]. Proceedings of The2nd InternationalSymposium on Systems and Control in Aeronautics and Astronautics,2008.
    [161]张海.基于功能角色模型的机电系统自动故障[D].长沙:国防科学技术大学,2003:1-25.
    [162]宋立军.舰船柴油动力装置故障诊断中的信息描述与融合决策技术研究[D].长沙:国防科学技术大学,2009:17-32.
    [163]焦鹏.导弹制导仿真系统VV&A理论和方法研究[D].长沙:国防科学技术大学,2010:1-30.
    [164]李鹏波,张金槐.仿真可信性的研究综述[J].计算机仿真,2007,17(4):12-14.
    [165]廖瑛,邓方林,梁加红.系统建模与仿真的校核、验证与确认(VV&A)技术[M].长沙:国防科技大学出版社,2006:1-120,227-320.
    [166]焦鹏.制导仿真系统VV&A的理论、方法和软件工具研究[D].长沙:国防科学技术大学,2004:1-17.
    [167]梁保松,曹殿立.模糊数学及其应用[M].北京:科学出版社,2007:127-150.
    [168]张静敏.模糊综合评估系统核心算法的设计与实现[D].沈阳:东北大学,2007:55-68.
    [169]吴娅.基于突变理论的高压断路器运行状态模糊综合评估方法研究[D].重庆:重庆大学,2006:29-60.
    [170]陈欣.模糊层次分析法在方案优选方面的应用[J].计算机工程与设计,2004,25(10):1847-1850.
    [171] Satty T L. The Analytic Hierarchy Process[M]. New York: Hill,1980:1-32.
    [172]赵焕臣,许树柏,和金生.层次分析法[M].北京:科学出版社,1986:1-29.
    [173]刘宁.工程目标决策研究[M].北京:中国水利水电出版社,2006:211-231,169-185.
    [174]沈亲沐.装备系统级测试性分配技术研究及应用[D].长沙:国防科学技术大学,2007:1-29.
    [175] Chen X X, Qiu J, Liu G J, et al. Test Equipment Selection and Deployment ofMateriel System Based on Grey Situation Decision[C].2009IEEE Circuits andSystems International Conference on Testing and Diagnosis, Chengdu, China,2009.
    [176]胡宝清.模糊理论基础[M].武汉:武汉大学出版社,2003:198-222.
    [177]电子设备可靠性预计手册[S].
    [178] Reliability Prediction of Electronic Equipment[S].
    [179]吕克洪.基于时间应力分析的BIT降虚警与故障预测技术研究[D].长沙:国防科学技术大学,2008:1-43.
    [180]李天梅,邱静,刘冠军等.基于模糊灰色关联分析的故障样本集评估方法[J].仪器仪表学报,2008,29(10):2196-2200.
    [181]程哲.直升机传动系统行星轮系损伤建模与故障预测理论及方法研究[D].长沙:国防科学技术大学,2011:62-69.
    [182] Cheng Z, Hu N Q. Application of GRA in Damage Detection and ModeIdentification of Planetary Gear Set[J]. The Journal of Grey System,2011,23(4).
    [183]程哲,胡茑庆,秦国军.基于物理模型和灰色关联分析的直升机传动系统损伤定量检测方法[J].航空动力学报,2011,26(3):716-720.
    [184]程哲,胡茑庆,高经纬.基于物理模型和灰色理论的行星轮系胶合损伤定量检测方法[J].振动工程学报,2011,24(2):199-204.
    [185] Deng J l. The GRA in Cause-Effect Space of Resources[J]. The Journal of GreySystem2009,21(2):113-120.
    [186]于润桥,党蕾,卢超等.基于灰关联分析的焊缝超声检测缺陷类型识别[J].仪器仪表学报,2006,27(10):1358-1360.
    [187] Chen J, Zhu J M, Wang Z Y. Application of Grey Relational Analysis in WaterQuality Evaluation[J]. The Journal of Grey System2007,19(1):99-107.
    [188] Lin S l, Wu S. Is Grey Relational Analysis Superior to the ConventionalTechniques Inpredicting financial Crisis[J]. Expert Systems with Applications,2011,38(5):5119-5124.
    [189]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002:122-171.
    [190]孙勇成,周献中,李桂芳等.基于灰色关联分析的仿真模型验证及其改进[J].系统仿真学报,2005,17(3):522-525.
    [191]李俭,孙才新,廖瑞金等.以模糊聚类标准谱与灰色关联序诊断变压器内部故障的方法研究[J].仪器仪表学报,2004,25(5):587-589.
    [192] GJB299C-2006.电子设备可靠性预计手册[S].
    [193] Deng J l. Essentials of Grey Resources Theory (GRT)[J]. The Journal of GreySystem,2007,19(1):48-55.
    [194]邓爱民.高可靠长寿命产品可靠性技术研究[D].长沙:国防科学技术大学,2006:52-68.
    [195]金星,洪延姬,沈怀荣等.可靠性数据计算及应用[M].北京:国防工业出版社,2002:1-135.
    [196]李志西,杜双奎.试验优化设计与统计分析[M].北京:科学出版社,2010:14-197.
    [197]杨肇夏.计算机模拟及其应用[M].1999:2-57.
