整体针翅管滑油冷却器强化换热及数值计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在核电站中,轴承是不可或缺的重要部件,有效地延长轴承的使用寿命是确保核电设备持续、安全、稳定运行的基础。对轴承的润滑,一般采用滑油将轴承产生的热量带出,通过冷却器得到合适的滑油温度后,重新进入轴承。因此,滑油冷却器对保障核电站的安全,起到重要作用,研究滑油冷却器的换热机理与强化特性,对提高整个核电系统的国产化率、提高核电设备可靠性,实现设备的小型化都具有重要意义。
     在工程中,滑油冷却器换热管大多数采用光管,存在传热效率不高、体积大、结构复杂的不足。本文在参考大量国内外资料基础上,选用了换热效果好的整体针翅管和光管组合在一起作为换热元件,充分利用针翅和光管管间可以自支撑的特点,设计为混合管束,结合工程实际情况,将壳侧滑油流动设计为双流程,管侧冷却水设计为单流程。同时为了解滑油冷却器壳侧滑油的真实流动情况,在滑油冷却器两侧采用透明有机玻璃板,进行可视化实验研究。为弥补实验的不足,对滑油冷却器进行数值计算模拟研究。本文的主要研究工作和结果如下:
     1.本文以68#汽轮机润滑油为工质,对设计的新型滑油冷却器进行了大量实验研究。通过实验发现:在润滑油进口温度55℃,冷却水进口温度24℃;油流量20.7m3/h,冷却水流量20m3/h的设计工况下,其总传热系数达到420W/(m2·K),单位体积换热量达到1190kW/m3。经过分析研究发现,滑油流速是影响滑油冷却器换热特性和阻力特性的主要因素;冷却水温度和流速对滑油冷却器的换热性能也有一定的影响,但对阻力特性影响不大;滑油冷却器的放置方式对其传热特性影响很小;通过对实验数据分析与回归,得出实验关联式,可供工程设计人员使用。
     2.在此基础上,将新型滑油冷却器与双流程圆形滑油冷却器和单流程方形滑油冷却器实验结果加以对比。结果表明:新设计的滑油冷却器,在总传热系数和单位体积换热量都较高,换热性能优越,达到了强化传热和设备小型化的目的。在相同壳侧雷诺数下,新型双流程方形滑油冷却器与双流程圆形滑油冷却器相比,在设计工况下,前者的总传热系数是后者的1.1~1.3倍,单位体积换热量是后者的1.2-1.4倍,方形比圆形布管更能使滑油冷却器进一步小型化;通过对相同横截面积的双流程滑和单流程油冷却器的对比发现:双流程总传热系数和单位体积换热量分别是单流程滑油冷却器的0.73~0.88倍和0.80~0.91倍,而阻力有较大增加,单流程效率高。
     3.通过对新型滑油冷却器的两侧采用透明有机玻璃板,对实验进行可视化研究,观察到润滑油不同流量时,壳侧滑油的流动情况。发现滑油并不是纯粹的单相流,同时夹杂微小气泡,在一定范围流量下,第二流程小气泡会聚和形成气弹,而第一流程任意流量时都不会出现。在此基础上分析了气泡对换热的影响机理,得到滑油在不同流量时的宝贵视频资料和照片,以供下一步分析研究。
     4.由于滑油冷却器实验压力较小,一般不超过1MPa,而工程设计要求在4.5MPa,设计的滑油冷却器能否满足工程应用要求尚需要解答。本文对新设计的方形封头和壳体进行应力设计计算,并利用ANSYS软件进行应力数值模拟计算,很好的解决实验设备能否应用工程实际的问题,弥补了实验的不足,并为新研制滑油冷却器的优化选型提供依据。
     5.采用FLUENT软件,对整体针翅管滑油冷却器进行数值计算模拟研究。利用多孔介质模型对壳侧滑油的速度场、温度场和压力场进行了数值模拟,得到这些滑油参数在壳侧内部的分布情况。结果表明,针翅的存在激发了流体的边界层分离和湍动,从而强化了传热,但是流体在滑油冷却器在横截面上流动不均匀,导致温度分布不均匀,数值计算结果和实验值吻合良好。
In the nuclear power plant, the bearing is an indispensable component, so effectively extending the service life of bearings is the foundation to ensure sustained, safe and stable operation for nuclear power facilities. For the lubrication of bearing, generally, we use lubrication oil to bring out the heat generated by bearing and re-enter into bearing after acquiring the right temperature with cooler. Therefore, the oil cooler is important to keep safety of nuclear power plant. Furthermore, researching the heat transfer mechanism and enhancement characteristics of oil cooler is very important to increase the localization rate of nuclear system, reliability of facilities and to achieve equipment miniaturization.
