飞蝗β-N-乙酰氨基葡萄糖苷酶基因的克隆、表达及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-N-乙酰氨基葡萄糖苷酶(β-N-acetylglucosaminidase,NAG)广泛分布于细菌、真菌和节肢动物内。昆虫β-N-乙酰氨基葡萄糖苷酶通常由多个基因编码,分别或共同参与几丁质降解、糖聚合物降解及N-糖基化修饰等生理过程。由于几丁质是昆虫不可或缺的组成成分,而其在高等动植物中没有分布,故对参与几丁质降解的飞蝗β-N-乙酰氨基葡萄糖苷酶的研究可为飞蝗的防治提供新的靶标和思路。本文的主要研究内容包括:
     一、飞蝗β-N-乙酰氨基葡萄糖苷酶基因全长序列的克隆、序列分析及系统进化发育树的构建。搜索飞蝗EST数据库获得ETS序列,经分析为基因的全长序列,据此设计引物,以飞蝗五龄整虫为模板扩增飞蝗β-N-乙酰氨基葡萄糖苷酶基因的全长序列,获得cDNA序列2667bp,其中开放阅读框1845bp,编码614个氨基酸,5'非翻译区(5'-UTR)和3'-非翻译区(3'-UTR)的长度分别为233bp和589bp。构建系统进化树表明该基因属于具有几丁质催化活性的NAG1家族。
     二、飞蝗β-N-乙酰氨基葡萄糖苷酶基因LmNAG1的时空表达。运用RT-PCR和Real-time PCR技术对飞蝗β-N-乙酰氨基葡萄糖苷酶基因在不同龄期、五龄5、6、7天六个不同组织部位、四龄到五龄表皮中的表达进行了分析。结果显示该基因在飞蝗各个龄期均有表达,表达量随龄期递增;不同组织部位分析显示该基因在前后肠表达量最高;四龄和五龄表皮中的表达变化与20-E滴度吻合,在蜕皮前两天表达量最高。
     三、飞蝗β-N-乙酰氨基葡萄糖苷酶基因LmNAG1的生物学功能研究。对LmNAG1进行RNA干扰实验,结果表明:二龄和五龄飞蝗若虫注射dsLmNAG1后,目的基因被沉默,在各组织部位的表达量均显著降低,沉默持续时间>72h;注射后的若虫表现为蜕皮时间延迟、新旧表皮无法完全分离而死亡
     四、飞蝗β-N-乙酰氨基葡萄糖苷酶总酶活的测定分析。对五龄5、6和7天飞蝗不同组织部位及整虫酶活性进行测定;RNA干扰后不同时间点测定β-N-乙酰氨基葡萄糖苷酶总酶活性。结果显示:九龄最后3天该酶活性与其生理过程相关;已获得的LmNAG1基因被沉默后,β-N-乙酰氨基葡萄糖苷酶总酶活性显著下降。
     综上所述,本文获得的飞蝗β-N-乙酰氨基葡萄糖苷酶基因在飞蝗生长发育过程中具有重要作用,其生物学功能与飞蝗蜕皮这一生理过程密切相关,该基因的沉默可导致飞蝗因无法完成蜕皮而死亡,且对β-N-乙酰氨基葡萄糖苷酶总酶活性具有显著的影响。该基因对于RNAi介导的飞蝗有效防治具有潜在的应用价值。
β-N-acetylglucosaminidases are widespread in bacteria, fungi and arthropods. There are often multiple genes that encoding P-N-acetylglucosaminidases in various insect species, which involve in different physiological processes including chitin degradation, glycoconjugates degradation and N-glycan modification. Because chitin is an indispensable structural component for insects but absent in higher plants and animals, the β-N-acetylglucosaminidases which is involved in chitin degradation could be an ideal potential target for pest control. The main contents of this thesis are as follows:
     1. Cloning, sequencing and phylogenetic analysis of β-N-acetylglucosaminidase in Locusta migratoria.17β-N-acetylglucosaminidase gene fragments from L. migratoria were identified by searching the sequences in the EST database. Fifth-instar nymphs were used for template to obtain full-length sequence of putative LmNAGl. The full-length cDNA consists of2667nucleotides, including an open reading frame (ORF) of1845nucleotides that encode614amino acid residues and233-and589-bp non-coding regions at the5'-and3'-end of the cDNA, respectively. Phylogenetic analysis of the NAGs from L. migratoria and several other insect species showed that LmNAGl was grouped with the enzymatically characterized NAGs in group I.
