NO_3~-胁迫下黄瓜CsNMAPK基因的分离及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤次生盐渍化是温室蔬菜生长的主要障碍之一,严重影响栽培设施的利用效率和设施蔬菜栽培的可持续高效发展。温室土壤的盐分组成特点和滨海、内陆盐土不同,其阴离子主要是NO_3~-。目前前人对盐胁迫对植物的伤害机理方面的研究已取得了长足进展,但多以NaCl处理作为研究手段,而温室土壤中NO_3~-积累造成蔬菜伤害的分子机理缺乏深入系统的研究。黄瓜是我国日光温室主栽的蔬菜种类之一,黄瓜根系浅,吸肥能力差,易受盐害。因此,研究设施黄瓜在NO_3~-胁迫条件下的抗性机理具有重要的理论和实践意义。
     MAPK级联途径是真核生物中广泛存在的逆境胁迫信号转导途径。MAPK级联途径由三类蛋白激酶组成:MAPKKK-MAPKK-MAPK,通过依次磷酸化传递环境信号。植物中的MAPK途径与其他信号途径交织在一起,形成了一个网络系统,参与生长发育和各种生物、非生物胁迫信号转导。近年来,在植物中分离到大量MAPKs,并在其作用机理研究方面取得了很大进展。然而,前人对植物中MAPK的研究主要集中在双子叶模式植物(拟南芥、烟草和紫花苜蓿等),关于黄瓜MAPK方面的研究很少。为此,本试验以黄瓜为试材,对黄瓜MAPK进行了基因克隆、表达特性和功能的研究,主要结果如下:
     1.利用同源序列设计兼并引物,通过RT-PCR的方法,在黄瓜根中分离到黄瓜MAPK基因的中间片段,再通过5′RACE和3′RACE分别克隆到黄瓜MAPK基因的5′片段和3′片段,拼接后设计特异引物扩增到黄瓜MAPK基因全长cDNA,命名为CsNMAPK(基因注册号:DQ812086)。该基因全长1636 bp,有开放阅读框1113 bp,编码370个aa。
     2.同源序列比较发现,黄瓜MAPK基因与已知的棉花、豌豆、苜蓿、马铃薯、番茄、辣椒的同源性分别为85.18 %、84.91 %、84.64 %、83.65 %、83.11%、81.60 %。对来自番茄、马铃薯、棉花等MAPK蛋白进行分子聚类分析,构建了MAPK蛋白的系统进化树,分析结果表明,CsNMAPK蛋白与棉花GmMAPK1、豌豆的PsMAPK3蛋白亲缘关系最近。聚类分析还表明CsNMAPK蛋白属于MAPK的Ⅰ类,预示可能在环境胁迫和激素信号转导中起着重要作用。
     3.Northern blot分析表明CsNMAPK受NO_3~-胁迫强烈诱导表达。56、98、140 mM NO_3~-处理后,该基因的表达量上升,182 mM NO_3~-处理后该基因的表达量下降。182 mM NO_3~-处理后该基因在黄瓜叶、茎和根中均有表达,且表达量差异不大。182 mM NO_3~-处理耐盐品种‘新泰密刺’10 min后该基因的表达量开始上升,处理30 min后表达量达到最大,随后开始下降;而盐敏感品种‘神农春五’的表达量在60 min达到最大。CsNMAPK也能被NaCl、ABA、H2O2、PEG和SA等诱导。
     4.利用农杆菌侵染法将pBI-CsNMAPK转入烟草中,通过PCR和Northern blot检测表明CsNMAPK已经插入烟草基因组中并且已经表达。通过种子萌发期NO_3~-抗性试验表明,转基因烟草种子的抗性提高。通过苗期NO_3~-胁迫试验表明,转基因烟草抗性提高。为了检测转CsNMAPK基因烟草抗性提高的原因,我们测定了一系列和植物逆境胁迫有密切关系的生理指标,包括MDA含量、膜透性、H2O2含量、抗氧化物酶活性(SOD、POD、CAT、APX)、净光合速率、游离脯氨酸的积累等。结果表明,未处理的转基因烟草和野生型烟草的这些指标没有明显差别。但是胁迫处理后,转基因植株中电解质相对渗漏率、MDA和H2O2含量都显著低于野生型植株;转基因植株中SOD、CAT、POD和APX酶活性均高于野生型植株,具有更高的活性氧清除能力;脯氨酸含量增加的更多,具有较强的渗透调节能力。
     5.构建了原核表达载体pET-CsNMAPK,并在大肠杆菌BL21中表达融合蛋白,免疫小白鼠,制备抗体。Western杂交表明,转正义植株中CsNMAPK已在蛋白水平过量表达。
     6.用子房注射法将携带CsNMAPK基因的正义和反义表达载体的质粒导入六个黄瓜品种中,T1代幼苗叶片用2500 mg/L的卡那霉素涂抹筛选,对未变黄的植株进行PCR和Real-time PCR检测,获得了8株转基因黄瓜植株,其中3株反义转基因植株,5株正义转基因植株。
Excess application of chemical fertilizer has caused secondary salinization in Chinese greenhouse. Soil secondary salinization is one of the major limited factors affecting vegetable production in the greenhouse. Unlike the seashore, NO_3~- is the main accumualated anion in greenhouse soil. The mechanism of plant resistant to salt stress has been widely investigated, which mainly focused on the NaCl treatment and little was known about the molecular mechanism resisting to NO_3~- stress in plants. Cucumber is one of the most important vegetables cultivated in the Chinese greenhouse and was easily damaged by salt stress. Therefore, it is important to investigate the mechanism of cucumber tolerant to NO_3~- stress.