     In the project, plain tubes commonly are used as heat exchanger components in the oil cooler, which have disadvantages of low heat transfer efficiency, bulky and complicated structure. On the basis of a large number of domestic and international references, in this paper, entire pin-fin tube and fluorescent tubes were chose as heat exchanger, and designed mixed bundle using their self-supporting characteristic, moreover, design shell-side oil flow to dual process and tube side of the cooling water to single side according to the actual project. Meanwhile, visible study was conducted by using the transparent plexiglass plate both sides in the oil cooler in order to obersive the real flowing situation of shell-side lubrication oil. To compensate for the lack of experiment, the numerical simulation calculations was also conducted. The main work and results of this paper are given as follows:
     1. In this paper, to test new oil cooler, lots of experiments were conducted and68#turbine oil was used as working fluid. The result showed that heat transfer coefficient was420W/(m2-K))and heat per unit volume was1190kW/m3when the oil inlet temperature is55℃, cooling water inlet temperature is24℃, oil flow is20.7m3/h and cooling water flow is20m3/h. After the research, the speed of oil flow, as the key factor, was found to affect heat transfer and resistance characteristics of oil cooler. The temperature and flow of cooling water also can affect heat transfer to a certain extent and have little effect on the resistance characteristics. To oil cooler, the way of placement has little effect on heat transfer characteristics. By analysis and regressing experiment data, the experimental correlation formula was obtained, that can be used for project engineers.
     2. On this base, the experiment data of dual-process round oil cooler and that of single square oil cooler were compared. And the results showed that heat transfer coefficient and heat per unit volume of new oil cooler are higher, and it also can achieve the goal of enhancing heat transfer and miniaturizing equipment. Under the same shell-side Re, compared dual-process square oil cooler to round one, the former one had1.1~1.3times overall coefficient of heat transfer,1.2-1.4times heat per unit volume and it also had0.73~0.88times overall heat transfer coefficient as well as0.80-0.91times heat per unit volume than single square oil cooler.
     3. In the visible study, flowing situation of shell-side lubrication oil was observed with different flow. Some situations were found that oil was not pure single phase flow in the first flowing, mixed some small bubbles, in a certain range, in the second flow small bubbles could converge and become gas bombs, however, this situation cannot emerge within any first flow. And on the base of it, the mechanism of bubble influencing on heat transfer was analyzed and the precious video and photos were gained with different flow can be for furthermore study.
     4. Because of low experimental pressure of oil cooler (<1Mpa) rather than engineering designing request (4.5Mpa), the oil cooler whether can meet the engineering requirements or not still need to be answered. In order to make sure the experiment whether can be used in practical situation or not, to compensate for the lack of experiment, and to provide a basis for designing the new oil cooler, calculation of the stress of new square head and shell and a stress numerical simulation with ansys software were conducted.
     5. FLUENT software was used to study on simulation of overall pin-fin tube oil cooler data. Using porous media model to study on velocity, temperature and pressure contour of shell-side oil can help acquire the inner distribution of them. The result showed that pin-fin stimulated separation and turbulence of fluid boundary layer and enhanced heat transfer; however fluid was non-uniform flowing in the cross-section of the oil cooler and leaded to non-uniform temperature distribution. But the numerical results and experiment data were in good agreement.
