空间光传输系统中光信号处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕与空间光传输相关的两个系统:自由空间量子密钥分配系统和激光目标探测系统开展研究。两者均可以归结为主动式光电收发系统,在基本原理、系统结构、器件使用方面有共性之处。文章对上述两类系统中涉及的关键光器件改进及创新型应用,系统结构优化设计,光信号处理技术改进等方面进行了深入的分析研究。
     首先,对于自由空间量子密钥分配系统中涉及的单光子信号偏振退化问题进行分析,指出系统中涉及的偏振无关分束器(NPBS)对不同偏振态的相移误差会引起光子偏振态退化,进而形成误码。根据分析结果和己有的系统光器件结构提出改进方案,设计制作了基于偏振编码BB84协议的新型光器件:四偏振分束器。该器件充分考虑了偏振无关分束器对偏振光相位的影响,通过合理光路设计和优化减少由此引起的偏振退化,很好的克服了多个分离光器件组合使用时空气与介质交界面引入的多次反射损耗和杂散光,对于降低系统误码率是有益的。该器件首先被应用于自由空间量子密钥分配系统接收端实现分束检偏功能,通过外场200米空间链路上的密钥分配实验对这一器件的可用性和有效性进行检测,实验中平均每脉冲光子数为0.1的时候测得系统误码率0.91%。实验结果表明该器件的设计制作达到了预期要求,系统筛选密钥误码率维持在较低水平。
     四偏振分束器对影响误码的偏振无关分束器偏振退化问题进行了控制,并且减轻了系统调整难度。为充分发挥该器件的优势,提出并实现了在接收端和发射端正交对称使用该器件的系统整体光路优化方案。通过理论计算证明这种优化方法对于补偿分束器残余的偏振相移误差具有非常好的效果。随后完成系统样机设计,在1.3公里距离上进行了外场量子密钥分配实验,平均每脉冲光子数为0.1的时候得到误码率为2.8%,整个系统的工作非常稳定可靠。为进一步验证这种光路优化方法的优势,又进行了不同发射端机的对比实验,结果证明四偏振分束器正交配对使用的方案在简化系统结构的同时保持了良好的系统性能。
     激光目标探测系统是本文研究的另外一类空间光传输系统。基于激光目标探测系统的性能提升需求,提出将I/Q (in-phase/quadrature)光调制器应用于频率调制外差激光目标探测系统中,代替系统原有的声光调制器和电光调制器,弥补了原有调制器频移量不足的问题,极大的提高了外差探测可用调制带宽。充分利用I/Q光调制器的载波抑制和单边带调制特性实现宽带线性频率调制的加载,通过光纤内的距离测试分析该器件应用于距离探测的可行性。实验结果显示该器件具有良好的线性调制特性,可以实现的距离探测分辨率达到2.3cm。
     为了同时实现高分辨率的目标距离和速度探测,提出将改进后的调制波形通过I/Q光调制器加载到光载波的上下边带,在下边带进行单频调制,利用多普勒频移测速,在上边带进行宽带线性频率调制测距,通过速度补偿函数解距离-速度耦合。该方法解除了速度探测对距离探测的依赖,在求解真实距离时所需要进行的解耦方法简单易行,从而实现距离和速度的同时高精度无干扰探测。随后改进了频率调制外差激光目标探测系统,在实验室内对旋转圆盘的距离和速度进行探测,实测信号3dB带宽对应距离分辨率约3.2cm,该值与理论计算结果比较吻合,速度测量的分辨率约为0.5m/s,符合理论计算结果。随后,分析了该系统中的I/Q光调制器调频线性度和载波泄露、镜像频率对实验结果的影响。
     最后就使用该系统实现多运动目标探测进行分析和研究。对发射信号进行改进,保持原信号载波下边带单频调制不变,对上边带进行变周期宽带频率调制,实现多目标距离-速度正确解耦。通过对四个不同运动目标的探测进行仿真验证。
This thesis revolves two kinds of systems related to space optical transmission: free space quantum key distribution (QKD) system and laser target detection system. Both of them can be summed up in active optical transceiver system. They have common in use of the basic principle, system structure, and devices. Our research is based on these two systems, includes key optical components improvement and innovative applications, system structure optimization design, optical signal processing technology improvement.