     Mitogen-activated protein kinase (MAPK) cascades are one of the major pathways in signal transduction in all eukaryotes. The MAPK cascades are composed of MAPK, MAPKK (MAPK kinase) and MAPKKK (MAPKK kinase). They transfer signals through phosphorylations of MAPKKK-MAPKK-MAPK in turn. In plants, MAPK cascades interlace with other signal transduction pathways and form a molecular interaction network, and regulate various cellular functions, including growth, development, biotic and abiotic stress responses. To date, numerous MAPKs have been isolated from different plants, and considerable progress has been made in understanding plant MAPKs. The regulation of MAPK signaling has been discussed most in dicot plant species (Arabidopsis, tobacco and alfafa etc.) and the study on cucumber MAPKs was virtually lacking. In this research, cucumbers were used as experimental materials. Research about the gene clone, expression characteristics and functional analysis of CsNMAPK was done. The main results were summarized as follows:
     1. Two degenerate primers were designed to amplify specific DNA fragment using cDNA prepared from cucumber root according to the homologous sequences from other plants. The middle fragment of the cucumber cDNA was obtained by RT-PCR. The 5′and 3′fragment of the cDNA was isolated by 5′and 3′RACE. The clone, which named CsNMAPK (Acession Numeber: DQ812086), contains 1636 bp nucleotides with an open reading frame (ORF) of 1113 bp comprising 370 amino acid residues.
     2. Comparing of the predicted protein sequence of the CsNMAPK with MAPKs from other plants showed that CsNMAPK was most homologous to the Glycine max (GmMAPK1) (85.18 %), Pisum sativum (PsMAPK3) (84.91 %), Medicago sativum (MsMAPK ) (84.64 %), Solanum tuberosum (StWIPK) (83.65 %), Lycopersicon esculentum (LeMAPK) (83.11 %), Capsicum annuum (CaMAPK1) (81.60 %). Construction of a dendrogram based on the homologous full-length amino acid sequences revealed that CsNMAPK belong to subgroupⅠMAPK in plants, which may play important roles in environmental stresses and hormone signal transduction.
     3. Northern blot analysis revealed that excess NO_3~- induced the expression of CsNMAPK. When treated with different concentrations of NO_3~-, the mRNA level of CsNMAPK was up-regulated by 56, 98, 140 mM NO_3~-, but down-regulated by 182 mM NO_3~-, compared to the normal NO_3~- concentration of 14 mM in the hydroponic systems. To determine the main location of cucumber CsNMAPK expression under excess NO_3~-, the expression pattern was examined in various plant organs, including roots, leaves and stems. Tissue specific expression showed that CsNMAPK expressed in all organs and little difference of the expression could be seen. When treated the salt tolerant cucumber cultivar (Xintaimici) and salt sensitive cucumber cultivar (Shennongchunwu) seedlings with 182 mM NO_3~- for different times, the two cultivars showed slight differences in expression kinetics. The CsNMAPK expression was a little up-regulated in Xintaimici within 30 min and then the expression decreased gradually, while Shennongchunwu maintained its expression until 1 h after down-regulation. The expression of CsNMAPK could also be induced by NaCl, ABA, H2O2, PEG and SA.
     4. The full-length CsNMAPK cDNA was subcloned into the expression vector pBI121 downstream of the 35S-CaMV promoter to form sense constructs. The constructs were first introduced into Agrobacterium tumefaciens LBA4404 by the freezing transformation method. The transgenic tobacco plants were verified by PCR, Northern blot and Western blot. It indicated that the CsNMAPK gene had been recombined into tobacco genome and transgenic tobacco plants were obtained. Transgenic seeds were germinated on MS media with 150 mM NO_3~- to score their tolerance to NO_3~- stress. The results showed that the transgenic seeds exhibited enhanced resistance to NO_3~- stress during seed germination. Experiments were also done during the seedling stage with 98 mM and 182 mM NO_3~-. The results indicated that there was little difference of the transgenic and wild type tobacco plants under normal enviroment. When treated with 98 mM and 182 mM NO_3~-, transgenic plants showed more resistance. To investigate the effect of CsNMAPK over-expression in tobacco on the physiological response to NO_3~- stress, a panel of physiological parameters, including malondialdehyde (MDA) contents, relative electrolyte leakage, H2O2 content, antioxidant enzyemes, net photosynthesis rate and free proline content were investigated. The resultes indicated that relative electrolyte leakage, MDA content and H2O2 content in the transgenic plants were lower than that in the wild type tobacco plants. Under NO_3~- stress treatments, the enzyme activities of SOD, CAT, POD and APX of transgenic tobacco were higer than the wild type tobacco. Free proline accumulation increased in both transgenic and wild type plants, but the increase was higher in the transgenic lines, demonstrating that they have higher osmotic adjustment ability.