引文
[1]牛立.核能发电与我国核电事业之路.电站辅机.2006,27(1):25-27
    [2]王炳华.在确保安全的基础上高效发展核电.求是,2011,6:28-30
    [3]朱继洲.压水堆核电厂的运行.哈尔滨:哈尔滨工程大学,2006:152
    [4]梁俊军.汽轮机组冷油器设计安装改造.汽轮机技术,199537(4):252
    [5]刁立新.汽轮机低压缸轴承温度高的分析与治理.电力安全技术,2003,5(3):11-12
    [6]牛广林,阎昌琪,孙中宁,石帅,王镭.整体针翅管混合管束滑油冷却器强化换热实验研究.核科学与工程.2010,30(2):55-159
    [7]R.K. Dadah, T.G. Karayiannais. Passive enhancement of condensation heat transfer [J]. Applied Thermal Engineering.1998,18(9-10):895-909
    [8]A.M. Jacobi, R.K. Shah. Heat transfer surface enhancement through the use of longitudinal vortices. A Review of Recent porgerss [J].1995,11 (3):295-309
    [9]贺士晶.单相对流强化换热的实验研究.哈尔滨工程大学硕士论文,2008:1-13
    [10]过增元,黄素逸.场协同原理与强化传热新技术.北京:中国电力出版社,2004:1-3
    [11]K.B Lee, Y.K. Kwon. Flow and thermal field with relevance to heat transfer enhancement interrnnted-plate heat exchangers. Epnerimental heat transfer.1992,5: 83-100
    [12]F.V. Tinaut, A. Melgar, Rahman Ali A.A. Correlations heat transfer and flow friction characteristics of compact plate-type heat exchamgers. Int. J. Heat mass transfer.1997, 1659-1665
    [13]钱颂文,江楠,马小明,方江敏.换热器管束流体力学与传热.北京:中国石化出版社,2002:33-36
    [14]S.V. Manson. Correlations of heat transfer data and of friction data for interrupt plain fins staggered in successive rows. NACA Tech, Note2237, Washington,1950
    [15]林宗虎,汪军,李瑞阳,崔国民.强化换热技术.北京:化学工业出版社,2006,9:2-12
    [16]A.R. Wieting. Empirical Correlations for Heat Transfer and Flow Friction Characteristics of Rectangular Offset-Fin Plate-Fin Heat Exchangers. Journal of Heat transfer,1975,97:488-490
    [17]Ch. Ranganayakulu, K.N. Seetharamu, K.V Sreevatsan. The effects of inlet fluid flow nonuniformit on thermal performance and pressure drops in crossflow plate-fm compact heat exchanger. International Journal of Heat and Mass Transfer,1997,40(1):27-38
    [18]古新.管壳式换热器数值模拟与斜向流换热器研究,郑州大学博士论文,2006:3-10
    [19]钱颂文,岑汉钊,江楠等.换热器管束流体力学与传热.北京:中国石化出版社,2002
    [20]J.J. Murray, A. Guha. Overview of the development of heat exchangers for use in air-breathing propulsion pre-coolers [J]. Acta Astronautica,1997,41(11):723-729
    [21]A.E. Bergles. Handbook of heat transfer applications. New York:McGraw-Hill,1985, 13
    [22]A.E. Bergles. Heat transfer enhancement the encouragement and accommodation of high heat fluxes. ASME Journal of Heat Transfer,1997,119:8-19
    [23]R.L.Webb, E.R.G. Ecket, R.J. Goldstein. Heat Transfer and Friction in Tubes with Repeated-rib Roughness. International Journal of Heat and Mass Transfer,1971,14: 601-618
    [24]S. Ganeshan, R.M. Raja. Studies on thermo hydraulics of Single and Multistart Spirally Corrugated Tubes for Water and Time-Independent Power Law Fluids. International Journal of Heat and Mass Transfer,1982,25:1013-1022
    [25]T.S. Ravigururajan, A.E. Bergles. Development and Verification of General Correlation for Pressure Drop and Heat Transfer in Single-phase Turbulent Flow in Enhanced Tubes. Experimental Thermal and Fluid Science,1996,13:55-70
