粤蓝链霉菌主要次级代谢产物分析及其生物合成基因簇的克隆与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粤蓝链霉菌(Streptomyces vietnamensis)GIMV4.0001是本研究室近年从热带原始森林土壤中分离获得的一株链霉菌新种。前期研究发现该菌株能产生色调优美的紫罗兰蓝色素。本研究对该菌的产色发酵条件进行了优化,发现高氏合成一号培养基是适合的产色培养基,该培养基原料价格低廉,可作为工业化生产的基础培养基;优化的培养参数组合为:接种量5%,培养温度30℃,180rpm振动培养7d。对该菌产生的次级代谢产物进行了系统的研究,发现其发酵产物对革兰氏阳性细菌有较强的广谱抗菌活性,对部分革兰氏阴性菌也有不同程度的抑制作用,同时对HeLa肿瘤细胞也显现出很强的抑制作用;薄层层析–生物显影发现2个蓝色组分B1、B2是主要的抗菌活性成分,通过质谱、核磁共振等波谱分析,两个蓝色化合物分别被鉴定为榴菌素和榴菌素B。从发酵产物中还分离、鉴定了其它5个相关化合物,分别为醌茜兰类色素Zg、Zgg、二氢Zg、MM44785和去鼠李糖基MM44785,其中二氢Zg和去鼠李糖基MM44785是两个新的榴菌素相关化合物注1。
     对粤蓝链霉菌次级代谢产物生物合成途径的多样性进行了分析,发现该菌除榴菌素生物合成途径外,还可能存在合成大环内酯类、角环类化合物以及孢子色素等多条PKS途径,为深入挖掘该菌可能存在的其它生物活性物质提供了指导。
     采用分段、分步的策略,克隆测序了包含粤蓝链霉菌榴菌素完整生物合成基因簇的序列37480bp;发现粤蓝链霉菌榴菌素生物合成基因数目、基因排列等与紫红链霉菌(S. violaceoruber)Tü22的榴菌素生物合成基因簇完全相同,但序列长度与要短1260bp,整个基因簇中存在大约100个小片段的插入或缺失,提示插入或缺失小片段可能是链霉菌基因组进化的基本机制之一。粤蓝链霉菌与紫红链霉菌的榴菌素生物合成基因簇总体上同源率较高,提示二者具有较近的共同祖先;然而基于16S rDNA序列的链霉菌属系统进化发育树分析发现,粤蓝链霉菌与紫红链霉菌存在相对较远的亲缘关系,已知的榴菌素产生菌在链霉菌属中也呈离散分布,因此,榴菌素生物合成基因簇在链霉菌属内可能发生了水平转移,为抗生素生物合成基因簇存在水平转移的观点提供了有力的证据;侧翼基因orf35在粤蓝链霉菌中的缺失和orf35基因3个碎片的发现,呈现出了榴菌素生物合成基因簇在水平转移之后进一步进化的一个情景,目前存在于粤蓝链霉菌基因组中的榴菌素生物合成基因簇可被诠释为基因水平转移和垂直变异的共同结果。
     随后分析了粤蓝链霉菌对常用抗生素的天然抗性水平,发现粤蓝链霉菌对阿普拉霉素、卡那霉素、链霉素、壮观霉素、硫链丝菌素等均可用作粤蓝链霉菌遗传操的抗性标记,并通过大肠杆菌–粤蓝链霉菌属间接合转移的方法成功建立了粤蓝链霉菌的遗传转化体系。以衍自pCR2.1的重组质粒替代基因组文库cosmid作为突变模板质粒,尝试将PCR targeting系统应用于粤蓝链霉菌,以阿普拉霉素抗性基因片段置换榴菌素生物合成的关键基因orf1、orf2、orf3,成功构建了不产榴菌素的突变株,这是首次成功建立榴菌素产生菌的有效遗传改造体系,为深入了解榴菌素生物合成及其调控机制奠定了基础。
     通过体外重组表达和体内基因敲除等方法对榴菌素生物合成基因orf20进行了功能研究,发现携带表达orf20重组质粒的大肠杆菌对百草枯的抗性显著提高,而敲除orf20基因后的粤蓝链霉菌突变株对百草枯的抗性水平没有发生显著变化,但其色素产量(榴菌素)大幅提高,是野生株的3.3倍。这说明ORF20能够替代大肠杆菌SoxR参与抗氧化胁迫的调控,但在原宿主粤蓝链霉菌中并不参与抗氧化胁迫调控,而是对榴菌素的生物合成存在负调控效应。
     对榴菌素外排基因orf15在粤蓝链霉菌中的转录表达规律进行了分析,发现在野生株开始产色前orf15转录表达水平突然升高,产色后迅速降低;在敲除orf20基因后的突变株中,orf15的转录表达水平在产色前也突然升高,但与野生株相比,提高的幅度要大、高水平转录持续的时间也要长。这是orf20突变株榴菌素的产量要比野生株高的原因。
Streptomyces vietnamensis GIMV4.0001 is a newly streptomycete species isolated from tropical forest soil designated by our laboratory. Previous study revealed that this strain posseses the ability to produce a diffusible violet-blue pigment. In this study, an optimization for pigment production was carried out. The Gauze’s synthetic No.1 medium was found to be the suitable medium for pigment production. This medium is also suitable for industrial production since its materials are relatively cheep. The optimized fermentation conditions are as follows: inoculation quantity 5%, culture temperature 30°C, rotation speed 180 r/min and culture time 7days. A further study was carried out on its secondary metabolites. The ethyl acetate extracts of the fermentation broth exhibited broad antibacterial activity against Gram-positive bacteria as well as some strains of Gram-negative bacteria to different extents. The crude extracts also showed excellent anticancer activity. Two blue pigments (B1, B2) in the extract content are the main active compounds as revealed by TLC-bioautography. By a combination of physical and chemical characterization, nuclear magnetic resonance and mass spectrometry, these two blue pigments were identified as granticin and granaticin B, respectively. Five more related compounds were also isolated and identified as quinizarin Zg, Zgg, dihydro-Zg, MM44785 and L-rhodinoside-deglycosylated MM44785, among which dihydro-Zg and L-rhodinoside-deglycosylated possess novel structures.
     The diversity of secondary metabolite pathways of S. vietnamensis was investigated. Except polyketide synthase (PKS) for granaticin, there are still at least three more PKS pathways possibly responsible for macrolides, angucyclines or spore pigments in S. vietnamensis. This provided guidance for deeper mining the bioactive secondary metabolites potentially produced by this strain.