     5. A recombinant of prokaryotic expression vector pET-CsNMAPK was constructed and transformed into E.coli BL21. The strong induced fusion protein bands were collected into PBS solution and used to immunize white mice to obtain antiserum. Western hybridization revealed the presence of the strong positive protein signals corresponding to CsNMAPK in sense transgenic plants of tobacco.
     6. CsNMAPK was also introduced into 6 different cucumber cultivars by overy injection pathway with the sense-expression vector and antisense-expression vector. The T1 plants were selected by resistance to 2500 mg/L kanamycin. 8 of kanamycin-resistant transgenic cucumbers were identified by PCR and Real-time PCR including 3 of antisense transgenic plants and 5 of sense transgenic plants.
引文
白吉刚.生长素结合蛋白基因的分离和转化研究(博士学位论文). 2002
    柏锡. t2PA基因对黄瓜的遗传转化及其在不同植物中的表达效率分析和密码子改造(硕士毕业论文) . 2003
    陈丽梅.黄瓜的高效再生和根癌农杆菌介导的遗传转化(硕士毕业论文) .2004
    陈峥,金红,程奕,杜胜利,魏爱民.提高黄瓜农杆菌遗传转化体系再生频率的研究.天津农业科学. 2001, 4(7): 47-49
    董伟.外源DNA注射黄瓜子房后代性状的变异.西南农业学报.1992, 5(1): 25-29
    郭世荣.无土栽培学.北京:中国农业出版社. 2004, 114
    郭亚华.采用花粉管通道技术将外源DNA导入黄瓜青椒研究初报.哈尔滨师范大学自然科学学报.1995, 11(2): 91-93
    侯爱菊.黄瓜抗真菌基因遗传转化体系的研究(硕士毕业论文) . 2001
    金红,杜胜利,陈峥,魏爱民.抗除草剂转基因黄瓜的获得及T1植株抗性鉴定.华北农学报. 2003, 18(1): 44-46
    李远新,王关林,葛晓光.黄瓜授粉后外源基因直接导入技术研究.华北农学报. 2000, 15(2): 89-94
    刘俊君,彭学贤,王海云等.转基因烟草的甘露醇合成和耐盐性.生物工程学报. 1996, 12(2): 206-210
    刘伟华,石锐.黄瓜Ri T-DNA转化根的植株再生.生物技术. 1998, 8(4): 23-25
    刘友良,汪良驹.植物对盐胁迫的反应和耐盐性.余叔文,汤章城主编:植物生理与分子生物学(第二版),科学出版社. 1998, 752-769
    刘玉冰,王进,谭会娟,赵听.红砂促分裂原活化蛋白激酶MAPK基因cDNA片段克隆及序列分析.兰州大学学报(自然科学版).2008, 44(5): 44-48
    孙兰英.几丁质酶基因对黄瓜遗传转化的研究(硕士毕业论文) . 2003
    童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报.1991, 18 (2): 159-162
    王慧中,赵培洁,周晓云.转WMV-2CP基因黄瓜植株的再生.植物生理学报. 2000, 26(3): 267-272
    薛继澄,毕德义,李家金等.保护地栽培蔬菜生理障碍的土壤因子与对策.土壤肥料. 1994, (1): 4-9
    张国广.农杆菌介导的Chi和Glu基因转化黄瓜的研究(硕士毕业论文).2004
    赵世杰,刘华山,董新纯等编.植物生理学实验指导.北京:中国农业科技出版社.1998, 54-56
    周志琦,刘强.真核生物的MAPK级联信号传递途径.生物化学与生物物理进展. 1998, 25(6)
    朱祝军,喻景权, Joska Gerendas等.氮素形态和光照强度对烟草生长和H2O2清除酶活性的影响.植物营养与肥料学报.1998, 4(4): 379-385
    Adams P., Thomas J.C., Vernon D.M., Bohnert H.J., Jensen R.G. Distinct cellular and prganismic responses to salt stress. Plant and Cell Physiol. 1992, 33:1215-1223
    Agrawal G.K., Agrawal S.K., Shibsto J., Rakwal R., Iwahashi H. Novel rice MAP kinase OsMSRMK3 and OsWJUMK1 involved in encounterling diverse environmental stresses and developmental regulation. Biochem. Biophys. Res. Commun. 2003, 300:775-783
    Agrawal G.K., Rakwal R., Iwahashi H. Isolation of noval rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues, Biochem.Biophys.Res. Commun. 2002a, 294: 1009-1016
    Ahlfors R., Macioszek V., Rudd J. et al. Stress hormone-dependent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J. 2004, 40:512-522
    Alia et al. Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J. 1998, 16: 155-161
    Allen R.D. et al. Use of transgenic plants to study antioxidant defenses. Free Radic. Bio. Med. 1997, 23: 473-479
    Amaya I., Botella M.A., de la Calle M., Medina M.I., Heredia A., Bressan R.A., Hasegawa P.M., Quesada M.A., ValpuestaV. Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Lett. 1999, 457:80-84
    Apse M.P., Aharon G.S., Snedden W.A. Salt tolerance conferres by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 1999, 285: 1256-1258
    Asai T., Tena G., Plotnikova J., Tena G., Matthew R.W., Chiu W.L. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 2002, 415: 977-983
    Blanco F.A., Zanetti M.E., CasalonguéC.A., Daleo G.R. Molecular characterization of apotato MAP kinase transcriptionally regulated by multiple environmental stresses. Plant Physiol. Biochem. 2006, 44: 315–322
    B?gre L., Calderini O., Binarova P., Mattauch M., Till S., Kiegerl S., Jona K.C., Pollaschek C., Barker P., Huskisson N.S., Hirt H. A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell 1999, 11: 101- 113
    B?gre L., Jonak C., Mink M., Meskiene I., Traas J., Ha D.CH., Swoboda I., Plank C., Wagner E., Heberle-Bors E., Hirt H. Developmental and cell cycle regulation of alfalfa nucMs1, a plant homolog of the yeast Nsr1 and mammalian nucleolin. Plant Cell 1996, 8: 417–428
    B?gre L., Ligterink W., Heberle-Bors E., et al. Mechano sensors in plants. Nature 1996, 383: 489-490