     The free space QKD usually adopts polarization coding, the bit error rate of the system will increase if the polarization state of the photon deviates from the ideal state which is required by the QKD protocol. So, first of all, the origin of the depolarization in the QKD system is analyzed. It indicates that the polarization dependent phase shift difference for the non-polarizing beam splitter (NPBS) is one of the main sources of the depolarization in this system, and it will introduce bit error into the system. We presented an advanced design of receiver in free space QKD system based on BB84protocol. In this system, a novel four-polarization-beam-splitter was used in the receiver. It makes use of reasonable optical path design and optimization to reduce the polarization degradation resulting from the phase shift difference of NPBS. Also it simplifies the receiver fabrication process, and the reflection loss is reduced too. Then we built the transmitter and the receiver for QKD system. The outdoor200m free space QKD experiment was carried out, the bit error rate is0.91%when the average photon number in each optical pulse was about0.1. This result indicates that our design for the QKD system is feasible.
     Four-polarization-beam-splitter effectively controlled the polarization degradation resulting from the phase shift difference of NPBS. To give full play to the advantages of the device, we put forward and realized the usage of two four-polarization-beam-splitters in the transmitter and receiver of QKD system. They rotate by90degree relative to each other. In this method, the phase shift difference caused by one NPBS was cancelled. As a result, the system bit error rate by the depolarization was decreased. Then we built the transmitter and the receiver for QKD system. The outdoor1.3km free space QKD experiment was carried out, the bit error rate is2.8%when the average photon number in each optical pulse was about0.1. The QKD system is stable and reliable. In order to further verify the advantage of the improved design method, contrast experiment was carried on. One transmitter of the QKD system consists four-polarization-beam-splitter, and another consists separated polarizer and diffraction grating to produce polarized photons and beam combining. The experiment result indicates that our design of four-polarization-beam-splitter simplified the system structure and maintained a good system performance.
     Laser target detection system is another kind of optical transmission systems we concerned. A frequency-modulated continuous-wave (FMCW) laser target detection system is demonstrated with heterodyne detection. The transmitter utilizes an electro-optic I/Q modulator for the first time to generate carrier-suppressed and frequency-shifted FM modulation. This eliminates the need for an acousto-optic frequency shifter commonly used in heterodyne detection systems. It also allows the use of a much wider modulation bandwidth to improve the range resolution. The distance test in an optical fiber delay line shows that the device has good linear modulation characteristic, the distance detection resolution is up to2,3cm.
     The capability of complex optical field modulation of the I/Q modulator provides an additional degree of freedom compared with an intensity modulator, which will benefit the target distance and velocity detection. The I/Q modulator is used in the transmitter to realize carrier-suppressed complex optical field modulation in which the positive and the negative optical sidebands can carry independent modulation waveforms. By loading a constant modulation frequency on the lower optical sideband and a wideband linear frequency modulation on the upper sideband, vector velocity and target distance can be measured independently. The wide modulation bandwidth of this system also enabled unprecedented range resolution and the capability of measuring high velocity unambiguously. This system is used to detect the distance and velocity of a spinning disc through free space. Based on the3dB width of the spectra, the resolution of the distance is3.2cm and the resolution of the velocity is0.5m/s, both of which agree with the theoretical value. Then the influence of FM linearity, carrier leakage and image frequency of I/Q modulation for detection results are analyzed.
     Finally we use this system to realize multi moving targets detection. Remain loading a constant modulation frequency on the lower optical sideband and change the one period frequency modulation signal to varied period frequency modulation in the upper sideband. Then the real distance and velocity of each target could be distinguished. Four different moving targets are used to do the MATLAB simulation.
引文
[1]J. Armstrong, "OFDM for optical communications," Journal of lightwave technology, vol. 27,189-204,2009.
    [2]T. Kawanishi, T. Sakamoto, T. Miyazaki, M. Izutsu, T. Fujita, S. Mori, et al., "High-speed optical DQPSK and FSK modulation using integrated Mach-Zehnder interferometers," Optics Express, vol.14,4469-4478,2006.
    [3]W. Shieh, H. Bao, and Y. Tang, "Coherent optical OFDM:theory and design," Optics Express, vol.16,841-859,2008.
    [4]K. Schultz and S. Fisher, "Ground-based laser radar measurements of satellite vibrations," Applied optics, vol.31,7690-7695,1992.
    [5]K. Hulme, B. Collins, G. Constant, and J. Pinson, "A CO2 laser rangefinder using heterodyne detection and chirp pulse compression," Optical and Quantum Electronics, vol. 13,35-45,1981.
    [6]J. Vaughan, "Coherent laser spectroscopy and Doppler lidar sensing in the atmosphere," Physica Scripta, vol. T78,73-81,1998.