     2. Developmental stage and tissue-specific expression patterns of LmNAGl. RT-PCR and Real-time PCR were carried out to analyze the expression patterns of LmNAGl. Six selected tissues were dissected from day5,6and7of fifth-instar nymphs for tissue-specific expression analysis. The whole insects from the third day of each stage and integument dissected from each day during4th and5th-instar nymph stages of L. migratoria were used for developmental expression analysis. The results showed that LmNAGl was expressed in all the developmental stages and increased along with insect growth. The qPCR analyses showed that LmNAGl was predominantly expressed in foregut and hindgut, relatively low in the integument, midgut and wing pad, but hardly detectable in gastric caeca. The expression of LmNAGl in integument could be detected in whole4th-and5th-instar nymphs. The expression level of LmNAGl was significant high in the last two days of each instar, which is accordant with the ecdysone hormone (20-E) titer peak in both4th-and5th-instar nymphs.
     3. Biofunctional analysis of LmNAGl gene. RNAi experiment was carried out to determine the biological function of LmNAGl. The results showed target gene could be down-regulated effectively in all selected tissues after dsLmNAGl injection, and the silence time could be kept more than72hours. The abnormal nymphs showed an "incomplete" ecdysis phenotype after the dsRNA injection and most of them eventually died from failed molting.
     4. β-N-acetylglucosaminidase total activity assay. The experiment determined the β-N-acetylglucosaminidase total activity of six selected tissues from day5,6and7of L. migratoria5th-instar nymphs. The results showed that the distribution of the enzyme activity obviously change in the six tissues of the last three days of5th-instar nymphs and the patterns correspond with the process of molting and other crucial physiological functions of insect. The total activity of LmNAG starts to significantly decrease between24h and48h after LmNAGl dsRNA injection.
     To summarize, the obtained LmNAGl gene plays a significant role in the developmental process of L. migratoria. Its biological function is closely related with the important process of molting. The knock-down of the gene could cause the mortality of the insect because of incomplete ecdysis and also supress suppress the total enzyme activity of β-N-acetylglucosaminidase in L. migratoria. The results suggest LmNAGl is a potential and promising target for RNAi-mediated biological pest control.
引文
[1]夏凯龄,郑哲民等.中国动物志昆虫纲第4卷直翅目-蝗总科-癞蝗科-瘤锥蝗科-锥头蝗科[M].北京,科学出版社,1994,19.
    [2]洪晓月,丁锦华.农业昆虫学[M].北京,中国农业出版社,2007,134-140.
    [3]Ma EB, He YP, Zhu KY. Comparative studies of acetylcholinesterases purified from two field populations of the oriental migratory locust (Locusta migratoria manilensis): implications of insecticide resistance [J]. Pesticide Biochemistry and Physiology,2004, 78,67-77.
    [4]张波主.农业灾害学[M].西安,陕西科学技术出版社,1999,350-355.
    [5]郑哲民.蝗虫分类学[M].西安,陕西师范大学出版社,1993,195.
    [6]尤其儆,陈永林等.东亚飞蝗的生活习性[J].昆虫学报,1958,2,119-135.
    [7]陈永林.中国的蝗害[M].北京,中国林业出版社,1999.
    [8]马世骏.东亚飞蝗在中国的发生动态[J].昆虫学报,1958,1,1-40.
    [9]陈永林.蝗虫灾害的特点、成因和生态学治理[J].生物学通报,2000,7,1-5.
    [10]陈永林.中国的飞蝗研究及其治理的主要成就[J].昆虫知识,2000,1,50-58.
    [11]王正军,秦启联,陈永林等.我国蝗虫暴发成灾的现状及其持续控制对策[J].昆虫知识,2002,3,172-175.
    [12]张宗炳,曹骥.害虫防治:策略与方法[J].北京,科学出版社,1990,137-182.
    [13]郝树广,秦启联,王正军,康乐等.国际蝗虫灾害的防治策略和技术:现状与展望[J].昆虫学报,2002,4,531-537.
    [14]Yang ML, Zhang JZ, Zhu KY, Ma EB et al. Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen)[J]. Archives of Insect Biochemistry and Physiology,2009,1, 3-15.