    B?gre L., Ligterink W., Meskiene I., Barker P.J., Heberle-Bors E., Huskisson N.S., Hirt H. Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell 1997, 9: 75-83
    Burnett E.C., Desikan R., Moser R.C., et al. ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. J. Exp.Bot. 2000, 51: 197-205
    Cakmak I., Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 1992, 98: 1222-1227
    Cardinale F., Meskiene I., Ouaked F., Hirt H. Convergence and Divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell 2002,14: 703-711
    Chee P.P., Slifhtom J.L. Transformation and expression of cucumber mosaic virus coat protein gene in the genome of Cucumis sativus.Hort. Sci.1991, 116: 1098-1102
    Chenk P.W., Snaar Jagalska B.E. Signal perception and transduction: the role of protein kinases. Biochim. Biophys. Acta.1999, 1449:1-24
    Cheong Y.H., Moon B.C., Kim J.K., Kim C.Y., Kim M.C., Kim I.H., Park C.Y., Kim J.C., Park B.O., Koo S.C., Yoon H.W., Chung W.S., Lim C.O., Lee S.Y., Cho. M.J. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol.2003,132: 1961–1972
    Chinta Sudhakar A., Lakshmi S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 2001, 161: 613-619
    Chitlaru E., Seger R., Pick U. Activation of a 74 kD aplasma membrane protein kinase by hyperosmotic shocks in the halotolerantalga Dunaliellasalina. J. Plant Physiol. 1997, 151: 429-436
    Choi K., Satterberg B., Lyons D.M. Stetethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 1994, 78(8): 499-512
    Chuang S.M.,Wang I.C., Yang J.L. Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmiun. Carcinogenesis 2000, 21:1423-1432
    Chuan-Ming Yeh, Liu-June, Hao-Jen Huang. Cadmium activates a mitogen-activated protein kinase gene and MBP kinase in rice. Plant Cell Physiol. 2004, 45(9):1306-1312
    Dai Y.,Wang H., Li B., Huang J., Liu X., Zhou Y., Mou Z., Li J. Increased expression of map kinase kinase causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell 2006, 18: 308 - 320
    Decroocq-Ferrant V., Decroocq S., VanWent J., Schmidt E., Kreis M. A homolog of the MAP/ERK family of protein kinase genes is expressed in vegetative and in female reproductive organs of Petunia hybrida. Plant Mol. Biol. 1995, 27: 339–350
    Ding W., Templeton D.M. Activation of parellel mitogen-activated protein kinase cascades and induction of c-fos by cadmium. Toxicol. App. Phaumacol. 2000, 162: 93-99
    Droillard M.J., Boudsocq M., Barbier-Bygoo H., Lauriére C. Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett. 2004, 574: 42–48
    Ekengren S.K., Liu Y., Schiff M., et al. Two MAPK cascades, NPR1and TGA transcription factors play a role in pto-mediated disease resistance in tomato. Plant J. 2003, 36:905-917
    Emerling B.M., Platanias L.C., Black E., Nebreda A.R., Davis R.J., Chandel N.S. Kinase is required for hypoxia signaling. Mol. Cell Biol. 2005, 25: 4853–4862
    Foyer C.H., Souriau N., Perret S., et al. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition inpopular stress. Plant Physiol. 1995, 109: 1047-1057
    Fu S.F., Chou W.C., Huang D.D. Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol. 2002, 43: 958-963
    G.Kenji O., Daisuke K., Shinpei K., Hiroshi N., Nobuyoshi S., Hikaru S., Takashi S., Michiko M., Yasunori M., Ichiro O., Yuko S. A mitogen-activated protein kianse NtMPK4 activated by SIPKK is reguired for jasmonic acid signaling and involment in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol.2005, 46: 1902-1914
    Gaxiola R., Li J., Undurraga S., Dang L.M., Allen G.J., Alper S.L., Fink G.R. Drought and salt-tolerant plants result from overexpression of the AVP1 H+ pump. Pro. Natl. Acad. Sci. USA 2001, 98: 11444-11449
    Handa S., Handa A.K., Hasegawa P.M., Bressan R.A. Proline accumulation and the adaptation of cultured plant cells to water stress. Plant Physiol. 1986, 80: 938-945
    Hao G.P., Wu Z.Y., Chen M.S. ATHK1 gene regulates signal transduction of osmotic stress in Arabidopsis thaliana. J. Plant physiol. Mol. Bio. 2004, 30(5): 553-560
    Harmon A.C., Gribskov M., Gubrium E., Harper J.F. The CDPK superfamily of protein kinase. New Phytol. 2001, 151: 175-183
    Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51: 463-499
    Haystead T.A., Dent P., Wu J. Ordered phosphorylation of p42mapk by MAP kinase kinase. FEBS Letters. 1992, 306: 17-22