    [7]A. B. Gschwendtner and W. E. Keicher, "Development of coherent laser radar at Lincoln Laboratory," Lincoln Laboratory Journal, vol.12,383-396,2000.
    [8]S. J. Lomonaco, "A quick glance at quantum cryptography," Cryptologia, vol.23,1-41, 1999.
    [9]N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Reviews of modern physics, vol.74,145-195,2002.
    [10]J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, et al., "Direct and full-scale experimental verifications towards ground-satellite quantum key distribution," arXiv preprint arXiv:1210.7556,2012.
    [11]X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, et al., "Quantum teleportation over 143 kilometres using active feed-forward," Nature, vol.489,269-273, 2012.
    [12]M. Malik, O. S. Magafla-Loaiza, and R. W. Boyd, "Quantum-secured imaging," Applied Physics Letters, vol.101,241103-241103-4,2012.
    [13]M. Toyoshima, H. Takenaka, Y. Shoji, Y. Takayama, Y. Koyama, and H. Kunimori, "Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space," Optics Express, vol.17,22333-22340, 2009.
    [14]S. F. Clifford and L. Lading, "Monostatic diffraction-limited lidars:the impact of optical refractive turbulence," Applied Optics, vol.22,1696-1701,1983.
    [15]戴永江,激光雷达技术:电子工业出版社,2010.
    [16]G. S. Vernam, "Cipher printing telegraph systems for secret wire and radio telegraphic communications," American Institute of Electrical Engineers, Transactions of the, vol.45, 295-301,1926.
    [17]J. Rarity, P. Tapster, P. Gorman, and P. Knight, "Ground to satellite secure key exchange using quantum cryptography," New Journal of Physics, vol.4,82.1-82.21,2002.
    [18]P. W. Shor and J. Preskill, "Simple proof of security of the BB84 quantum key distribution protocol," Physical Review Letters, vol.85,441-444,2000.
    [19]D. Gottesman, N. Lutkenhaus and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Information and Computation, vol.4,325-360,2004.
    [20]T. Schmitt-Manderbach, H. Weier, M. Furst, R. Ursin, F. Tiefenbacher, T. Scheidl, et al., "Experimental demonstration of free-space decoy-state quantum key distribution over 144 km," Physical Review Letters, vol.98,010504,2007.
    [21]R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New journal of physics, vol.4,43.1-43.14,2002.
    [22]戴永江,激光雷达原理:国防工业出版社,2002.
    [23]C. J. Karlsson, F. A. Olsson, D. Letalick, and M. Harris, "All-Fiber Multifunction Continuous-Wave Coherent Laser Radar at 1.55 vm for Range, Speed, Vibration, and Wind Measurements," Applied optics, vol.39,3716-3726,2000.
    [24]A. Hauchecorne and M. L. Chanin, "Density and temperature profiles obtained by lidar between 35 and 70 km," Geophysical Research Letters, vol.7,565-568,1980.
    [25]G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, and E. Madonna, "Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar," Nature, vol.229,78-79,1971.
    [26]S. T. Shipley, D. Tracy, E. W. Eloranta, J. T. Trauger, J. Sroga, F. Roesler, et al., "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1:Theory and instrumentation," Applied optics, vol.22,3716-3724,1983.
    [27]L. J. Mullen, A. J. Vieira, P. Herezfeld, and V. M. Contarino, "Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection," Microwave Theory and Techniques, IEEE Transactions on, vol.43,2370-2377, 1995.
    [28]J. Banic, S. Sizgoric, and R. O'Neil, "Scanning lidar bathymeter for water depth measurement," in 1986 Quebec Symposium,187-195,1986.
    [29]R. M. Marino and W. R. Davis, "Jigsaw:a foliage-penetrating 3D imaging laser radar system," Lincoln Lab. J, vol.15,23-36,2005.
    [30]M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, et al., "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," Lincoln Laboratory Journal, vol.13,351-370,2002.
    [31]S. Marcus, B. D. Colella, and T. J. Green Jr, "Solid-state laser synthetic aperture radar," Applied optics, vol.33,960-964,1994.
    [32]V. Molebny, G. Kamermanb, and O. Steinvallc, "Laser radar:from early history to new trends," in Proc. of SPIE, vol.7835,783502-1,2010.
    [33]W. STEFEN, "Conjugate coding," SIGACT News, vol.15,77-88,1983.
    [34]C. H. Bennett and G. Brassard, "Quantum cryptography:Public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing,1984.
    [35]A. K. Ekert, "Quantum cryptography based on Bell's theorem," Physical review letters, vol.67,661-663,1991.