    [15]雷仲仁.问锦曾.绿僵菌治蝗研究进展[J].植物保护,2004,4,14-17.
    [16]杨宝东,王金忠,孙淑玲.我国蝗虫生物防治的研究进展[J].北京农学院学报,2002,2,60-63.
    [17]Muzzarelli, R. A. A. Chitin[M]. New York, Pergamon Press,1977,5-16.
    [18]Veronico P, Gray LJ, Jones JT, Bazzicalupo P, Arbucci S, Cortese MR, Di Vito M, De Giorgi C. Nematode chitin synthases; gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia[J]. Molecular Genetics and Genomics,2001,266,28-34.
    [19]Van Dellen KL, Bulik DA, Specht CA, Robbins PW, Samuelson JC. Heterologous expression of an Entamoeba histolytica chitin synthase in Saccharomyces cerevisiae[J]. Eukaryotic Cell,2006,5,203-206.
    [20]Yalpani R, Lehtinen S, Wuolijoki E, Ylitalo P, Lehtimaki T. Antimicrobial activity of some chitosan derivatives. In:Brine, C.J., Sandford, P.A., Zikakis, J.P. eds., Advances in Chitin and Chitosan[M]. Elsevier Applied Science, London, UK.,2002,543-555.
    [21]Howling GI, Dettmar PW, Goddard PA, Hampson FC, Dornish M, Wood EJ. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro[J]. Biomaterials,2001,22,2959-2966.
    [22]Shahidi F, Abuzaytoun R. Chitin, chitosan, and co-products:chemistry, production, applications, and health effects. In:Taylor, S.L. ed. Advances in Food and Nutrition Research[M], Elsevier Academic Press, New York,2005,49,93-135.
    [23]Muzzarelli RA. Native, industrial and fossil chitins. In:Jolles, P., Muzzarelli, R. A. A. (Eds), Chitin and Chitinases[M]. Berkhauser Verlag, Basel, Switzerland,1999,1-3.
    [24]Kramer KJ, Muthukrishnan S. Insect chitinases:Molecular biology and potential use as biopesticides[J]. Insect Biochemistry and Molecular Biology,1997,27,887-900.
    [25]Kramer KJ, Muthukrishnan S. Chitin metabolism in insects:a revisit. In:Gilbert, L. I., Iatrou, K., & and Gill, S. eds., Comprehensive Molecular Insect Science[M]. Biochemistry and Molecular Biology, Elsevier Press, Oxford, UK.2005,3.
    [26]Merzendorfer H. Insect chitin synthases:a review[J]. Journal of Comparative Physiology. Part B,2006,176,1-15.
    [27]Kramer KJ, Koga D. Insect chitin:physical state, synthesis, degradation and metabolic regulation[J]. Insect Biochemistry,1986,16.851-877.
    [28]Kameda T, Miyazawa M, Ono H, Yoshida M. Hydrogen bonding structure and stability of a-chitin studied by 13C solid-state NMR[J]. Macromolecular Bioscience, 2005,5,103-106.
    [29]Giraud-Guille MM, Bouligand Y. Chitin-protein molecular organization in arthropods. In:Muzzarelli, R., Jeuniaux, C, Gooday, G.W. eds., Chitin in Nature and Technology[M]. Plenum, New York,1986,29-35.
    [30]Kramer KJ, Hopkins TL, Schaefer J. Applications of solids NMR to the analysis of insect sclerotized structures [J]. Insect Biochemistry and Molecular Biology,1995,25, 1067-1080.
    [31]Dahiya N, Tewari R, Hoondal GS. Biotechnological aspects of chitinolytic enzymes: a review[J]. Applied Microbiology and Biotechnology,2005,1-10.
    [32]Sahai AS, Manocha MS. Chitinases of fungi and plants:their involvement in morphogenesis and host parasite interaction[J]. FEMS Microbiology Reviews,1993, 11,317-338.
    [33]Fukamizo T, Kramer KJ. Mechanism of chitin hydrolysis by the binary chitinase system in insect molting fluid[J]. Insect Biochemistry,1985,15,141-145.
    [34]Zen KC, Choi HK, Krishnamachary N, Muthukrishnan S, Kramer KJ. Cloning, expression, and hormonal regulation of an insect beta-N-acetylgluco-saminidase gene[J]. Insect Biochemistry and Molecular Biology,1996,26,435-444.
