未来移动通信系统多小区高谱效率传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对未来移动通信系统中高谱效率编码调制技术、空时编码技术以及小区间干扰抑制技术进行了深入研究,并对系统级仿真平台和硬件仿真平台搭建方法进行了深入讨论。
     传统编码调制技术囿于固定的信道输出,在高谱效率区距离香农容量界较远。OvCDM技术则通过多路叠加逼近高斯分布,本文首先通过推导随机时变OvCDM系统误码率的一个修正上界证明其可以达到香农容量。其次给出了一种简化OvCDM设计,该简化设计本质上仍然是串行级联OvCDM系统,但通过优化编码结构,其接收机复杂度大幅度降低,同时系统性能损失不超过0.3dB。OvCDM系统在衰落信道中有较高的误码平台,本文设计了一种交织编码掺杂技术,降低了误码平台;衰落信道下,高误码平台往往与高误帧率相关,本文利用高码率的BCH码设计了一种改善误帧率的方案。基于对OvCDM系统的观察,本文还设计了一种相比普通星座减少电平数的编码调制方案,并给出了一种用以替代64QAM的36点星座图。尽管在新的方案下,比特向量与输出星座间不存在一一映射,但通过优化从比特到信道符号的映射,新的方案性能仍然能超过64QAM。而由于减少了输出电平数,该方案输出信号的峰均比低于普通的编码调制系统。
     高谱效率条件下,LTE系统中使用的开环发分集方案FSTD与CDD将不能获得全部空间分集增益。本文设计了一种基于位置置换的发分集方案,可以有效改善高谱效率条件下系统获得发分集的能力。在此基础上,本文推广提出了一种新型的空时交织码方案,该方案可应用于多径信道,获得全部的空间分集与频率分集增益,并且不损失速率。其编码结构中包含的交织器便于在收端设计迭代结构,从而大幅度简化接收机复杂度。本文还研究了高相关性多天线系统中的快速检测算法,包括基于格基减的MMSE-SIC以及增加割平面的半正定松弛方法。由于高谱效率重叠频分复用系统等价于高相关性多天线系统,因此上述两种快速算法也可用来降低OvFDM系统接收机复杂度。
     小区边缘谱效率是多小区系统的重要性能指标。本文从小区间是否存在协作的角度分多种情况分析了多小区系统容量。在完全无协作时,干扰将被作为噪声处理。此时,可以证明,仅仅通过采用干扰随机化等方法,同频组网系统的小区边缘谱效率就可以超过通过正交分割资源进行组网的系统。当小区间允许通过信令协作获得干扰信道信息时,多小区系统在高谱效率区随信噪比增加的速度可以逼近无干扰系统。而当小区间允许实时信号处理层面的协作时,小区间的强干扰不仅不会损失系统容量,还将有利于提升小区边缘谱效率。基于这一分析,本文提出了重叠交织复用技术,这一技术可以在小区间无协作时抑制强干扰源。而在有协作时,还可以通过预编码进一步提升系统谱效率。本文分别给出了两小区互干扰和三小区互干扰场景下的预编码设计方法。此外,小区间还可以通过协作进行资源联合调度,降低干扰,本文设计了一种可应用于重叠交织复用系统的多小区联合调度方案,并给出一种简化迭代调度算法。
     系统级仿真和硬件仿真可以对技术方案性能作出有效评估。本文以作者在"IMT-A多址技术研发”国家重大专项中设计并参与搭建的平台为例,讨论了系统级仿真平台搭建的方法与相关模块设计,给出了一套高效率开发硬件仿真模块与平台的流程。
The thesis conducts research on high spectral efficiency communication technologies in cellular mobile systems.
     The capacity of traditional coded modulation schemes is bounded away from the Shannon limit due to fixed channel symbol set. Overlapped code division multiplexing (OvCDM) output Gaussian distributed channel symbols through overlapping several independent coded streams. The thesis proves that random time-varying OvCDM is capacity achievable with increased constraint length. A novel simplified OvCDM (S-OvCDM) scheme is devised to reduce the receiver complexity while its performance maintained. In Rayleigh fading channels, OvCDM system has a high error floor. In order to solve this problem, an interleaved code doping scheme is devised. Another scheme that concate-nates OvCDM and high rate outer code is designed to improve its frame error rate performance in urban macro channels. Through the observation of OvCD-M output symbol set, the thesis constructs a36-point constellation to replace normal64QAM. Under proper code rate and labeling strategy, the new constel-lation could even outperform64QAM in bit error rate due to increased distance between constellation points. Furthermore, fewer constellation points would lead to lower peak to average power ratio.