    [36]C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Physical Review Letters, vol.68,3121-3124,1992.
    [37]D. Bruβ, "Optimal eavesdropping in quantum cryptography with six states," Physical Review Letters, vol.81,3018-3021,1998.
    [38]H.-K. Lo, X. Ma, and K. Chen, "Decoy state quantum key distribution," Physical Review Letters, vol.94,230504,2005.
    [39]H. Bechmann-Pasquinucci and A. Peres, "Quantum cryptography with 3-state systems," Physical Review Letters, vol.85,3313-3316,2000.
    [40]L. Goldenberg and L. Vaidman, "Quantum cryptography based on orthogonal states," Physical review letters, vol.75,1239-1243,1995.
    [41]R. J. Hughes, G. L. Morgan, and C. G. Peterson, "Practical quantum key distribution over a 48-km optical fiber network," arXiv preprint quant-ph/9904038,1999.
    [42]D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New Journal of Physics, vol.4,41.1-41.8,2002.
    [43]H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. Fejer, K. Inoue, et al., "Differential phase shift quantum key distribution experiment over 105 km fibre," New Journal of Physics, vol.7,232,2005.
    [44]X.-F. Mo, B. Zhu, Z.-F. Han, Y.-Z. Gui, and G.-C. Guo, "Faraday-Michelson system for quantum cryptography," Optics Letters, vol.30,2632-2634,2005.
    [45]Y. a. Liu, T.-Y. Chen, J. Wang, W.-Q. Cai, X. Wan, L.-K. Chen, et al., "Decoy-state quantum key distribution with polarized photons over 200 km," Opt. Express, vol.18, 8587-8594,2010.
    [46]C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, "Experimental quantum cryptography," Journal of cryptology, vol.5,3-28,1992.
    [47]W. Buttler, R. Hughes, P. Kwiat, S. Lamoreaux, G. Luther, G. Morgan, et al., "Practical free-space quantum key distribution over 1 km," Physical Review Letters, vol.81, 3283-3286,1998.
    [48]C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. Gorman, P. Tapster, et al., "Quantum cryptography:A step towards global key distribution," Nature, vol.419,450-450,2002.
    [49]S. Nauerth, F. Moll, M. Rau, J. Horwath, S. Frick, C. Fuchs, et al., "Air to ground quantum key distribution," in Proc. of SPIE, vol 8518,85180D-85180D-6,2012.
    [50]B. Schumacher, "Quantum coding," Physical Review A, vol.51,2738,1995.
    [51]W. K. Wootters and W. H. Zurek, "A single quantum cannot be cloned," Nature, vol.299, 802-803,1982.
    [52]C. H. Bennett and D. P. DiVincenzo, "Quantum information and computation," Nature, vol.404,247-255,2000.
    [53]H. Bechmann-Pasquinucci and N. Gisin, "Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography," Physical Review A, vol.59,4238,1999.
    [54]X.-B. Wang, "Decoy-state protocol for quantum cryptography with four different intensities of coherent light," Physical Review A, vol.72,12322,2005.
    [55]H.-K. Lo and H. F. Chau, "Unconditional security of quantum key distribution over arbitrarily long distances," Science, vol.283,2050-2056,1999.
    [56]W.-Y. Hwang, "Quantum key distribution with high loss:Toward global secure communication," Physical Review Letters, vol.91,057901,2003.
    [57]X.-B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Physical review letters, vol.94,230503,2005.
    [58]X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, "Practical decoy state for quantum key distribution," Physical Review A, vol.72,012326,2005.
    [59]J. S. Bell, "On the einstein-podolsky-rosen paradox," Physics, vol.1,195-200,1964.
    [60]B. Jacobs and J. Franson, "Quantum cryptography in free space," Optics Letters, vol.21, 1854-1856,1996.
    [61]W. Buttler, R. Hughes, P. Kwiat, G. Luther, G. Morgan, J. Nordholt, et al., "Free-space quantum-key distribution," Physical Review A, vol.57,2379,1998.
    [62]W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, and C. G. Peterson, "Daylight quantum key distribution over 1.6 km," Physical Review Letters, vol. 84,5652-5655,2000.
    [63]T. Schmitt-Manderbach, "Long distance free-space quantum key distribution," PhD thesis, Ludwing-Maximilians-Universitat MUnchen,2007.
    [64]S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, et al., "Air-to-ground quantum communication," Nature Photonics, vol.7,382-386,2013.
    [65]M. Aspelmeyer, H. R. Bohm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, et al., "Long-distance free-space distribution of quantum entanglement," science, vol.301, 621-623,2003.