     By a sequential cloning strategy, a 37480-long fragment containing the whole granaticin biosynthetic gene cluster (gra) was sequenced. All granaticin biosynthetic genes (orf9~orf34) were found as expected, and the gene arrangement was identical with that of S. violaceoruber Tü22 (AJ011500). When aligning the two gra cluster, about one hundred short insertions or deletions (hereinafter referred as indels) were observed throughout the whole cluster. The full gra cluster from S. vietnamensis was 1260 bp shorter than that of S. violaceoruber. This result suggested that insertion and deletion of tiny fragment might be one of the basic evolution mechanisms for streptomycete genomes.
     High overall homology of the two gra clusters clearly shows that they share a very recent ancestor, whereas phylogenetic analysis of the genus Streptomyces based on 16S rDNA, revealed a distant evolutionary relationship between S. vietnamensis and S. violaceoruber, and a scattered distribution of the granaticin producers within the genus. This provided compelling evidence that antibiotic biosynthetic gene cluster can be acquired horizontally. The remnants of the disabled flanking gene orf35 found in the gra cluster from S. vietnamensis not only indicated the full orf35 gene once resided in this host genome, making the current case a more convincing example of horizontal gene transfer, but also present a scenario how the antibiotic gene clusters evolved after horizontal gene transfer. Then the contemporary gra cluster held by S. vietnamensis can be interpreted as a combination of horizontal gene transfer and variable vertical transmission.
     The assay of resisitance level of S. vietnamensis to common antibiotics showed that apramycin, kanamycin, streptomycin, spectromycin and thiostrepton can be used as selection markers in genetic manipulation experiments.
     An efficient genetic manipulation system was established by intergeneric conjugation between E. coli and S. vietnamensis. Plasmids derived from the TA cloning vector pCR2.1, substituted for genomic library cosmid, were applied to S. vietnamensi for gene disruption. A granaticin-deficient mutant was constructed by replacement of the biosynthetic genes orf1, orf2, orf3 with the aac(3)-IV cassette, demonstrating the modified PCR targeting system was successfully applied to S. vietnamensis. To our knowledge, this is the first report of efficient genetic manipulation on the granaticin-producing strain and can pave a way to study the mechanisms of regulations and biosynthesis of granaticin in vivo.
     Functional studies were carried out on the biosynthetic gene orf20 by in vivo disruption and in vitro expression. E. coli carrying the recombinant plasmid pET28b-orf20 received an elevated resistance to paraquat, whereas S. vietnamensis orf20 disrupant showed no visible changes of resistance to paraquat. Unexpectedly, the granaticin production of the disrupant was improved for more than three folds. These data suggested that the orf20 gene can complement the soxR gene in E. coli, but is not involved in the regulation of anti-oxidative stress response in S. vietnamensis. Instead, it imposes a negative effect on granaticin production.
     Transcription of the granaticin-export gene orf15 was analysed by real time PCR. The transcription level of orf15 was abruptly elevated just before the granaticin production and then dropped down with speed in S. vietnamensis wild type, whereas the transcription level of orf15 was much more elevated at that stage and longer duration time of high transcription level was observed in the orf20 disrupant. This accounted for the promotion of granaticin production in the orf20 disrupant.
引文
[1] Goodfellow M., Mordarski M., Williams S.T. The Biology of the actinomycetes [M]. London: Academic Press, 1984: 544
    [2] Kieser T., Bibb M.J., Buttner M.J., et al. Practical Streptomyces Genetics [M], 2nd edn. Norwich: John Innes Foundation, 2000: 1-613
    [3] Ensign J.C. Formation, properties, and germination of actinomycete spores [J]. Annual Review of Microbiology, 1978, 32(1):185-219
    [4] Lin Y.S., Kieser H.M., Hopwood D.A., et al. The chromosomal DNA of Streptomyces lividans 66 is linear [J]. Molecular Microbiology, 1993, 10(5):923-933
    [5] Kieser H.M., Kieser T., Hopwood D.A. A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome [J]. Journal of Bacteriology, 1992, 174(17):5496-5507
    [6] Leblond P., Decaris B. New insights into the genetic instability of Streptomyces [J]. FEMS Microbiology Letters, 1994, 123(3):225-232
    [7] Bentley S.D., Chater K.F., Cerdeno-Tarraga A.M., et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) [J]. Nature, 2002, 417(6885):141-147
    [8] Watve M., Tickoo R., Jog M., et al. How many antibiotics are produced by the genus Streptomyces? [J]. Archives of Microbiology, 2001, 176(5):386-390
    [9] Peláe F. The historical delivery of antibiotics from microbial natural products–Can history repeat? [J]. Biochemical Pharmacology, 2006, 71(7):981-990
    [10] Luzhetskyy A., Pelzer S., Bechthold A. The future of natural products as a source of new antibiotics [J]. Current Opinion in Investigational Drugs, 2007, 8(8):608 - 613
    [11] Fenical W., Jensen P.R. Developing a new resource for drug discovery: marine actinomycete bacteria [J]. Nature Chemical Biology, 2006, 2(12):666-673
    [12] Ikeda H., Ishikawa J., Hanamoto A., et al. Complete genome sequence andcomparative analysis of the industrial microorganism Streptomyces avermitilis [J]. Nature Biotechnology, 2003, 21(5):526-531
    [13] Rudd B.A.M., Hopwood D.A. A pigmented mycelial antibiotic in Streptomyces coelicolor: control by a chromosomal gene cluster [J]. Journal of General Microbiology, 1980, 119(2):333-340
    [14] Staunton J., Weissman K.J. Polyketide biosynthesis: a millennium review [J]. Natural Product Reports, 2001, 18(4):380-416
    [15] Rawlings B.J. Type I polyketide biosynthesis in bacteria (Part B) [J]. Natural Product Reports, 2001, 18(3):231-281