     The frequency shift transmit diversity and cyclic delay diversity schemes in LTE both relies on Turbo code to achieve the spatial diversity gain. How-ever, in high spectral efficiency system, the free distance of Turbo code is very small and thus could not achieve the diversity gain. A novel scheme based on position permutation is designed to solve the problem. The scheme could be further generalized to a new kind of space time code, space time interleaving code. It could be used in multi-path channels and achieve full spatial diversi-ty, full frequency diversity gain without any rate loss. Furthermore, the em- bedded interleavers facilitate design of iterative receivers which largely reduce the implementation complexity. Fast detection algorithms in highly correlated multiple antenna systems is also studied in the thesis. Due to the equivalence between high spectral efficiency OvFDM system and highly correlated MIMO system, the fast detection algorithms of the latter could be applied to reduce the complexity of OvFDM receiver.
     In order to study inter-cell interference suppression, the channel capaci-ty of cellular system is analyzed case by case. Without cooperation between cells, the interference is processed as pure noise. It is proved that with normal interference randomization technique, the cell edge spectral efficiency of full frequency reuse system is higher than that of the system with lower frequency reuse factor. If the interference channel coefficients could be gained through cell cooperation, the degrees of freedom of the cellular system could be very close to the system without any interference. If there is real time cooperat-ed signal processing between cells, then the strong interference between cells could even boost the cell edge spectral efficiency. Based on these analysis, an overlapped interleaving division multiplexing (OvIDM) system is designed to suppress strong interference from other cells. Combined with interference alignment, OvIDM system could be further improved in spectral efficiency. Fi-nally, a multi-cell joint scheduling strategy is given for OvIDM system and its simplified iterative version is devised.
     System level simulation and hardware simulation platforms are useful for performance evaluation. The way to construct such platforms are discussed based on two platforms designed by the author.
引文
[1]Final Acts WRC'07, Geneva, Nov.2007 [C].2007.
    [2]3GPP TR 36.913, V9.0.0. Requirements for Further Advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced) [R].2009.
    [3]Shannon C E. A mathematical theory of communication [J]. Bell Syst. Tech. J.,1948,27:379^23 and 623-656.
    [4]Golay M J E. Notes on digital coding [J]. Proc. IRE,1949,37:657.
    [5]Reed I S. A class of multiple-error correcting codes and the decoding scheme [J]. IRE Trans. Inform. Theory,1954,4:38-49.
    [6]Muller D E. Application of Boolean algebra to switching circuit design and to error detection [J]. IRE Trans. Electron. Comput.,1954, EC-3:6-12.
    [7]Hocquenghem A. Codes correcteurs d'erreurs [J]. Chiffres,1959,2:147-156.
    [8]Bose R C. Ray-Chaudhuri D K. On a class of error-correcting binary group codes [J]. Inform. Contr., 1960,3:68-79.
    [9]Reed I S, Solomon G. Polynomial codes over certain finite fields [J]. J. SIAM, 1960,8:300-304.
    [10]Elias P. Coding for noisy channels [J]. IRE Conv. Rec.,1955:37-46.
    [11]Elias P. Error-free coding [J]. IRE Trans. Inform. Theory,1954,4:29-37.
    [12]Forney G D. Concatenated Codes [M]. Cambridge, MA:MIT Press,1966.
    [13]Viterbi A J. Error bounds for convolutional codes and an asymptotically optimum decoding algo-rithm [J]. IEEE Trans. Inform. Theory,1967,13 (4):260-269.
    [14]Omura J K. On the Viterbi decoding algorithm [J]. IEEE Trans. Inform. Theory,1969,15:177-179.
    [15]Berrou C, Glavieux A, Thitimajshima P. Near Shannon limit error-correcting coding and decoding: Turbo-codes.1 [C]. In Communications,1993. ICC 93. Geneva. Technical Program, Conference Record, IEEE International Conference on,1993:1064-1070.
    [16]Costello D J, Forney G D. Channel Coding:The Road to Channel Capacity [J]. Proc. IEEE,2007, 95 (6).
    [17]Gallager R G. Low-Density Parity-Check Codes [M]. Cambridge, MA:MIT Press,1963.
    [18]MacKay D J C, Neal R M. Near Shannon limit performance of low-density parity-check codes [J]. Elect. Lett.,1996,32:1645-1646.
    [19]Spielman D A. Linear-time encodable and decodable error-correcting codes [J]. IEEE Trans. Inform. Theory,1996,42(11).
    [20]Chung S-Y, G D Forney J, Richardson T J, et al. On the design of low-density parity-check codes within 0.0045 dB from the Shannon limit [J]. IEEE Commun. Lett.,2001,5 (2).
    [21]Wiberg N, Loeliger H A, Kotter R. Codes and iterative decoding on general graphs [J]. Eur. Trans. Telecomm.,1995,6:513-525.
    [22]Wiberg N. Codes and decoding on general graphs [D]. Sweden:Linkoping Univ.,1996.