    [66]K. Resch, M. Lindenthal, B. Blauensteiner, H. Bohm, A. Fedrizzi, C. Kurtsiefer, et al., "Distributing entanglement and single photons through an intra-city, free-space quantum channel," Optics express, vol.13,202,2005.
    [67]C.-Z. Peng, T. Yang, X.-H. Bao, J. Zhang, X.-M. Jin, F.-Y. Feng, et al., "Experimental free-space distribution of entangled photon pairs over 13 km:towards satellite-based global quantum communication," Physical review letters, vol.94,150501,2005.
    [68]R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, et al., "Entanglement-based quantum communication over 144 km," Nature Physics, vol.3, 481-486,2007.
    [69]A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, et al., "High-fidelity transmission of entanglement over a high-loss free-space channel," Nature Physics, vol.5, 389-392,2009.
    [70]I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, "Free-space quantum key distribution with entangled photons," Applied Physics Letters, vol.89,101122-101122-3,2006.
    [71]X.-M. Jin, J.-G. Ren, B. Yang, Z.-H. Yi, F. Zhou, X.-F. Xu, et al., "Experimental free-space quantum teleportation," Nature Photonics, vol.4,376-381,2010.
    [72]J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, et al., "Quantum teleportation and entanglement distribution over 100-kilometre free-space channels," Nature, vol.488, 185-188,2012.
    [73]D. Letalick, I. Renhorn, and O. Steinvall, "Measured signal amplitude distributions for a coherent FM-CW CO2 laser radar," Applied optics, vol.25,3927-3938,1986.
    [74]B. Stephan and P. Metivier, "Flight evaluation trials of a heterodyne CO2 laser radar," in Hague International Symposium,110-118,1987.
    [75]P. Lutzmann, R. Frank, and R. R. Ebert, "Laser-radar-based vibration imaging of remote objects," in AeroSense 2000,436-443,2000.
    [76]R. R. Ebert and P. Lutzmann, "Vibration imagery of remote objects," in International Symposium on Optical Science and Technology,1-10,2002.
    [77]M. Harris, R. I. Young, F. Kopp, A. Dolfi, and J.-P. Cariou, "Wake vortex detection and monitoring," Aerospace science and technology, vol.6,325-331,2002.
    [78]J. G. Verly and R. L. Delanoy, "Model-based automatic target recognition (ATR) system for forwardlooking groundbased and airborne imaging laser radars (LADAR)," Proceedings of the IEEE, vol.84,126-163,1996.
    [79]G. R. Osche and D. S. Young, "Imaging laser radar in the near and far infrared," Proceedings of the IEEE, vol.84,103-125,1996.
    [80]C. C. Andressen, "A 1.32 micron, long-range, solid-state, imaging LADAR," in Aerospace Sensing,121-130,1992.
    [81]O. Steinvall, P. Andersson, M. Elmqvist, and M. Tulldahl, "Overview of range gated imaging at FOI," in Defense and Security Symposium,654216-654216-13,2007.
    [82]R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, et al., "A compact 3D imaging laser radar system using Geiger-mode APD arrays:system and measurements," in AeroSense 2003,1-15,2003.
    [83]R. Stettner, "Compact 3D flash lidar video cameras and applications," in SPIE Defense, Security, and Sensing,768405-768405-8,2010.
    [84]R. L. Lucke and L. J. Rickard, "Photon-limited synthetic-aperture imaging for planet surface studies," Applied optics, vol.41,5084-5095,2002.
    [85]安毓英,曾晓东,光电探测原理:西安电子科技大学出版社,2004.
    [86]P. Gatt and S. W. Henderson, "Laser radar detection statistics:a comparison of coherent and direct-detection receivers," in Aerospace/Defense Sensing, Simulation, and Controls, 251-262,2001.
    [87]P. Adany, C. Allen, and R. Hui, "Chirped lidar using simplified homodyne detection," Journal of lightwave technology, vol.27,3351-3357,2009.
    [88]K. Van Vliet, "Noise limitations in solid state photodetectors," Applied optics, vol.6, 1145-1169,1967.
    [89]P. Healey, R. Booth, B. Daymond-John, and B. Nayar, "OTDR in single-mode fibre at 1.5 μm using homodyne detection," Electronics Letters, vol.20,360-362,1984.
    [90]H. P. Yuen and V. W. Chan, "Noise in homodyne and heterodyne detection," Optics Letters, vol.8,177-179,1983.
    [91]R. L. Gustavson and T. E. Davis, "Diode laser radar for low-cost weapon guidance," in OE/LASE'92,21-32,1992.