    He C., Fong SH., Yang D., Wang G.L. BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol. Plant-Microbe Interact. 1999, 12: 1064–1073
    Holley S.R., Yalamanchili R.D., Moura D.S., Ryan C.A., Stratmann J.W. Convergence of signaling pathways induced by systemin, oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen-activated protein kinases in Lycopersicon peruvianum suspension-cultured cells. Plant Physiol. 2003, 132: 1728–1738
    Holmstrom K.O., Mantyla E., Welin B., Mandal A., Palva T.E., Tunnela O.E., Londesborough J. Drought tolerance in tobacco. Nature 1996, 379: 686-684
    Hong B., Barg R., Ho T.H. Developmental and organ-specific expression of an ABA- and stress-induced protein in barley. Plant Mol. Biol. 1992, 18:663-674
    Huttly A.K., Phillips A.L. Gibberellin-regulated expression in oat aleurone cells of two kinases that show homology to MAP kinase and a ribosomal protein kinase. Plant Mol. Biol. 1995, 27: 1043-1052
    Hwang I., Aheen J. Two-component circuity in Arabidopsis cytokinin signal transduction. Nature 2000, 413: 383-389
    Ichimura K., Mizoguchi T., Yoshida R., Yuasa T., Yamaguchi-Shinozaki K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases AtMPK4 and AtMPK6. Plant J. 2000, 24: 655–666
    Iryo Y., Matsuoka M., Wispriyono B. Involvement of the extracellular singal-regulated protin kinase (ERK) pathway in the induction of apoptosis by cadmium chloride in CCRF-CEM cells. Biochem. Pharmacol. 2000, 60:1875-1882
    Jaglo-Ottonsen K.R., et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 1998, 280: 104-106
    James R.A., Munns R., Von Caemmerer S., Trejo C., Miller C., Condon T.A. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat. Plant Cell & Environ.2006, 29: 2185-2197
    Jeong M.J., Lee S.K., Kim B.G., Kwon T.R., Cho W.S., Park Y.T., Lee J.O., Kowon H.B., Byun M.O., Park S.C. A rice (Oryza sativa L.) MAP kinase gene, OsMAPK44, is involved in response to abiotic stresses. Plant Cell Tiss. Org. 2006, 278: 192-196
    Jiang M., Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J. Exp. Bol. 2002, 53: 2401-2410
    Jonak C., Kiegerl S., Ligterink W. Stress signaling in plants: Mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA 1996, 93: 11274-11279
    Jonak C., Ligerink W., Hirt H. MAP kinase in plant signal transduction. Cell Mol. Life Sci.1999, 55: 204-213
    Jonak C., Lighter W., Hirt H. MAP kinase in plant signal transduction. Cell Mol. Life Sci. 1999, 55: 204–213
    Jonak C., Okresz L., Bogre L., Hirt H. Complexity, cross talk and integration of plant MAP kinase signalling. Current Opinion in Plant Biology 2002, 5: 415-424
    Kalir A., Poljakoff-Mayber A. Changes in activity of malate dehydrogenase, calase, peroxidase and superoxide dismutase in leaves of Halimione portulacides L. Allen exposed to high sodium chloride concentration. Ann. Bot. 1981, 47: 75-85
    Kamada H., Shinozaki K. Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cell. Plant J. 1994, 5: 111-122
    Kasuga M., et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 1999, 17:287-291
    Kiegerl S., Cardinale F., Siligan C., et al. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell 2000, 12: 2247-2258
    Kim J.A., Agarawal G.K., Rakwal R., Han K.S., Kim K.N., Yun C.H., Heu S.G., Park S.Y., Lee Y.H., Jwa N.S. Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsDER1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signaling pathways and development. Biochem. Biophys. Res. Commun. 2003, 300: 868–876
    Kim S., Kang J.Y., Cho D.L. et al. ABF2, an ABRE binding bzip factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J. 2004, 40: 75-87
    Kishor P.B., Hong Z., Miao G.H., Hu C.A., Verma D.P. Overexpression of D1-pyrroline-5-carboxylase synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 1995, 108: 1387-1394
    Knetsch M.L.W., Wang M., Snaar-Jagalska B.E., Heimovaara-Dijkstra S. Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell 1996, 8: 1061-1067
    Knight H. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 2000, 195: 269-325
    Kovtun Y., Chiu W.L., Tena G., et al. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. 2000, 97:2940-2945
    Kovtun Y., Chiu W.L., Zeng W., Sheen J. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 1998, 395: 716-720