    [23]Tanner R M. A recursive approach to low complexity codes [J]. IEEE Trans. Inform. Theory,1981, 27 (9):533-547.
    [24]Ungerboeck G. Channel coding with multilevel/phase signals [J]. IEEE Trans. Inform. Theory,1982, 28 (1):55-67.
    [25]Wei L F. Rotationally invariant convolutional channel encoding with expanded signal space-Part II:Nonlinear codes [J]. IEEE J. Select. Areas Commun,1984,2 (9):672-686.
    [26]Wei L F. Trellis-coded modulation using multidimensional constellations [J]. IEEE Trans. Inform. Theory,1987,33 (7):483-501.
    [27]Caire G. Bit interleaved coded modulation [J]. IEEE Trans. Inform. Theory,1998,44 (3):927-946.
    [28]Speidel J, ten Brink S, Yan R. Iterative demapping and decoding for multilevel modulation [C]. In Proc.1998 GlobeCom, Sydney, Australia, Dec.1998:579-584.
    [29]Li X, Ritcey J. Bit interleaved coded modulation with iterative decoding using soft feedback [C]. In Proc. Int. Conf. Commu., New York, May 2002:1949-1953.
    [30]Schreckenbach F. Optimized symbol mappings for bit interleaved coded modulation with iterative decoding [J]. IEEE Communication Letters,2003,3(12):593-595.
    [31]Yang X, Mo Y, Jiang W, et al. Analysis of overlapped code division multiple access system in Gaus-sian multiple access channel [C]. In Communications,2008. ICC'08. IEEE International Conference on,2008:1230-1237.
    [32]Li D. An overlapped code division multiplexing method.2007. International Patent, Application No:PCT/CN2007/000536.
    [33]Zhou S, Fang L, Li D. A novel symbol-interleaved Serially Concatenated Overlapped Multiplexing system [C]. In Power Electronics and Intelligent Transportation System (PEITS),2009 2nd Interna-tional Conference on,2009:373-376.
    [34]Telatar I E. Eur. Trans. Tel. [J]. IEEE Trans. Inform. Theory,1999,10 (6):585-595.
    [35]Alamouti S M. A simple transmit diversity technique for wireless communications [J]. IEEE J. Select. Areas Commun.,1998,16(1):1451-1458.
    [36]Sesia S, Toufik I, Baker M. LTE-The UMTS Long Term Evolution From Theory to Practice [M]. UK:John Wiley and Sons,2009.
    [37]Gore D, Sandhu S, Paulraj A. Delay diversity codes for frequency selective channels [C]. In IEEE Proc. Int. Conf. Comm.,2002:1949-1953.
    [38]Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communica-tions:Performance criterion and code construction [J]. IEEE Trans. Inform. Theory,1998,44 (2): 744-765.
    [39]Tarokh V, Jafarkhani H, Calderbank A R. Space-time block codes from orthogonal designs [J]. IEEE Trans. Inform. Theory,1999,45 (7):1456-1466.
    [40]Gamal H E, Damen M O. Universal space-time coding [J]. IEEE Trans. Inform. Theory,2003,49 (5):1097-1119.
    [41]Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas [J]. Bell Labs Tech. J.,1996:41-59.
    [42]Tse D, Viswanath P. Fundamentals of wireless communication [M]. Cambridge, UK:Cambridge University Press,2005.
    [43]Xiang Y, Luo J, Hartmann C. Inter-cell interference mitigation through flexible resource reuse in OFDMA based communication networks [C]. In European wireless,2007:1-4.
    [44]Castellanos C, Villa D, Rosa C, et al. Performance of uplink fractional power control in UTRAN LTE [C]. In Vehicular Technology Conference,2008. VTC Spring 2008. IEEE,2008:2517-2521.
    [45]Fodor G, Koutsimanis C, Racz A, et al. Intercell interference coordination in OFDMA networks and in the 3GPP Long Term Evolution system [J]. Journal of Communications,2009,4 (7):445-453.
    [46]Cadambe V, Jafar S. Interference alignment and the degrees of freedom of the K-user interference channel [J]. IEEE Trans. Inform. Theory,2008,54 (8):3425-3441.
    [47]Suh C, Tse D. Interference Alignment for cellular networks [C]. In Proc.40th Annal Allerton Conf. on Comm., Control and Comuputing, Sep.2008.
    [48]李道本.信号的统计检测与估计理论[M].北京:科学出版社,2004.
    [49]Gallager R G. Information theory and reliable communication [M]. John Wiley and Sons,1968.
    [50]Gallager R G. A perspective on multi-access channels [J]. IEEE Trans. Inform. Theory,1985,31 (2):124-142.
    [51]Viterbi A J. Omura J K. Principles of Digital Communication and Coding [M]. McGraw-Hill Book Company,1979.