    [92]P. Palojarvi, T. Ruotsalainen, and J. Kostamovaara, "A new approach to avoid walk error in pulsed laser rangefinding," in Circuits and Systems,1999. ISCAS'99. Proceedings of the 1999 IEEE International Symposium on,258-261,1999.
    [93]I. Fujima, S. Iwasaki, and K. Seta, "High-resolution distance meter using optical intensity modulation at 28 GHz," Measurement Science and Technology, vol.9,1049,1998.
    [94]M. Bashkansky, H. Burns, E. Funk, R. Mahon, and C. Moore, "RF phase-coded random-modulation LIDAR," Optics communications, vol.231,93-98,2004.
    [95]S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, et al., "Synthetic-aperture imaging laser radar:laboratory demonstration and signal processing," Applied optics, vol.44,7621-7629,2005.
    [96]M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, "Laser ranging:a critical review of usual techniques for distance measurement," Optical Engineering, vol.40, 10-19,2001.
    [97]G. Bazin and B. Journet, "A new laser range-finder based on FMCW-like method," in Instrumentation and Measurement Technology Conference,1996. IMTC-96. Conference Proceedings.'Quality Measurements:The Indispensable Bridge between Theory and Reality'., IEEE,90-93,1996.
    [98]B. L. Stann, A. Abou-Auf, K. Aliberti, J. Dammann, M. Giza, G. Dang, et al., "Research progress on a focal plane array ladar system using chirped amplitude modulation," in AeroSense 2003,47-57,2003.
    [99]B. L. Stann, M. M. Giza, D. Robinson, W. C. Ruff, S. D. Sarama, D. R. Simon, et al., "Scannerless imaging ladar using a laser diode illuminator and FM/cw radar principles," in AeroSense'99,421-431,1999.
    [100]Y. Yeh and H. Cummins, "Localized fluid flow measurements with an HeNe laser spectrometer," Applied Physics Letters, vol.4,176-178,1964.
    [101]丁鹭飞,耿富录,陈建春,雷达原理:电子工业出版社,2009.
    [102]D. F. Pierrottet, F. Amzajerdian, L. Petway, B. Barnes, G. Lockard, and M. Rubio, "Linear FMCW laser radar for precision range and vector velocity measurements," in Proc. Mater. Res. Soc. Symp,1076-K04,2008.
    [103]D. Morancais, F. Fabre, and Y. Toulemont, "ALADIN Doppler Wind Lidar and Related Programs at EADS Astrium," in MRS Proceedings,2008.
    [104]Y. Tang, W. Shieh, X. Yi, and R. Evans, "Optimum design for RF-to-optical up-converter in coherent optical OFDM systems," Photonics Technology Letters, IEEE, vol.19, 483-485,2007.
    [105]陈长水,王芳,刘颂豪等,”半导体激光器稳频技术综述,”量子电子学报,vo1.27,513-521,2010.
    [106]来志,曾晓东,冯喆君等,”精密控制谐振腔获得合成孔径激光雷达信号的方法,”光学精密工程,vol.19,2011.
    [107]B. L. Stann, W. C. Ruff, and Z. G. Sztankay, "Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques," Optical Engineering, vol.35,3270-3278,1996.
    [108]J. S. Paul and W. C. Fu, "Acousto-optic modulation of a point-scatterer array," Optics letters, vol.35,925-927,2010.
    [109]S. S. Hong, M. S. Mermelstein, and D. M. Freeman, "Reflective acousto-optic modulation with surface acoustic waves," Applied optics, vol.43,2920-2924,2004.
    [110]M. Toida, M. Kondo, T. Ichimura, and H. Inaba, "Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method," Applied Physics B, vol.52,391-394,1991.
    [111]S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, et al., "Wide temperature range operation of micrometer-scale silicon electro-optic modulators," Optics letters, vol.33,2185-2187,2008.
    [112]U. V. Cummings and W. B. Bridges, "Bandwidth of linearized electrooptic modulators," Journal of lightwave technology, vol.16,1482,1998.
    [113]E. I. Ackerman, "Broad-band linearization of a Mach-Zehnder electrooptic modulator," Microwave Theory and Techniques, IEEE Transactions on, vol.47,2271-2279,1999.
    [114]A. Yariv,现代通信光电子学:英文版:电子工业出版社,2002.
    [115]M. Izutsu, T. Itoh, and T. Sueta, "10 GHz bandwidth traveling-wave LiNbO3 optical waveguide modulator," Quantum Electronics, IEEE Journal of, vol.14,394-395,1978.