    [16] Rawlings B.J. Type I polyketide biosynthesis in bacteria (Part A–erythromycin biosynthesis) [J]. Natural Product Reports, 2001, 18(2):190-227
    [17] Shen B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms [J]. Current Opinion in Chemical Biology, 2003, 7(2):285-295
    [18] Hertweck C., Luzhetskyy A., Rebets Y., et al. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork [J]. Natural Product Reports, 2007, 24(1):162-190
    [19] Funa N., Ohnishi Y., Fujii I., et al. A new pathway for polyketide synthesis in microorganisms [J]. Nature, 1999, 400(6747):897-899
    [20] Schwarzer D., Finking R., Marahiel M.A. Nonribosomal peptides: from genes to products [J]. Natural Product Reports, 2003, 20(3):275-287
    [21]王世媛.非核糖体肽合成酶(NRPSs)作用机理与应用的研究进展[J].微生物学报, 2007, 47(4):734-737
    [22] Mootz H.D., Marahiel M.A. Biosynthetic systems for nonribosomal peptide antibiotic assembly [J]. Current Opinion in Chemical Biology, 1997, 1(4):543-551
    [23] Bibb M.J. Regulation of secondary metabolism in streptomycetes [J]. Current Opinion in Microbiology, 2005, 8(2):208-215
    [24] Takano E.γ-Butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation [J]. Current Opinion in Microbiology,2006, 9(3):287-294
    [25] Chakraburtty R., Bibb M. The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation [J]. Journal of Bacteriology, 1997, 179(18):5854-5861
    [26] Rigali S., Titgemeyer F., Barends S., et al. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces [J]. EMBO Reports, 2008, 9(7):670-675
    [27] Martin J.F. Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story [J]. Journal of Bacteriology, 2004, 186(16):5197-5201
    [28] Bibb M. The regulation of antibiotic production in Streptomyces coelicolor A3(2) [J]. Microbiology-SGM, 1996, 142(6):1335-1344
    [29] Wietzorrek A., Bibb M. A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold [J]. Molecular Microbiology, 1997, 25(6):1181-1184
    [30] Arias P., Fernandez-Moreno M.A., Malpartida F. Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein [J]. Journal of Bacteriology, 1999, 181(22):6958-6968
    [31] Sevcikova B., Kormanec J. Differential production of two antibiotics of Streptomyces coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions [J]. Archives of Microbiology, 2004, 181(5):384-389
    [32] Sheldon P.J., Busarow S.B., Hutchinson C.R. Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI [J]. Molecular Microbiology, 2002, 44(2):449-460
    [33] Distler J., Ebert A., Mansouri K., et al. Gene cluster for streptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes and analysis of transcriptional activity [J]. Nucleic Acids Research, 1987,15(19):8041-8056
    [34] Bate N., Butler A.R., Gandecha A.R., et al. Multiple regulatory genes in the tylosin biosynthetic cluster of Streptomyces fradiae [J]. Chemistry & Biology, 1999, 6(9):617-624
    [35] Bate N., Stratigopoulos G., Cundliffe E. Differential roles of two SARP-encoding regulatory genes during tylosin biosynthesis [J]. Molecular Microbiology, 2002, 43(2):449-458
    [36] PerezLlarena F.J., Liras P., RodriguezGarcia A., et al. A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both beta-lactam compounds [J]. Journal of Bacteriology, 1997, 179(6):2053-2059
    [37] Ohnishi Y., Kameyama S., Onaka H., et al. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor [J]. Molecular Microbiology, 1999, 34(1):102-111
    [38] Ohnishi Y., Yamazaki H., Kato J.Y., et al. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus [J]. Bioscience Biotechnology and Biochemistry, 2005, 69(3):431-439
    [39] Yoon Y.-H., Kawai F., Sugiyama K., et al. Crystallization and preliminary crystallographic studies of the butyrolactone autoregulator receptor protein (BarA) from Streptomyces virginiae [J]. Acta Crystallographica Section F, 66(6):662-664
    [40] Kitani S., Yamada Y., Nihira T. Gene replacement analysis of the butyrolactone autoregulator receptor (FarA) reveals that FarA acts as a novel regulator in secondary metabolism of Streptomyces lavendulae FRI-5 [J]. Journal of Bacteriology, 2001, 183(14):4357-4363
    [41] Takano E., Chakraburtty R., Nihira T., et al. A complex role for theγ-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2) [J]. Molecular Microbiology, 2001, 41(5):1015-1028
    [42] Chang H.M., Chen M.Y., Shieh Y.T., et al. The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin [J]. Molecular Microbiology, 1996, 21(5):1075-1085
    [43] Shu D., Chen L., Wang W.H., et al. afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor [J]. Applied Microbiology and Biotechnology, 2009, 81(6):1149-1160
    [44] Anderson T.B., Brian P., Champness W.C. Genetic and transcriptional analysis of absA, an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor [J]. Molecular Microbiology, 2001, 39(3):553-566
    [45] Sola-Landa A., Moura R.S., Martin J.F. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10):6133-6138
    [46] Apel A.K., Sola-Landa A., Rodriguez-Garcia A., et al. Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions [J]. Microbiology, 2007, 153(10):3527-3537
    [47] Sheeler N.L., MacMillan S.V., Nodwell J.R. Biochemical activities of the absA two-component system of Streptomyces coelicolor [J]. Journal of Bacteriology, 2005, 187(2):687-696
    [48] McKenzie N.L., Nodwell J.R. Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters [J]. Journal of Bacteriology, 2007, 189(14):5284-5292
    [49] Horinouchi S., Beppu T. Regulation of secondary metabolism and cell-differentiation in Streptomyces: A-factor as a microbial hormone and the AfsR protein as a component of a 2-component regulatory system [J]. Gene,1992, 115(1-2):167-172
    [50] Umeyama T., Horinouchi S. Autophosphorylation of a bacterial serine/threonine kinase, AfsK, is inhibited by KbpA, an AfsK-binding protein [J]. Journal of Bacteriology, 2001, 183(19):5506-5512
    [51] Horinouchi S. AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2) [J]. Journal of Industrial Microbiology & Biotechnology, 2003, 30(8):462-467