    [35]Nagamatsu Y, Yanagisawa I, Kimoto M, Okamoto E, Koga D. Purification of a chitooligosaccharidolytic beta-N-acetylglucosaminidase from Bombyx mori larvae during metamorphosis and the nucleotide sequence of its cDNA[J]. Bioscience, Biotechnology and Biochemistry,1995,59,219-225.
    [36]Filho, BP, Lemos, FJ, Secundino NF, Pascoa V, Pereira ST, Pimenta PF. Presence of chitinase and beta-N-acetylglucosaminidase in the Aedes aegypti A chitinolytic system involving peritrophic matrix formation and degradation [J]. Insect Biochemistry and Molecular Biology,2002,32,1723-1729.
    [37]Altmann F, Schwihla H. Staudacher E, Glossl J, Marz L. Insect cells contain an unusual, membrane-bound β-N-acetylglucosaminidase probably involved in the processing of protein N-glycans[J]. The Journal of Biological Chemistry.1995,270, 17344-17349.
    [38]Boquet I, Hitier R, Dumas M, Chaminade M, Preat T. Central brain postembryonic development in Drosophila:Implication of genes expressed at the interhemispheric junction[J]. Journal of neurobiology,2000,42,33-48.
    [39]Leonard R, Rendic D. Rabouille C, Wilson IB, Preat T, Altmann F. The Drosophila fused lobes gene encodes an N-acetylglucosaminidase involved in N-glycan processing[J]. The Journal of Biological Chemistry,2006,281,4867-4875.
    [40]Zhang W, Cao P, Chen S, Spence AM, Zhu S, Staudacher E, Schachter H. Synthesis of paucimannose N-glycans by Caenorhabditis elegans requires prior actions of UDP-N-acetyl-D-glucosamine:a-3-D-mannoside (3-1,2-N-acetyl-glucosaminyltransferase I, a-3,6-mannosidase II and a specific membrane-bound p-N-acetylglucosamini-dase[J]. The Biochemical journal,2003,372,53-64.
    [41]Hannon GJ. RNA interference[J]. Nature,2002,418,244-251.
    [42]陈忠斌,主译.RNAi-基因沉默指南[M].北京,化学工业出版社,2004,46-58.
    [43]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature,1998,391,806-811.
    [44]杨广,尤民生,赵伊英,刘春辉.昆虫的RNA干扰[J].昆虫学报,2009,52,1156-1162.
    [45]Araujo RN, Santos A, Pinto FS, Gontijo NF, Lehane MJ, Pereira MH. RNA interference of the salivary gland nitrophorin 2 in thetriatomine bug Rhodniws prolixws (Hemiptera:Reduviidae) by dsRNA ingestion or injection[J]. Insect Biochemistry and Molecular Biology,2006,36,683-693.
    [46]David M, Oscar M, Josefa C, Daniel MP, Xavier B. RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica[J]. Journal of Insect Physiology,2006,52,410-416.
    [47]Megumi S, Daisuke SY, Jae ML, Masatsugu H. Isolation of white gene orthologue of the sawfly, Athalia rosae (Hymenoptera) and its functional analysis using RNA interference[J]. Insect Biochemistry and Molecular Biology,2005,35,231-240.
    [48]Schliins H, Crozier RH. Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference[J]. Insect Molecular Biology,2007,16,753-759.
    [49]Yoshiyuki M, Tomoaki S, Svetlana GK, Akira M, Sumihare N, Kenji T. RNA interference of the clock gene period disrupts circadian rhythms in the cricket Gryllus bimaculatus[J]. Journal of Biology Rhythms,2008,2,308-318.
    [50]Ying D, Markus F. Nymphal RNAi:Systemic RNAi mediated gene knockdown in juvenile grasshopper[J]. BMC Biotechnology,2005,5,25-32.
    [51]Niu BL, Shen WF, Liu Y, Weng HB, He LH, Mu JJ, Wu ZL, Jiang P, Tao YZ, Meng ZQ. Cloning and RNAi-mediated functional characterization of MaLac2 of the pine sawyer, Monochamus altematus[J]. Insect Molecular Biology,2008,17,303-312.
    [52]Chen X, Tian H, Zou L, Tang B, Hu J, Zhang W. Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference [J]. Bulletin of Entomological Research,2008,98,613-619.