    [116]G. Gopalakrishnan, C. Bulmer, W. Burns, R. McElhanon, and A. Greenblatt, "40 GHz, low half-wave voltage Ti:LiNbO3 intensity modulator," Electronics Letters, vol.28, 826-827,1992.
    [117]K. Noguchi, O. Mitomi, and H. Miyazawa, "Millimeter-wave Ti:LiNbO3 optical modulators," Journal of Lightwave Technology, vol.16,615,1998.
    [118]Y. Li, A. J. Vieira, S. M. Goldwasser, and P. R. Herczfeld, "Rapidly tunable millimeter-wave optical transmitter for lidar-radar," Microwave Theory and Techniques, IEEE Transactions on, vol.49,2048-2054,2001.
    [119]陈福深,集成电光调制理论与技术:国防工业出版,1995.
    [120]R. Becker, "Comparison of guided-wave interferometric modulators fabricated on LiNbO3 via Ti indiffusion and proton exchange," Applied Physics Letters, vol.43, 131-133,1983.
    [121]Y. Ohmachi and J. Noda, "Electro-optic light modulator with branched ridge waveguide," Applied Physics Letters, vol.27,544-546,1975.
    [122]M. U. Piracha, D. Nguyen, D. Mandridis, T. Yilmaz, I. Ozdur, S. Ozharar, et al., "Range resolved lidar for long distance ranging with sub-millimeter resolution," Optics Express, vol.18,7184-7189,2010.
    [123]M. U. Piracha, D. Nguyen, I. Ozdur, and P. J. Delfyett, "A High Resolution, Chirped Pulse Lidar for Simultaneous Range and Velocity Measurements," in CLEO:Science and Innovations,2011.
    [1]G. Brassard and L. Salvail, "Secret-key reconciliation by public discussion," in advances in Cryptology—EUROCRYPT'93,410-423,1994,
    [2]W. Buttler, S. Lamoreaux, J. Torgerson, G. Nickel, C. Donahue, and C. G. Peterson, "Fast, efficient error reconciliation for quantum cryptography," Physical Review A, vol.67, 052303,2003.
    [3]W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, and C. G. Peterson, "Daylight quantum key distribution over 1.6 km," Physical Review Letters, vol. 84,5652-5655,2000.
    [4]R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New journal of physics, vol.4,43,2002.
    [5]T. Schmitt-Manderbach, H. Weier, M. Furst, R. Ursin, F. Tiefenbacher, T. Scheidl, et al., "Experimental demonstration of free-space decoy-state quantum key distribution over 144 km," Physical Review Letters, vol.98,010504,2007.
    [6]C. H. Bennett and G. Brassard, "Quantum cryptography:Public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing,1984.
    [7]C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Physical Review Letters, vol.68,3121-3124,1992.
    [8]H.-K. Lo, X. Ma, and K. Chen, "Decoy state quantum key distribution," Physical Review Letters, vol.94,230504,2005.
    [9]N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Reviews of modern physics, vol.74,145-195,2002.
    [10]廖延彪,偏振光学:科学出版社,2003.
    [11]J. Ciosek, J. Dobrowolski, G. A. Clarke, and G. Laframboise, "Design and manufacture of all-dielectric nonpolarizing beam splitters," Applied optics, vol.38,1244-1250,1999.
    [12]M. Gilo, "Design of a nonpolarizing beam splitter inside a glass cube," Applied optics, vol.31,5345-5349,1992.
    [13]J. H. Shi, Z. P. Wang, and C. Y. Guan, "Theoretical analysis of non-polarizing beam splitters with appropriate amplitude and phase," Optics & Laser Technology, vol.41, 351-355,2009.
    [14]W. Buttler, R. Hughes, P. Kwiat, S. Lamoreaux, G. Luther, G. Morgan, et al., "Practical free-space quantum key distribution over 1 km," Physical Review Letters, vol.81, 3283-3286,1998.
    [15]J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, et al., "Direct and full-scale experimental verifications towards ground-satellite quantum key distribution," arXiv preprint arXiv:1210.7556,2012.
    [16]C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. Gorman, P. Tapster, et al., "Quantum cryptography:A step towards global key distribution," Nature, vol.419,450-450,2002.
    [1]J. Armstrong, "OFDM for optical communications," Journal of lightwave technology, vol. 27,189-204,2009.
    [2]W. Shieh, Q. Yang, and Y. Ma, "107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing," Optics Express, vol.16, 6378-6386,2008.