    [52]Peterson R L, Costello D J. Error probability and free distance bounds for two-user tree codes on multiple access channels [J]. IEEE Trans. Inform. Theory,1980,26:658-670.
    [53]Bahl L R, Cocke J, Jelinek F, et al. Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate [J]. IEEE Trans. Inform. Theory,1974,20 (2):284-287.
    [54]王键.超高频谱效率并行传输重叠码分复用若干关键技术研究[D].[S.1.]:北京邮电大学,2008.
    [55]杨讯.重叠码分复用中若干关键技术的研究[D].[S.1.]:北京邮电大学,2008.
    [56]Sun P, Li D. Space time interleaving code in frequency selective channels [C]. In Personal Indoor and Mobile Radio Communications (PIMRC),2011 IEEE 22nd International Symposium on,2011: 1480-1484.
    [57]Huang Y, Ritcey J. Optimal constellation labeling for iteratively decoded bit-interleaved space time coded modulation [J]. IEEE Trans. Inform. Theory,2005,51 (5):1865-1871.
    [58]Pfletschinger S, Sanzi F. Error Floor Removal for Bit-Interleaved Coded Modulation with Iterative Detection [J]. IEEE Trans. Wireless Commun.,2006,5 (11):3174-3181.
    [59]Proakis J G. Digital Communications [M]. New York:McGraw Hill,2008.
    [60]Lindskog E, Paulraj A. A transmit diversity scheme for channels with intersymbol interferencee [Cj. In IEEE Proc. Int. Conf. Comm.,2000:307-311.
    [61]王雪松,方莉,杨星,et al.频率选择性衰落信道中的发射分集设计[J].北京邮电大学学报,2010,33(6):78-82.
    [62]Agrell E, Eriksson T, Vardy A, et al. Closest point search in lattices [J]. IEEE Trans. Inform. Theory, 2002,48 (8):2201-2214.
    [63]Chan A, Lee I. A new reduced-complexity sphere decoder for multiple antenna systems [C]. In Proc. Int. Conf. Comm., New York.
    [64]Jaldn J, Ottersten B. An exponential lower bound on the expected complexity of sphere decoding [C]. In Proc. ICASSP, Montreal, Canada.
    [65]Hassibi B. An efficient square-root algorithm for BLAST [C]. In Proc. ICASSP.
    [66]Biglieri E, Taricco G, Tulino A. Decoding space-time codes with BLAST architectures [J]. IEEE Trans. Signal Processing,2002,50 (10):2547-2552.
    [67]Lenstra A K, Lenstra H W, Lovasz L. Factoring polynomials with rational coefficients [J]. Math. Ann,1982,261:515-534.
    [68]Luo Z Q, Yu W. An introduction to convex optimization for communications and signal processing [J]. IEEE Journal on selected areas in communications,2006,24 (8).
    [69]Ma W K, Davidson T N, Wong K M, et al. Quasi-ML multiuser detection using semi-definite relax-ation with application to synchronous CDMA [J]. IEEE Trans. Signal Process.,2002,50 (4).
    [70]Tan P H, Rasmussen L K. The application of semidefinite programming for detection in CDMA [J]. IEEE Journal on Selected Areas in Communications,2001,19 (8).
    [71]Yang X, Ai W, Shuai T, et al. A Fast Decoding Algorithm for Non-orthogonal Frequency Division Multiplexing Signals [C]. In IEEE Proc. ChinaCom, Shanghai, China.
    [72]Li D. A high spectral efficiency technology and method for overlapped frequency division multi-plexing.2006. Patent, PCT/CN2006/002012.
    [73]Hou Y, Hamamura M. Bandwidth efficiency of PC-OFDM systems with high compaction multi-carrier modulation [C]. In Proc.2005 Wireless Comm., Networking and Mobile Computing,2005: 197-200.
    [74]Viswanath P, Tse D. Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality [J]. Information Theory, IEEE Transactions on,2003,49 (8):1912-1921.
    [75]Costa M. Writing on dirty paper (corresp.) [J]. Information Theory, IEEE Transactions on,1983,29 (3):439-441.
    [76]Tse D. Opportunistic communications:Smart scheduling and dumb antennas [C]. In Seminar pre-sented at Intel Corp,2002.
    [77]Kelly F, Maulloo A, Tan D. Rate control for communication networks:shadow prices, proportional fairness and stability [J]. Journal of the Operational Research society,1998,49 (3):237-252.
    [78]Salo J, Del Galdo G, Salmi J, et al. MATLAB implementation of the 3GPP spatial channel model (3GPP TR 25.996) [J]. on-line, Jan,2005.
    [79]Wang C, Hong X, Wu H, et al. Spatial channel model for multiple input multiple output (MIMO) simulations [J].3GPP TR25:V6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700