    Kovtun Y., et al. Functional analysis of oxidative stress-activated protein kinase cascade in plants. PNAS 2000, 97: 2940-2945
    Krysan P.J., Jester P.J., Gottwald J.R., et al. An Arabidopisis mitogen-activted protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant cell 2002, 14:1109-1120
    Liang Z., Ma D., Tang L., Hong Y., Luo A., Zhou J., Dai X. Expression of the spinach betaine aldehyde dehydrogenase (BADH) gene in transgenic tobacco plants. Chin. J. Biotechnol. 1997, 13:153-159
    Liu J., Zhu J.K. A calcium sensor homolog required for plant salt tolerance. Science 1998, 280:1943-1945
    Liu Q., Kasuga M., Sakuma Y. et al. Two transcription factor DREB1 and DREB2, with an EREBP/AP2 DNA bindingdom separate two cellular signal transcription pathways in drought and low temperature responsive gene expression, respectively, in Arabidopsis Plant Cell 1998, 10: 1391-1406
    Liu Q., Zhang G.Y., Shinozaki K. The plant mitogen-activated protein (MAP) kinase. Acta Botanica Sinica 2000, 42: 661-667
    Liu Q., Zhao N.M., Yamaguchi-Shinozaki K. et al. The role of DREB transcription factor in improving plant anti-adversary. Science Bulletin 2000, 45 (1): 11-16
    Lu C., Han M.H., Guevara-Garcia A., Fedoroff N.V. Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc. Natl. Acad. Sci. 2002, 99: 15812-15817
    Lu C., Qiu N., Wang B., Zhang J. Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. J. Exp.Bot. 2003, 54: 851-860
    Lu C., Zhang J. Role of light in the response of PSII photochemistry to salt stress in the cyanobacterium Spirulina platensis. J. Exp. Bot. 2000, 51: 911-917
    Ludwig A.A., Saitoh H., Felix G. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc. Natl. Acad. Sci. 2005, 102: 10736-10741
    Marcus A.S. Godfrey P.M. Ozone treatment rapidly activates MAP kinase signaling in plants 2000, 22(4):367-376
    Martin M., Busconi L. Membrane localizationof a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J. 2000, 24: 429-435
    Mikolajzyk M., Awotunde O.S., Muszynska G., et al. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of proten kinase ASK1 in tobacco cells. Plant Cell 2000, 12:165-178
    Mizoguchi T., Gotoh Y., Nishida E., Yamaguchi-Shinozaki K., Hayashida N., Iwasaki T., Mizoguchi T., Ichimura K., Irie K., Morris P., Giraudat J., Matsumoto K., Shinozaki K. Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pair wise yeast two- hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett. 1998, 437: 56 - 60
    Mizoguchi T., Ichimura K., Shinozaki K. Environmental stress response in plants: the role of mitogen-activated protein kinases.Tren. Biotech.1997, 15: 15-19
    Mizoguchi T., Irie K., Hirayama T., Hayashida N., Yamaguchi-Shinozaki K., Matsumota K., Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase isinduced simultaneously with genes for a mitogen-activatedprotein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 1996, 93: 765 - 769
    Moisander P.H., McClinton E., Paerl H.W. Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microbial Ecology 2002, 43: 432-442
    Mori I.C., Muto S. Abscisic acid activates a 48-kilodalton protein kinase in guard cell protoplasts. Plant Physiol. 1997, 113: 833-839
    Munnik T., Meijer H. Osmotic stress activates distinct lipid and MAPK signaling pathways inplants. FEBS Lett. 2001, 498:172 -178
    Nanjo T., Kobayashi M., Yoshiba Y., Kakubari Y., Yamaguchi-Shinozaki K., Shinozaki K. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 1999, 461:205-210
    Neumann P.M. Rapid and reversible modification of extension capacity of cell walls in elongating maize leaf tissues responding to root addition and removal of NaCl. Plant Cell Environ. 1993, 16:1107-1114
    Nishihama R., Soyano T., Ishikawa M., Araki S., Tanaka H., Asada T., Irie K., Ito M., Terada M., Banno H., Yamazaki Y., Machida Y. Expansion of the cell plate in plant cytokinesis requires a kinesin like protein/ MAPKKK complex. Cell 2002, 109: 87 - 99
    Nomura M., Hibino T., Takabe T., et al. Transgenically produced glycincbetaine protects ribulose1, 5-bisphosphate carboxylase/oxygenase from inactivation in synecchococcus sp. PCC 7942 under salt stress. Plant Cell Physiol. 1998, 9(4):206-210