    [53]Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW. The Tribolium chitin synthase genes TcCHSl and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix[J]. Insect Molecular Biology,2005,14,453-463.
    [54]Joanna K, Piotr B, Barbara OG, Jadwiga MG. RNA interference of the period gene affects the rhythm of sperm release in moths[J]. Journal of Biology Rhythms,2009, 24,25-34.
    [55]Zhang JZ, Liu XJ, Zhang JQ, Li DQ, Sun Y, Guo YP, Ma EB, Zhu KY. Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen) [J]. Insect Biochemistry and Molecular Biology,2010,40,824-833.
    [56]David GH, Yasuyuki A, Karl JK, et al. Characterization and expression of the β-N-acetylhexosaminidase gene family of Tribolium castaneum[J].Insect Biochemistry and Molecular Biology,2008,38,478-489.
    [57]Yang Q, Liu T, Liu FY, et al. A novel (3-N-acetyl-D-hexosaminidase from the insect Ostrinia furnacalis (Guene'e) [J]. FEBS Journal,2008,275,5690-5702.
    [58]Zheng YP, Krell PJ, Doucet D, et al. Cloning, Expression, and Localization of a Molt-Related β-N-Acetylglucosaminidase in the Spruce Budworm, Choristoneura fumifercina[J].Archives of Insect Biochemistry and Physiology,2008.68.49-59.
    [59]Krogh A. Larsson B, Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model:Application to complete genomes[J]. Journal of Molecular Biology,2001,305,567-580.
    [60]贺玉年,吴丽梅,高艳玲等.昆虫p-N-乙酰氨基葡萄糖苷酶研究进展[J].东北农业大学学报,2009,9,136-140.
    [61]肖业臣,罗晓斌,冯佩富.昆虫几丁质酶的研究进展[J].生物技术,2003,1,38-39.
    [62]Brandi LC, Coutinho PM, Henrissat B, et al. The Carbohydrate-Active Enzymes database (CAZy):an expert resource for Glycogenomics[J]. Nucleic Acids Research, 2008, suppl 1,233-238.
    [63]Wong-Madden ST, David L. Purification and characterization of novel glycosidases from the bacterial genus Xanthomonas[J]. Glycobiology,1995,5,19-28.
    [64]何正波,陈斌,冯国忠.昆虫RNAi技术及其应用[J].昆虫知识,2009,4,525-532.
    [65]伍林涛,阮颖,彭琦,张源,刘春林.RNAi技术及其应用[J].生物技术通报,2007,82-85.
    [66]Saleh MC, van Rij RP, Hekele A, Gillis A, Foley E, O'Farrell PH, Andino R. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing[J]. Nature Cell Biology,2006,8,793-802.
    [67]Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S. Functional specialization among insect chitinase family genes revealed by RNA interference[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105,6650-6655.
    [68]Winston WM, Molodowitch C, Hunter CP. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1[J]. Science,2002,295,2456-2459.
    [69]Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G. Exploring systemic RNA interference in insects:a genome-wide survey for RNAi genes in Tribolium[J]. Genome Biology,2008,9, R10.1-R10.22.
    [70]Zhou XX, Xia XY. Cloning of an acetylcholineesterase gene in Locusta migratoria manilensis related to organophosphate insecticide resistance[J]. Pesticide Biochemistry and Physiology,2009.93,77-84.
    [71]Baum J, Bogaert T, Clinton W, Heck G, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M. Vaughn T, Roberts J. Control of coleopteran insect pests through RNA interference[J]. Nat Biotechnol,2007,25,1322-1326.
    [72]Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol[J]. Nature Biotechnology,2007,25,1307-1313.
    [73]Tian HG, Peng H, Yao Q, Chen HX, Qi X. Bin T, Zhang W. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene[J]. PLoS ONE,2009,4, e6225.
    [74]Espie PJ, Roff JC. Characterization of chitobiase from Daphnia magna and its relation to chitin flux[J]. Physiological Zoology,1995,68,727-748.
    [75]Berger M, Chen H, Reutter W, et al.Structure and function of N-acetylglucosamine kinase[J]. European Journal of Biochemistry,2002,17,4212-4218.
    [76]张福丽,王志英,王占斌等.昆虫几丁质酶及其在植物害虫防治中的应用前景[J].农药市场信息,2007,20,13-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700