    [3]W. Shieh, "PMD-supported coherent optical OFDM systems," Photonics Technology Letters, IEEE, vol.19,134-136,2007.
    [4]W. Shieh, H. Bao, and Y. Tang, "Coherent optical OFDM:theory and design," Optics express, vol.16,841,2008.
    [5]P. S. Cho and M. Nazarathy, "Bias control for optical OFDM transmitters," Photonics Technology Letters, IEEE, vol.22,1030-1032,2010.
    [6]Y. Tang, W. Shieh, X. Yi, and R. Evans, "Optimum design for RF-to-optical up-converter in coherent optical OFDM systems," Photonics Technology Letters, IEEE, vol.19, 483-485,2007.
    [7]T. Kawanishi, T. Sakamoto, T. Miyazaki, M. Izutsu, T. Fujita, S. Mori, et al., "High-speed optical DQPSK and FSK modulation using integrated Mach-Zehnder interferometers," Optics Express, vol.14,4469-4478,2006.
    [8]P. S. Cho, J. B. Khurgin, and I. Shpantzer, "Closed-loop bias control of optical quadrature modulator," Photonics Technology Letters, IEEE, vol.18,2209-2211,2006.
    [9]M. Teich, "Infrared heterodyne detection," Proceedings of the IEEE, vol.56,37-46,1968.
    [10]S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, et al., "Synthetic-aperture imaging laser radar:laboratory demonstration and signal processing," Applied optics, vol.44,7621-7629,2005.
    [11]G. N. Pearson, K. D. Ridley, and D. V. Willetts, "Chirp-pulse-compression three-dimensional lidar imager with fiber optics," Applied optics, vol.44,257-265,2005.
    [12]C. J. Karlsson and F. A. Olsson, "Linearization of the frequency sweep of a frequency-modulated continuous-wave semiconductor laser radar and the resulting ranging performance," Applied optics, vol.38,3376-3386,1999.
    [13]B. L. Stann, W. C. Ruff, and Z. G. Sztankay, "Intensity-modulated diode laser radar using frequency-modulation/continuous-wave ranging techniques," Optical Engineering, vol.35,3270-3278,1996.
    [14]S. O. Piper, "Homodyne FMCW radar range resolution effects with sinusoidal nonlinearities in the frequency sweep," in Radar Conference,1995., Record of the IEEE 1995 International,563-567,1995.
    [15]G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, "Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3+ -Yb3+ codoped fiber amplifier," Photonics Technology Letters, IEEE, vol.15,801-803,2003.
    [16]D. Taverner, D. Richardson, L. Dong, J. Caplen, K. Williams, and R. Penty, "158-μJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier," Optics letters, vol.22,378-380,1997.
    [17]A. Meta, P. Hoogeboom, and L. P. Ligthart, "Signal processing for FMCW SAR," Geoscience and Remote Sensing, IEEE Transactions on, vol.45,3519-3532,2007.
    [18]K. Hulme, B. Collins, G. Constant, and J. Pinson, "A CO2 laser rangefinder using heterodyne detection and chirp pulse compression," Optical and Quantum Electronics, vol. 13,35-45,1981.
    [19]M. Toida, M. Kondo, T. Ichimura, and H. Inaba, "Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method," Applied Physics B, vol.52,391-394,1991.
    [20]G. Gopalakrishnan, C. Bulmer, W. Burns, R. McElhanon, and A. Greenblatt, "40 GHz, low half-wave voltage Ti:LiNbO3 intensity modulator," Electronics Letters, vol.28, 826-827,1992.
    [21]K. Noguchi, O. Mitomi, and H. Miyazawa, "Millimeter-wave Ti:LiNbO3 optical modulators," Journal of Lightwave Technology, vol.16,615,1998.
    [22]Y. Li, A. J. Vieira, et.al., "Rapidly tunable millimeter-wave optical transmitter for lidar-radar," Microwave Theory and Techniques, IEEE Transactions on, vol.49, 2048-2054,2001.
    [23]P. Adany, C. Allen, and R. Hui, "Chirped lidar using simplified homodyne detection," Journal of lightwave technology, vol.27,3351-3357,2009.
    [24]Y. Zhang, M. O'Sullivan, and R. Hui, "Digital subcarrier multiplexing for flexible spectral allocation in optical transport network," Opt. Express, vol.19,21880-21889, 2011.
    [25]G. Lellouch, P. Tran, R. Pribic, et.al., "OFDM waveforms for frequency agility and opportunities for doppler processing in radar," presented at the Radar Conference,2008. RADAR'08. IEEE,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700