    [52] Lee P.C., Umeyama T., Horinouchi S. afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2) [J]. Molecular Microbiology, 2002, 43(6):1413-1430
    [53] Sawai R., Suzuki A., Takano Y., et al. Phosphorylation of AfsR by multiple serine/threonine kinases in Streptomyces coelicolor A3(2) [J]. Gene, 2004, 334:53-61
    [54] Santos-Beneit F., Rodriguez-Garcia A., Sola-Landa A., et al. Cross-talk between two global regulators in Streptomyces: PhoP and AfsR interact in the control of afsS, pstS and phoRP transcription [J]. Molecular Microbiology, 2009, 72(1):53-68
    [55] Ueda K., Umeyama T., Beppu T., et al. The aerial mycelium-defective phenotype of Streptomyces griseus resulting from A-factor deficiency is suppressed by a Ser/Thr kinase of S. coelicolor A3(2) [J]. Gene, 1996, 169(1):91-95
    [56] Wray Jr L.V., Fisher S.H. The Streptomyces coelicolor glnR gene encodes a protein similar to other bacterial response regulators [J]. Gene, 1993, 130(1):145-150
    [57] Tiffert Y., Supra P., Wurm R., et al. The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes [J]. Molecular Microbiology, 2008, 67(4):861-880
    [58] Fink D., Weissschuh N., Reuther J., et al. Two transcriptional regulators GlnRand GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2) [J]. Molecular Microbiology, 2002, 46(2):331-347
    [59] Rodriguez-Garcia A., Sola-Landa A., Apel K., et al. Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP [J]. Nucleic Acids Research, 2009, 37(10):3230-3242
    [60] Corbaz R., Ettlinger L., G?umann E., et al. Products of metabolism of actinomycetes. IX Granaticin [J]. Helvetica Chimica Acta, 1957, 40(5):1262-1269
    [61] Barcza S., Brufani M., Kellersc W., et al. Metabolic products from microorganisms–granaticin B [J]. Helvetica Chimica Acta, 1966, 49(6):1736-1740
    [62] Pyrek J.S., Mordarski M., Zamojski A. Identification of antibiotic WR 141 [J]. Archivum immunologiae et therapiae experimentalis, 1969, 17(6):827-832
    [63] Barashkova N.P., Omel'chenko V.N., Shenin Y.D. Actinomyces globispororoseus var. granaticus var. nov., a new producer of granaticins [J]. Antibiotiki, 1976, 21(7):582-586
    [64] Fleck W.F., Strauss D.G., Prauser H. Naphthoquinone antibiotics from Streptomyces lateritius. I. Fermentation, isolation and characterization of granatomycins A, C, and D [J]. Journal of Basic Microbiology, 1980, 20(9):543-551
    [65] Chang C., Floss H.G., Soong P., et al. Identity of antitumor antibiotic litmomycin with granaticin A [J]. Journal of Antibiotics, 1975, 28(2):156-156
    [66] Pyrek J.S., Achmatowicz O., Zamojski A. Naphto- and anthraquinones of Streptomyces thermoviolaceus WR-141. Structures and model syntheses [J]. Tetrahedron, 1977, 33(6):673-680
    [67] Elson A.L., Box S.J., Gilpin M.L. New quinone antibiotics of the granaticin type, isolated from Streptomyces lateritius. I. Production, isolation and properties [J]. Journal of Antibiotics, 1988, 41(4):570-572
    [68] Gilpin M.L., Box S.J., Elson A.L. New quinone antibiotics of the granaticintype, isolated from Streptomyces lateritius. II. Structure determination [J]. Journal of Antibiotics, 1988, 41(4):512-518
    [69] Keller-Schierlein W., Brufani M., Barcza S. Products of metabolism of microorganisms. 66. Structure of granaticin and granaticin B. 1. Spectroscopic properties and chemical degradation [J]. Helvetica Chimica Acta, 1968, 51(6):1257-1268
    [70] Brufani M., Dobler M. Stoffwechselprodukte von Mikroorganismen. 67. Mitteilung [1]. Die struktur des granaticins und des granaticins B. 2. Teil: die kristallstruktur des tri-O-acetyl-O-jodacetyl-granaticins [J]. Helvetica Chimica Acta, 1968, 51(6):1269-1275
    [71] Brockmann H., Pini H., v. Plotho O.über Actinomycetenfarbstoffe, I. Mitteil.: Actinorhodin, ein roter, antibiotisch wirksamer Farbstoff aus Actinomyceten [J]. Chemische Berichte, 1950, 83(2):161-167
    [72] Brockmann H., Hieronymus E.über actinomycetenfarbstoffe, V. Mitteil1): zur konstitution des actinorhodins, III. Mitteil1) [J]. Chemische Berichte, 1955, 88(9):1379-1390
    [73] Takano S., Hasuda K., Ito A., et al. A new antibiotic, medermycin [J]. Journal of Antibiotics, 1976, 29(7):765-768
    [74] Ellestad G.A., Kunstmann M.P., Whaley H.A., et al. Structure of frenolicin [J]. Journal of the American Chemical Society, 1968, 90(5):1325-1332
    [75] Van Meter J.C., Dann M., Bohonos N.: Isolation and characteristics of frenolicin. In: Antimicrobial Agents Annual 1960 [C]. New York: Plenum, 1961: 77-80
    [76] Tsuji N., Kobayashi M., Wakisaka Y., et al. New antibiotics, griseusins A and B: isolation and characterization [J]. Journal of Antibiotics, 1976, 29(1):7-9
    [77] Omura S., Tanaka H., Koyama Y., et al. Nanaomycins A and B, new antibiotics produced by a strain of Streptomyces [J]. Journal of Antibiotics, 1974, 27(5):363-365
    [78] Bergy M.E. Kalafungin, a new broad spectrum antibiotic: isolation and characterization [J]. Journal of Antibiotics, 1968, 21(7):454-457
    [79] Johnson L.E., Dietz A. Kalafungin, a new antibiotic produced by Streptomyces tanashiensis strain kala [J]. Applied and Environmental Microbiology, 1968, 16(12):1815-1821
    [80] Zeeck A., Mardin M. Stoffwechselprodukte von mikroorganismen: isolierung und konstitution vonα-naphthocyclinon [J]. Justus Liebigs Annalen der Chemie, 1974, 1974(7):1063-1099
    [81] Zeeck A., Z?hner H., Mardin M. Stoffwechselprodukte von mikroorganismen: isolierung und konstitution der isochromanchinon antibioticaβ- undγ-naphthocyclinon [J]. Justus Liebigs Annalen der Chemie, 1974, 1974(7):1100-1125
    [82] Windholz M. The Merck index: an encyclopedia of chemicals, drugs, and biologicals [M], 10th edn. Rahaway, New Jersey: Merck, 1983: 652
    [83] Ogilvie A., Wiebauer K., Kersten W. Inhibition of leucyl-transfer ribonucleic-acid synthetase in Bacillus subtilis by granaticin [J]. Biochemical Journal, 1975, 152(3):511-515