    [198]刘兴堂,吴晓燕.现代系统建模与仿真技术[M].西安:西北工业大学出版社,2001:19-127.
    [199]沈恒范.概率论与数理统计教程[M].北京:高等教育出版社,2003:87-250.
    [200]温熙森.机械系统建模与动态分析[M].长沙:国防科技大学出版社,2003:1-10,68-88,94-100.
    [201]杨为民,阮镰,俞沼.可靠性、维修性、保障性总论[M].北京:国防工业出版社,2000:1-37,142-152.
    [202]刘明治.可靠性试验[M].北京:电子工业出版社,2004:6-82.
    [203] Brown M, Proschan F. Imperfect Repair[J]. Journal of Applied Probability,1983,20(4):851-859.
    [204] Chan J K, Shaw L. Modeling Repairable Systems with Failure Rates ThatDepend on Age and Maintenance[J]. IEEE TRANSACTIONS ONRELIABILITY,1993,42(4):566-571.
    [205] Doyen L, Gaudoin O. Imperfect Maintenance in a Generalized Competing RisksFramework [J]. Journal of Applied Probability,2006,43(3):825-839.
    [206] Lim J H, Lu K L, Park D H. Bayesian Imperfect Repair Model[J].Communications in Statistics-Theory and Methods,1998,27:965-984.
    [207] Pham H, Wang H. Imperfect Maintenance[J]. European Journal of OperationalResearch,1996,49(3):425-438.
    [208] Ross S M. Simulation[M]. Singapore: Elsevier,2006:67-87.
    [209]杜子芳.抽样技术及其应用[M].北京:清华大学出版社,2005:34-49,55-230.
    [210]肖刚,李天柁.系统可靠性分析中的蒙特卡罗方法[M].北京:科学出版社,2003:1-78.
    [211] Mattes A, Zhao W. Modeling and Analysis of Repairable Systems with GeneralRepair[C]. Proceedings of the Annual Reliability and MaintainabilitySymposium,2005:176-182.
    [212] Veber B, Nagode M, Fajdiga M. Generalized Renewal Process for RepairableSystems Based on Finite Weibull Mixture[J]. Reliability Engineering&SystemSafety,2007,93(10):1461-1472.
    [213] Yanez M, Joglar F, Modarres M. Generalized Renewal Process for Analysis ofRepairable Systems with Limited Failure Experience[J]. Reliability Engineeringand System Safety,2002,77(3):167-180.
    [214]张春香.可维修系统的可靠性研究[D].秦皇岛:燕山大学,2001:24-55.
    [215] Doyen L, Gaudoin O. Classes of Imperfect Repair Models Based on Reduction ofFailure Intensity or Virtual Age[J]. Reliability Engineering&System Safety,2002,84(1):45-56.
    [216] Shin I, Lim T J, Lie C H. Estimating Parameters of Intensity Function andMaintenance Effect for Repairable Unit[J]. Reliability Engineering and SystemSafety,1996,54(1):1-10.
    [217] Brown M, Proschan F. Imperfect Repair[R]. Department of Statistics, the FloridaState University,1980.
    [218] Wang H Z. A Survey of Maintenance Models for Deteriorating Systems[J].European Journal of Operational Research,2002,139(3):469-489.
    [219] Coetzee J L. The Role of NHPP Models in the Practical Analysis of MaintenanceFailure Data[J]. Reliability Engineering&System Safety,1997,56(2):161-168.
    [220] Krivtsov V V. Practical Extensions to NHPP Application in Repairable SystemReliability Analysis[J]. Reliability Engineering and System Safety,2007,92(5):560-562.
    [221]敖长林,李一军,闰相斌等.基于非齐次泊松过程的拖拉机发动机使用可靠性[J].机械工程学报,2007,43(10):206-210.
    [222]谈树萍,袁洪涛,韩禄亮.装甲车辆故障随机过程分析[J].兵工学报,2006,27(6):961-964.
    [223] Ripley B D. Stochastic Simulation [M]. New York: Wiley,1987:1-204.
    [224] Yang Q Y, Chen Y. Monte Carlo Methods for Reliability Evaluation of LinearSensor Systems[J]. IEEE TRANSACTIONS ON RELIABILITY,2011,60(1):305-314.
    [225]张艳霞.光纤陀螺温度漂移建模与补偿[D].哈尔滨:哈尔滨工业大学,2008:17-51.
    [226]孙英杰.光纤陀螺温度漂移误差建模及补偿技术研究[D].哈尔滨:哈尔滨工业大学,2010:5-29.
    [227]刘思科.光纤陀螺建模及误差特性研究[D].西安:西北工业大学,2007:7-28.
    [228] IEEE Std952-1997. IEEE Standard Specification Format Guide and TestProcedure for Single Interferometric Fiber Optic Gyros.[S].
    [229]田酉牧.光纤陀螺温度漂移与补偿方法的研究[D].哈尔滨:哈尔滨工程大学,2007:36-64.
    [230]罗勇.典型环境对IMU影响的仿真建模[D].长沙:国防科学技术大学,2007:1-18.
    [231]毛奔.惯性器件测试与建模[M].哈尔滨:哈尔滨工程大学出版社,2008:1-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700