    Pandey G.K., Reddy V.S., Reddy M.K., Deswal R., Bhattacharya A., Sopory S.K. Transgenic tobacco expressing Entamoeba histolytica calcium binding protein enhanced growth and tolerance to slat stress. Plant Sci. 2002, 162: 41-47
    Patharkar O.R., Cushman J.C. A stress-induced calcium-dependent protein kinase from Mesembryanthermum crystallium phosphorylates a two-component psuedo-response regulator. Plant J. 2000, 24: 679-691
    Peter C., Morris L. MAP kinase signal transduction pathways in plants. New Phytol. 2001, 151: 67-89
    Pozo O., Pedley K.F., Martin G.B. MAPKKKαis a positive regulator of cell death associated with both plant immunity and disease. EMBO J. 2004, 23:3072-3082
    Romeis T., Piedras P., Zhang S., et al. Rapid Avr-9 and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound and salicylate responses. Plant Cell 1999, 11: 273-287
    Roxas V.P., Smith RHJR, Allen E.R., Allen R.D. Overexpression of glutathione S-transferase/Glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Bietechnol. 1997, 15: 988-991
    Sakamoto A., et al. Genetic engineering of biosynthesis of glysinebetaine enhances toleranceto various stresses. In Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering (Vol.83)(Cherry JH et al.eds.). 2000, pp.95-104. Kluwer Academic Publishers
    Samuel M.A., Ellis B.E. Double jeopardy: both over expression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell 2002, 14: 2059–2069
    Sarmento G.G., Alpert F.A., Tang et al. Factors influencing Agrobacterium tumefaciens mediated transformation and expression of kanamycin resistance in pickling cucumber. Plant Cell Tissue and Organ Culture 1992, 31:185-193
    Satoh R., Nakashima K., Seki M., Shinozaki K., Yamaguchi Shinozaki K. ACTCAT, a novel cis-acting element for praline and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiol. 2002, 130: 709-719
    Seo S., Okamoto M., Seto H., et al. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways.Science1995, 270:1988-1992
    Seo S., Sano H., Ohashi Y. Jasmonate- based wound signal transduction requires activation of WIPK, a mitogen-activated protein kinase. Plant Cell 1999, 11: 289 - 298
    Seo S., Sano H., Ohashi Y., Jasmonic acid in wound signal transduction pathways. Physical Plant 1997, 101:740-745
    Sharma Y.K., Davis K.R.The effects of ozone on antioxidant response in plants. Free Radic.Biol. Med.1997, 23: 480-488
    Sharrocks A.D., Yang S.H., Galanis A. Docking domains and substrate-specificity determination for MAP kinases. Trends in Biochem. Sci. 2000, 25: 448-453
    Sheen J. Mutational analysis o protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc. Natl. Acad. Sci. USA 1998, 95: 975-980
    Shen B., Jensen R.G., Bohnert H.J. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 1997, 113: 1177-1183
    Shi H.Z., Ishitani M., Kim C., Zhu J.K. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ Antiporter. PNAS 2000, 97: 6896-6901
    Shinozaki K., Yamaguchi-shinozaki K. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 2007, 58(2): 221-227
    Shoresh M., Gal-On A., Leibman D., Chet I. Characterization of a mitogen–activated proteinkinase gene from cucumber required for Trichoderman-conferred plant resistance. Plant Physiol. 2006, 142: 1169-1179
    Slightom J. L., et al. Current Plant Science and Biotechnology in Agriculture 1991, 9: 201-206
    Soderman E.M., Brocard I.M., Lynch T.J., Finkelstein R.R. Regulation and function of the Arabidopsis ABA-insensitive gene in seed and abscisic acid response signaling networks. Plant Physiol. 2000, 124: 1752–1765
    Soyano T., Nishihama R., Morikiyo K., Ishikawa M., Machida Y. NQK1/ NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK mediated MAPK cascade and is required for plant cytokinesis.Genes Dev. 2003, 17:1055-1067
    Stefan K., Francesca C., Christine S., et al. The Plant Cell 2000, 12: 2247-2258
    Steponkus P.L., Leipham A., Fleck R.A., Langis R., Kasuga M., Yamaguchi-Shinozaki K., Shinozaki K. Overexpression of DREB1A results in a prodigiouis increase in the freezing tolerance of Arabidopsis thaliana. Plant Biology 2000, San Diego, CA, USA
    Stone J.M., Walker J.C. Plant protein kinase families and signal transduction. Plant Physiol., 1995, 108: 451-457
    Su J., Targolli J., Wu R. How to obtain optima lgene expression in transgenic plants.中国第七次基因学术会议,1999.