    [84] Ogilvie A., Wiebauer K., Kersten W. Stringent control of ribonucleic-acid synthesis in Bacillus subtilis treated with granaticin [J]. Biochemical Journal, 1975, 152(3):517-522
    [85] Heinstein P. Mechanism of action of granaticin: Inhibition of ribosomal RNA maturation and cell cycle specificity [J]. Journal of Pharmaceutical Sciences, 1982, 71(2):197-200
    [86] Iwasaki S., Omura S. Search for protein farnesyltransferase inhibitors of microbial origin: our strategy and results as well as the results obtained by other groups [J]. Journal of Antibiotics, 2007, 60(1):1-12
    [87]任晓,郑智慧,路新华,等.次黄嘌呤核苷酸脱氢酶抑制剂N01WB-352A、B的研究[R].石家庄,中国药学会学术年会暨第八届中国药师周论文集,2008: 539-544
    [88] Tao J., Schimmel P. Inhibitors of aminoacyl-tRNA synthetases as novel anti-infectives [J]. Expert Opinion on Investigational Drugs, 2000, 9(8):1767-1775
    [89] Hurdle J.G., O'Neill A.J., Chopra I. Prospects for aminoacyl-tRNA synthetase inhibitors as new antimicrobial agents [J]. Antimicrob Agents Chemother, 2005, 49(12):4821-4833
    [90] Goodsell D.S. The molecular perspective: The ras oncogene [J]. Oncologist, 1999, 4(3):263-264
    [91] Agrawal A.G., Somani R.R. Farnesyltransferase inhibitor as anticancer agent [J]. Mini Reviews in Medicinal Chemistry, 2009, 9:638-652
    [92] Brunner T.B., Hahn S.M., Gupta A.K., et al. Farnesyltransferase inhibitors: an overview of the results of preclinical and clinical investigations [J]. Cancer Research, 2003, 63(18):5656-5668
    [93] Chen L., Pankiewicz K. Recent development of IMP dehydrogenase inhibitors for the treatment of cancer [J]. Current Opinion in Drug Discovery and Development, 2007, 10(4):403-412
    [94] metabolism of the novel IMP dehydrogenase inhibitor benzamide riboside [J]. Medicinal Chemistry Reviews - Online, 2004, 1:225-229
    [95] Ratcliffe A. Inosine 5'-monophosphate dehydrogenase inhibitors for the treatment of autoimmune diseases [J]. Current Opinion in Drug Discovery and Development, 2006, 9(5):595 - 605
    [96] Nomura K., Okazaki K., Hori K., et al. Total synthesis of (+/-)-granaticin [J]. Journal of the American Chemical Society, 1987, 109(11):3402-3408
    [97] Ichinose K., Bedford D.J., Bibb M.J., et al. The granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tü22: sequence analysis and expression in a heterologous host [J]. Chemistry & Biology, 1998, 5(11):647-659
    [98] Snipes C.E., Chang C.J., Floss H.G. Biosynthesis of the antibiotic granaticin [J]. Journal of the American Chemical Society, 1979, 101(3):701-706
    [99] He X.G., Chang C.C., Chang C.J., et al. Further studies on the biosynthesis of granaticin [J]. Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 1986, 41(1-2):215-221
    [100] Malpartida F., Hopwood D.A. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host[J]. Nature, 1984, 309(5967):462-464
    [101] Malpartida F., Hopwood D. Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin Streptomyces coelicolor A3(2) [J]. Molecular and General Genetics, 1986, 205(1):66-73
    [102] Malpartida F., Hallam S.E., Kieser H.M., et al. Homology between Streptomyces genes-coding for synthesis of different polyketides used to clone antibiotic biosynthetic genes [J]. Nature, 1987, 325(6107):818-821
    [103] Sherman D.H., Malpartida F., Bibb M.J., et al. Structure and deduced function of the granaticin-producing polyketide synthase gene-cluster of Streptomyces violaceoruber Tü22 [J]. EMBO Journal, 1989, 8(9):2717-2725
    [104] Bechthold A., Sohng J.K., Smith T.M., et al. Identification of Streptomyces violaceoruber Tü22 genes involved in the biosynthesis of granaticin [J]. Molecular and General Genetics, 1995, 248(5):610-620
    [105] Taguchi T., Itou K., Ebizuka Y., et al. Chemical characterisation of disruptants of the Streptomyces coelicolor A3(2) actVI genes involved in actinorhodin biosynthesis [J]. Journal of Antibiotics, 2000, 53(2):144-152
    [106] Ichinose K., Taguchi T., Bedford D.J., et al. Functional complementation of pyran ring formation in actinorhodin biosynthesis in Streptomyces coelicolor A3(2) by ketoreductase genes for granaticin biosynthesis [J]. Journal of Bacteriology, 2001, 183(10):3247-3250
    [107] Taguchi T., Ebizuka Y., Hopwood D.A., et al. A new mode of stereochemical control revealed by analysis of the biosynthesis of dihydrogranaticin in Streptomyces violaceoruber Tü22 [J]. Journal of the American Chemical Society, 2001, 123(46):11376-11380
    [108] Taguchi T., Kunieda K., Takeda-Shitaka M., et al. Remarkably different structures and reaction mechanisms of ketoreductases for the opposite stereochemical control in the biosynthesis of BIQ antibiotics [J]. Bioorganic & Medicinal Chemistry, 2004, 12(22):5917-5927
    [109] Ozawa M., Taguchi T., Itoh T., et al. Structure and biosynthetic implication of (S)-NHAB, a novel shunt product, from a disruptant of the actVI-ORFA genefor actinorhodin biosynthesis in Streptomyces coelicolor A3(2) [J]. Tetrahedron, 2003, 59(44):8793-8798
    [110] Itoh T., Taguchi T., Kimberley M.R., et al. Actinorhodin biosynthesis: structural requirements for post-PKS tailoring intermediates revealed by functional analysis of actVI-ORF1 reductase [J]. Biochemistry, 2007, 46(27):8181-8188
    [111] Okamoto S., Taguchi T., Ochi K., et al. Biosynthesis of actinorhodin and related antibiotics: discovery of alternative routes for quinone formation encoded in the act gene cluster [J]. Chemistry & Biology, 2009, 16(2):226-236
    [112] Taguchi T., Okamoto S., Itoh T., et al. Actinoperylone, a novel perylenequinone-type shunt product, from a deletion mutant of the actVA-ORF5 and ORF6 genes for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) [J]. Tetrahedron Letters, 2008, 49(7):1208-1211
    [113] Valton J., Mathevon C., Fontecave M., et al. Mechanism and regulation of the two-component FMN-dependent monooxygenase ActVA-ActVB from Streptomyces coelicolor [J]. Journal of Biological Chemistry, 2008, 283(16):10287-10296
    [114] Valton J., Fontecave M., Douki T., et al. An aromatic hydroxylation reaction catalyzed by a two-component FMN-dependent monooxygenase [J]. Journal of Biological Chemistry, 2006, 281(1):27-35
    [115] Valton J., Filisetti L., Fontecave M., et al. A two-component flavin-dependent monooxygenase involved in actinorhodin biosynthesis in Streptomyces coelicolor [J]. Journal of Biological Chemistry, 2004, 279(43):44362-44369
    [116] Draeger G., Park S.H., Floss H.G. Mechanism of the 2-deoxygenation step in the biosynthesis of the deoxyhexose moieties of the antibiotics granaticin and oleandomycin [J]. Journal of the American Chemical Society, 1999, 121(11):2611-2612
    [117] Tornus D., Floss H.G. Identification of four genes from the granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tü22 involved in the biosynthesis of L-rhodinose [J]. Journal of Antibiotics, 2001, 54(1):91-101
    [118] Ichinose K., Taguchi T., Ebizuka Y., et al. Biosynthetic gene clusters of benzoisochromanequinone antibiotics in Streptomyces spp.–Identification of genes involved in post-PKS tailoring steps [J]. Actinomycetologica, 1998, 12(2):99-109
    [119] Walkup L.K., Kogoma T. Escherichia coli proteins inducible by oxidative stress mediated by the superoxide radical [J]. Journal of Bacteriology, 1989, 171(3):1476-1484
    [120] Greenberg J.T., Demple B. A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress [J]. Journal of Bacteriology, 1989, 171(7):3933-3939
    [121] Greenberg J.T., Monach P., Chou J.H., et al. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(16):6181-6185
    [122] Tsaneva I.R., Weiss B. soxR, a locus governing a superoxide response regulon in Escherichia coli K-12 [J]. Journal of Bacteriology, 1990, 172(8):4197-4205
    [123] Pomposiello P.J., Demple B. Redox-operated genetic switches: the SoxR and OxyR transcription factors [J]. Trends in Biotechnology, 2001, 19(3):109-114
    [124] Fang F., Vazquez-Torres A., Xu Y. The transcriptional regulator SoxS is required for resistance of Salmonella typhimurium to paraquat but not for virulence in mice [J]. Infection and Immunity, 1997, 65(12):5371-5375
    [125] Eiamphungporn W., Charoenlap N., Vattanaviboon P., et al. Agrobacterium tumefaciens soxR is involved in superoxide stress protection and also directly regulates superoxide-inducible expression of itself and a target gene [J]. Journal of Bacteriology, 2006, 188(24):8669-8673
    [126] Kim J.S., Sung M.H., Kho D.H., et al. Induction of manganese-containing superoxide dismutase is required for acid tolerance in Vibrio vulnificus [J]. Journal of Bacteriology, 2005, 187(17):5984-5995
    [127] Dietrich L.E.P., Price-Whelan A., Petersen A., et al. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonasaeruginosa [J]. Molecular Microbiology, 2006, 61(5):1308-1321
    [128] Palma M., Zurita J., Ferreras J.A., et al. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response [J]. Infection and Immunity, 2005, 73(5):2958-2966
    [129] Amabilecuevas C.F., Demple B. Molecular characterization of the soxRS genes of Escherichia coli–2 genes control a superoxide stress regulon [J]. Nucleic Acids Research, 1991, 19(16):4479-4484
    [130] Wu J., Weiss B. 2 divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli [J]. Journal of Bacteriology, 1991, 173(9):2864-2871
    [131] Watanabe S., Kita A., Kobayashi K., et al. Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(11):4121-4126
    [132] Hidalgo E., Demple B. An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein [J]. EMBO Journal, 1994, 13(1):138-146
    [133] Hidalgo E., Demple B. Spacing of promoter elements regulates the basal expression of the soxS gene and converts SoxR from a transcriptional activator into a repressor [J]. EMBO Journal, 1997, 16(5):1056-1065
    [134] Liochev S.I., Fridovich I. Fumarase-C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon [J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(13):5892-5896
    [135] Ding H.G., Hidalgo E., Demple B. The redox state of the [2Fe-2S] clusters in SoxR protein regulates its activity as a transcription factor [J]. Journal of Biological Chemistry, 1996, 271(52):33173-33175
    [136] Gorodetsky A.A., Dietrich L.E.P., Lee P.E., et al. DNA binding shifts the redox potential of the transcription factor SoxR [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(10):3684-3689
    [137] Tardat B., Touati D. 2 global regulators repress the anaerobic expression of Mn-sod in Escherichia coli–fur (ferric uptake regulation) and arc (aerobic respiration control) [J]. Molecular Microbiology, 1991, 5(2):455-465
    [138] Liochev S.I., Fridovich I. Effects of overproduction of superoxide dismutases in Escherichia coli on inhibition of growth and on induction of glucose-6-phosphate-dehydrogenase by paraquat [J]. Archives of Biochemistry and Biophysics, 1992, 294(1):138-143
    [139] Nunoshiba T., Derojaswalker T., Wishnok J.S., et al. Activation by nitric-oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages [J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(21):9993-9997
    [140] Nunoshiba T., Derojaswalker T., Tannenbaum S.R., et al. Roles of nitric-oxide in inducible resistance of Escherichia coli to activated murine macrophages [J]. Infection and Immunity, 1995, 63(3):794-798
    [141] Ding H.G., Demple B. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(10):5146-5150
    [142] Lee P.E., Demple B., Barton J.K. DNA-mediated redox signaling for transcriptional activation of SoxR [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(32):13164-13168
    [143] Park W., Pena-Llopis S., Lee Y., et al. Regulation of superoxide stress in Pseudomonas putida KT2440 is different from the SoxR paradigm in Escherichia coli [J]. Biochemical and Biophysical Research Communications, 2006, 341(1):51-56
    [144] Hidalgo E., Leautaud V., Demple B. The redox-regulated SoxR protein acts from a single DNA site as a repressor and an allosteric activator [J]. EMBO Journal, 1998, 17(9):2629-2636
    [145] Kobayashi K., Tagawa S. Activation of SoxR-dependent transcription inPseudomonas aeruginosa [J]. Journal of Biochemistry, 2004, 136(5):607-615