    Sugiura R., Toda T., Dhut S. The MAPK kinase pek1 acts as a phosphorylation-dependent molecular switch. Nature 1999, 399: 479-483
    Sumbayev V.V., Yasinska I.M. Regulation of MAP kinase dependent apoptotic pathway: implication of reactive oxygen and nitrogen species. Arch. Biochem. Biophys. 2005, 436: 406–412
    Tahtiharju S., Palva T. Antisense inhibition of protein phophatase 2C accelerates cold acclimtion in Arabidopsis thaliana. Plant J. 2001, 26: 461-470
    Tan Y., Liang Z., Shao H., Du F. Effect of water deficits on the activity of anti-oxidative enzymes and osmoregulation among three different genotypes of Radix Astragali at seeding stage. Colloids and Surfaces 2006, 49: 60-65
    Tanaka Y., Hibino T., Hayashi Y., Tanaka A., Kishitani S., Takabe T., Yokota S., Takabe T. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci. 1999, 148: 131-138
    Taylor A.T., Kim J., Low P.S. Involvement of mitogen-activated protein kinase activation in the signal-transduction pathways of the soy bean oxidative burst. Biochem. J. 2001, 355: 795–803
    Tester M., Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 2003, 91: 503-527
    Thapar R., Srivastava A.K., Bhargava P., Mishra Y., Rai L.C., Impact of different abiotic stresses on growth, photosynthetic electron transport chain, nutrient uptake and enzyme activities of Cu-acclimated Anabaena doliolum. J. Plant Physiol. 2008, 165: 306-316
    Trulson A.J., Simpson R.B., Shahin E.A. Transformation of cucumber (Cucumtis Sativus L.) plants with Agrobacterium rhizogenes. Theor. Appl. Ggenet. 1986, 73: 11-15
    Tsugane K., Kobayashi K., Niwa Y., Ohba Y., Wada K., Kobayashi H. A recessive Arabidopsis mutant that grows photo autotrophiclly under salt stress shows enhanced active oxygen detoxification. Plant Cell 1999, 11: 1195-1206
    Usami S., Banno H., Ito Y., Nishihama R., Machida Y. Cutting activates a 46-kilodalton protein kinase in plants. Proc. Natl. Acad. Sci. USA 1995, 92: 8660- 8664
    Vasudevan A., Ganapathi A., Selvaraj N., Vengadesan G. Factors influencing GUS expression in cucumber (Cucumis sativus L.).Indian Journal of Biotechnology 2002, 1:344-349
    Vendruscolo E.C., Schuster I., Pileggi M., Scapim C.A., Molinari H.B., Marur C.J., Vieira L.G. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J. plant physiol. 2007, 164: 1367-1376
    Wahid A., Perveen M., Gelani S., Basra S.M. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J. Plant Physiol. 2007, 164: 283-294
    Wahid A., Shabbir A. Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regul. 2005, 46: 133-141
    Wang H., et al. ICK1, a cyclin-dependent protein kinase inhibitor form Arabidopsis thaliana interacts with both Cdca and CycD3, and its expression is induced by abscisic acid. Plant J. 1998, 15: 501-510
    Werner J.E., Finkelstein R.R. Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiol. Plant. 1995, 93: 659-666
    Whitmarsh A.J., Davis R.J. Structural organisation of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends in Biochem.Sci. 1998, 23: 481-485
    Wilson C., Anglmayer R., Vicente O., Heberle-Bors E. Molecular cloning, functional expression in Escherichia coli, and characterization of multiple mitogen-activated protein kinases from tobacco. Eur. J. Biochem. 1995, 233: 249-257
    Wise R.R., Naylor A.W., Chilling-enhanced photooxidation: the peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol. 1987b, 83: 272-277
    Wurgler-Murphy S.M., Saito H. Two-component signal transducers and MAPK cascades. Biochem. Sci. 1997, 22: 172-176
    Xie X., Gu Y., Fox T., et al. Crystal structure of JNK3: a kinase implicated in neuronal apoptosis. Structure 1998, 6:983-991
    Xiong L., Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen activated protein kinase. Plant Cell 2003, 15: 745–759
    Xiong L.M., Zhu J.K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 2002, 25: 131-139
    Xiong L.Z., Yang Y.N. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 2003, 15:745-759
    Xu D., et al. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol.1996, 110:249-257
    Yang K.Y., Liu Y., Zhang S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci.USA 2001, 98: 741-746
    Yeh C.M., Hung W.C., Huang H.J. Copper treatment activates mitogen-activated protein kinase signaling in rice. Physiol. Plant. 2003, 119:392-399
    Yu Sh.W., Zhang L.D., Zuo K.J., Tang D.Q., Tang K.X. Isolation and characterization of an oilseed rape MAP kinase BnMPK3 involved in diverse environmental stresses. Plant Sci. 2005, 169: 413–421
    Yuasa T., Ichimura K., Mizoguchi T., Shinozaki K. Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol. 2001, 42: 1012–1016
    Zhang S., Klessig D.F. MAPK cascades in plant defense signaling. Trends Plant Sci. 2001, 6: 520-527
    Zhang S., Klessig D.F. Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc. Natl. Acad. Sci. USA.1998, 95:7433-7438
    Zhang S., Klessig D.F. Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 1997, 9: 809-824
    Zhang S., Klessig D.F. Salicylic acid activatives a 48-kD MAP kinase in tobacco. Plant Cell 1997, 9: 809-824
    Zhang S., Liu Y., Klessig D.F. Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. Plant J. 2000, 23:339-347
    Zhang S.Q., Klessig D.F. MAPK cascades in plant defence signaling.Trends in Plant Sci.2001, 6: 520-527
    Zhu J.K. et al. Molecular aspects of osmotic stress in plants. Crit. Rev. Plant Sci.1997, 16:253-277
    Zhu J.K. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 2000, 124: 941-948
    Zhu J.K. Plant salt tolerance. Trends Plant Sci. 2001, 6:66-71
    Zhu J.K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003, 6: 441- 445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700