    [146]郭书巧,徐鹏,张保龙,等.硝化还原假单胞菌SPQ03 PnSoxRS调控子的克隆和功能初步分析[J].江苏农业学报, 2009, 25(3):524-528
    [147] Chou J.H., Greenberg J.T., Demple B. Post-transcriptional repression of Escherichia coli OmpF protein in response to redox stress–Positive control of the micf antisense RNA by the soxRS locus [J]. Journal of Bacteriology, 1993, 175(4):1026-1031
    [148] Koutsolioutsou A., Martins E.A., White D.G., et al. A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (serovar Typhimurium) [J]. Antimicrobial Agents and Chemotherapy, 2001, 45(1):38-43
    [149] Ha U.W., Jin S.G. Expression of the soxR gene of Pseudomonas aeruginosa is inducible during infection of burn wounds in mice and is required to cause efficient bacteremia [J]. Infection and Immunity, 1999, 67(10):5324-5331
    [150] Smith R.S., Iglewski B.H. P. aeruginosa quorum-sensing systems and virulence [J]. Current Opinion in Microbiology, 2003, 6(1):56-60
    [151] Passador L., Cook J., Gambello M., et al. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication [J]. Science, 1993, 260(5111):1127-1130
    [152] Pearson J.P., Passador L., Iglewski B.H., et al. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa [J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(5):1490-1494
    [153] Pesci E.C., Milbank J.B.J., Pearson J.P., et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(20):11229-11234
    [154] Aendekerk S., Ghysels B., Cornelis P., et al. Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium [J]. Microbiology, 2002, 148(8):2371-2381
    [155] Aendekerk S., Diggle S.P., Song Z., et al. The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication [J]. Microbiology, 2005, 151(4):1113-1125
    [156] Dietrich L.E.P., Teal T.K., Price-Whelan A., et al. Redox-active antibiotics control gene expression and community behavior in divergent bacteria [J]. Science, 2008, 321(5893):1203-1206
    [157] Talbot G.H., Bradley J., Edwards J.E., et al. Bad bugs need drugs: an update on the development pipeline from the antimicrobial availability task force of the infectious diseases society of america [J]. Clinical Infectious Diseases, 2006, 42(5):657-668
    [158] Peláez F. The historical delivery of antibiotics from microbial natural products–Can history repeat? [J]. Biochemical Pharmacology, 2006, 71(7):981-990
    [159] Overbye K.M., Barrett J.F. Antibiotics: where did we go wrong? [J]. Drug Discovery Today, 2005, 10(1):45-52
    [160] Butler M.S. Natural products to drugs: natural product-derived compounds in clinical trials [J]. Natural Product Reports, 2008, 25(3):475-516
    [161] Barrett C.T., Barrett J.F. Antibacterials: are the new entries enough to deal with the emerging resistance problems? [J]. Current Opinion in Biotechnology, 2003, 14(6):621-626
    [162] Luzhetskyy A., Pelzer S., Bechthold A. The future of natural products as a source of new antibiotics [J]. Current Opinion in Investigational Drugs, 2007, 8(8):608-613
    [163] Bull A., Stach J., Ward A., et al. Marine actinobacteria: perspectives, challenges, future directions [J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2005, 87(1):65-79
    [164] Zhu H.H., Guo J., Yao Q., et al. Streptomyces vietnamensis sp. nov., a streptomycete with violet blue diffusible pigment isolated from soil in Vietnam [J]. International Journal of Systematic and Evolutionary Microbiology, 2007,57(8):1770-1774
    [165]李欧,缪克排.链霉菌次级代谢研究进展[J].中国抗生素杂志, 2005, 30(11):695-698
    [166] Yin J., Straight P.D., Hrvatin S., et al. Genome-wide high-throughput mining of natural-product biosynthetic gene clusters by phage display [J]. Chemistry & Biology, 2007, 14(3):303-312
    [167] Freiberg C., Br?tz-Oesterhelt H. Functional genomics in antibacterial drug discovery [J]. Drug Discovery Today, 2005, 10(13):927-935
    [168] Zazopoulos E., Huang K.X., Staffa A., et al. A genomics-guided approach for discovering and expressing cryptic metabolic pathways [J]. Nature Biotechnology, 2003, 21(2):187-190
    [169] Scherlach K., Hertweck C. Triggering cryptic natural product biosynthesis in microorganisms [J]. Organic & Biomolecular Chemistry, 2009, 7(9):1753-1760
    [170] Chiang Y.M., Chang S.L., Oakley B.R., et al. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms [J]. Current Opinion in Chemical Biology, 2010, 15(1):137-143
    [171] Ayuso-Sacido A., Genilloud O. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: Detection and distribution of these biosynthetic gene sequences in major taxonomic groups [J]. Microbial Ecology, 2005, 49(1):10-24
    [172] Metsa-Ketela M., Salo V., Halo L., et al. An efficient approach for screening minimal PKS genes from Streptomyces [J]. FEMS Microbiology Letters, 1999, 180(1):1-6
    [173] Fernandez-Moreno M.A., Martinez E., Boto L., et al. Nucleotide-sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin [J]. Journal of Biological Chemistry, 1992, 267(27):19278-19290
    [174] Davis N.K., Chater K.F. Spore colour in Streptomyces coelicolor A3(2)involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics [J]. Molecular Microbiology, 1990, 4(10):1679-1691
    [175] Bergh S., Uhlén M. Analysis of a polyketide synthesis-encoding gene cluster of Streptomyces curacoi [J]. Gene, 1992, 117(1):131-136
    [176] Blanco G., Pereda A., Brian P., et al. A hydroxylase-like gene-product contributes to synthesis of a polyketide spore pigment in Streptomyces halstedii [J]. Journal of Bacteriology, 1993, 175(24):8043-8048
    [177] Novakova R., Bistakova J., Kormanec J. Characterization of the polyketide spore pigment cluster whiESa in Streptomyces aureofaciens CCM3239 [J]. Archives of Microbiology, 2004, 182(5):388-395
    [178] Sambrook J., Russell D.W. Molecular cloning : a laboratory manual [M], 3rd edn. New York: Cold Spring Harbor Laboratory, 2001: 1-999
    [179] Tamura K., Dudley J., Nei M., et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0 [J]. Molecular Biology and Evolution, 2007, 24(8):1596-1599
    [180] He J., Hertweck C. Iteration as programmed event during polyketide assembly: molecular analysis of the aureothin biosynthesis gene cluster [J]. Chemistry & Biology, 2003, 10(12):1225-1232
    [181] Zhang H., White-Phillip J.A., Melancon C.E., et al. Elucidation of the kijanimicin gene cluster: Insights into the biosynthesis of spirotetronate antibiotics and nitrosugars [J]. Journal of the American Chemical Society, 2007, 129(47):14670-14683
    [182] Jia X.Y., Tian Z.H., Shao L., et al. Genetic characterization of the chlorothricin gene cluster as a model for spirotetronate antibiotic biosynthesis [J]. Chemistry & Biology, 2006, 13(6):575-585
    [183] Chen S., Huang X., Zhou X.F., et al. Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex [J]. Chemistry & Biology, 2003, 10(11):1065-1076
    [184] Sun Y., Zhou X., Dong H., et al. A complete gene cluster from Streptomycesnanchangensis NS3226 encoding biosynthesis of the polyether ionophore nanchangmycin [J]. Chemistry & Biology, 2003, 10(5):431-441
    [185] Han L., Yang K.Q., Ramalingam E., et al. Cloning and characterization of polyketide synthase genes for jadomycin-B biosynthesis in Streptomyces venezuelae ISP5230 [J]. Microbiology-UK, 1994, 140:3379-3389
    [186] Lombo F., Brana A.F., Salas J.A., et al. Genetic organization of the biosynthetic gene cluster for the antitumor angucycline oviedomycin in Streptomyces antibioticus ATCC 11891 [J]. ChemBioChem, 2004, 5(9):1181-1187
    [187] Ishikawa J., Hotta K. FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content [J]. FEMS Microbiology Letters, 1999, 174(2):251-253
    [188] Lukashin A.V., Borodovsky M. GeneMark.hmm: New solutions for gene finding [J]. Nucleic Acids Research, 1998, 26(4):1107-1115
    [189] Frazer K.A., Pachter L., Poliakov A., et al. VISTA: computational tools for comparative genomics [J]. Nucleic Acids Research, 2004, 32(Web Server issue):W273-W279
    [190] Weaver D., Karoonuthaisiri N., Tsai H.H., et al. Genome plasticity in Streptomyces: identification of 1 Mb TIRs in the S. coelicolor A3(2) chromosome [J]. Molecular Microbiology, 2004, 51(6):1535-1550
    [191] Wenner T., Roth V., Fischer G., et al. End-to-end fusion of linear deleted chromosomes initiates a cycle of genome instability in Streptomyces ambofaciens [J]. Molecular Microbiology, 2003, 50(2):411-425
    [192] Ventura M., Canchaya C., Tauch A., et al. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum [J]. Microbiology and Molecular Biology Reviews, 2007, 71(3):495-548
    [193] Ochman H. Neutral mutations and neutral substitutions in bacterial genomes [J]. Molecular Biology and Evolution, 2003, 20(12):2091-2096
    [194] Huddleston A., Cresswell N., Neves M., et al. Molecular detection of streptomycin-producing streptomycetes in Brazilian soils [J]. Applied andEnvironmental Microbiology, 1997, 63(4):1288-1297
    [195] Wiener P., Egan S., Wellington E.M.H. Evidence for transfer of antibiotic-resistance genes in soil populations of streptomycetes [J]. Molecular Ecology, 1998, 7(9):1205-1216
    [196] Egan S., Wiener P., Kallifidas D., et al. Transfer of streptomycin biosynthesis gene clusters within streptomycetes isolated from soil [J]. Applied and Environmental Microbiology, 1998, 64(12):5061-5063
    [197] Egan S., Wiener P., Kallifidas D., et al. Phylogeny of Streptomyces species and evidence for horizontal transfer of entire and partial antibiotic gene clusters [J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2001, 79(2):127-133
    [198] Matter A.M., Hoot S.B., Anderson P.D., et al. Valinomycin biosynthetic gene cluster in Streptomyces : conservation, ecology and evolution [J]. PLoS ONE, 2009, 4(9):e7194
    [199] Keller U., Lang M., Crnovcic I., et al. The actinomycin biosynthetic gene cluster of Streptomyces chrysomallus: a genetic hall of mirrors for synthesis of a molecule with mirror symmetry [J]. Journal of Bacteriology, 2010, 192(10):2583-2595
    [200] Lombo F., Brana A.F., Mendez C., et al. The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster [J]. Journal of Bacteriology, 1999, 181(2):642-647
    [201] Hutchinson C.R., Colombo A.L. Genetic engineering of doxorubicin production in Streptomyces peucetius: a review [J]. Journal of Industrial Microbiology and Biotechnology, 1999, 23(1):647-652
    [202] Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors [J]. Gene, 1985, 33(1):103-119
    [203] MacNeil D.J., Gewain K.M., Ruby C.L., et al. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novelintegration vector [J]. Gene, 1992, 111(1):61-68
    [204] Datsenko K.A., Wanner B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12):6640-6645
    [205] Sun Y.H., Zhou X.F., Liu J., et al. 'Streptomyces nanchangensis', a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters [J]. Microbiology-SGM, 2002, 148:361-371
    [206] Bierman M., Logan R., O'Brien K., et al. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp [J]. Gene, 1992, 116(1):43-49
    [207] Paget M.S.B., Chamberlin L., Atrih A., et al. Evidence that the extracytoplasmic function sigma factor sigma E is required for normal cell wall structure in Streptomyces coelicolor A3(2) [J]. Journal of Bacteriology, 1999, 181(1):204-211
    [208] Gust B., Challis G.L., Fowler K., et al. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(4):1541-1546
    [209] Kiley P.J., Beinert H. The role of Fe-S proteins in sensing and regulation in bacteria [J]. Current Opinion in Microbiology, 2003, 6(2):181-185
    [210] den Hengst C.D., Buttner M.J. Redox control in Actinobacteria [J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2008, 1780(11):1201-1216
    [211] Mahony S., Benos P. STAMP: a web tool for exploring DNA-binding motif similarities [J]. Nucleic Acids Research, 2007, 35(Web Server issue): W253-W258
    [212] Shiina T., Tanaka K., Takahashi H. Sequence of hrdb, an essential gene encoding sigma-like transcription factor of Streptomyces coelicolor A3(2)– homology to principal sigma-factors [J]. Gene, 1991, 107(1):145-148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700