    [26]Q. Wong. Characteristic research of the new type energy saving tubular heat exchanger with longitudinal flow of shell side fluid. Proceedings of ICEE [M]. Beggell House Press,1996(5):48-454
    [27]P. Bandelier. Improvement of multifunctional heat exchangers applied in industrial processes [J]. Applied Thermal Engineering,1997,17(8-10):777-788
    [28]H. Lia, V. Kottkeb. Analysis of local shellside heat and mass transfer in the shell-and-tube heat exchanger with disc-and-doughnut baffles [J]. International Journals of Heat and Mass Transfer,1999,42:3509-3521
    [29]彭炳初,庄礼贤,陈广怀.空气压缩机后冷却器传热强化试验研究.化学工程,1996,24(1):13-16
    [30]侯志峰.B30横纹槽管的传热与阻力实验研究.哈尔滨:哈尔滨工程大学硕士论文,2003
    [31]曾敏,王秋旺,屈治国等.波纹管内强制对流换热与阻力特性的实验研究.西安交通大学学报,2002,36(2):237-240
    [32]G. Russ, H. Beer. Heat transfer and flow field in a pipe with sinusoidal wavy surface- Numerical investigation. International Journal of Heat and Mass Transfer,1997(40): 1061-1070
    [33]J.A. Stasiek. Experimental studies of heat transfer and fluid flow across corrugated-undulated heat exchanger surfaces [J]. International Journal of Heat and Mass Transfer,1998,41(6-7):899-914
    [34]T.J. Rabas, R.L. Webb, N.K. Thors Pand Kim. Influence of three-dimensional helically dimpled tubes. Journal of Enhanced Heat Transfer,1993(1):53-64
    [35]Q. Liao, X. Zhu and M.D. Xin. Augmentation of turbulent convection heat transfer in tube with three-dimensional internal extended surfaces. Journal of Enhanced Heat Transfer,2000,7:139-151
    [36]肖金花,钱才富,黄志新.波纹管传热强化效果与机理研究.化学工程,2007(35):12-15
    [37]杨丽明,钱颂文.针翅管的强化传热试验研究.流体机械,2000,30(9):10-12
    [38]钱颂文,马小明等.三维整体翅强化传热管的传热和压降性能研究与比较.化工学报,2002,53(7):700-704
    [39]吴如胜,杨丽明等.整体针翅管针翅温度场的数值分析与试验研究.化工设备与防腐蚀,2001,12(6):17-21
    [40]丁铭.滑油冷却器单管传热和流动特性实验研究[D].哈尔滨:哈尔滨工程大学,2003.
    [41]朱登亮.高效传热低流阻换热器的开发研究,郑州大学硕士论文.2007:5-15
    [42]吴金星,刘敏珊,董其伍,魏新利.换热器管束支撑结构对壳程性能的影响,化工机械,23(3):156-158
    [43]王佳林.滑油冷却器强化换热技术实验研究.哈尔滨:哈尔滨工程大学硕士学位论文,2005:15-18
    [44]谭怡,阎昌琪.滑油冷却器强化换热实验研究.应用科技,2005,32(6):56-58
    [45]南金秋.滑油冷却器强化传热实验研究及其优化设计.哈尔滨工程大学硕士论文.2007:5-7
    [46]南金秋,阎昌琪.滑油冷却器小型化研究.应用科技,2008,35(2):106-109
    [47]王镭.滑油冷却器强化传热实验研究.哈尔滨工程大学硕士论文.2008:15-19
    [48]石帅.滑油冷却器强化传热及小型化技术研究.哈尔滨工程大学硕士学位论文,2010:4-7
    [49]D. Kral, P. Stehlik, B.I.Master. Helical Baffle in Shell and Tube Heat Exchangers. Part I Experimental Verification Heat Transfer Engineering 1996,17(1):93-100
    [50]C C Centry. ROD baffles heat exchanger technology [J]. Chemical Engineering Progress,1990,86(7):48-57
    [51]Qiwu dong et.al. Characteristic research of the new type energy saving tubular heat exchanger with longitudinal-flow of shellside fluid. Proceedings of ICEE [R]. Beggell House Press,1996, (5):448
    [52]吴金星,刘敏珊,董其伍,魏新利.换热器管束支撑结构对壳程性能的影响,化工机械.2003,35(4):22-26
    [53]胡明辅等.折流栅抗振型换热嚣结构及其抗振特性研究.压力容器,1999,16(2):32-34
    [54]Deng Xianhe, et.al. Investigation of heat transfer enhancement of rougbened tube bundles supported by ring of rod supports [J]. Heat Transfer Engineering,1998,19(2): 21-27
    [55]张延静.针翅管套管换热器数值模拟与结构优化.广州:华南理工大学,1996
    [56]S.V Patankar, D.B. Spalding. Heat exchanger design theory source book [M]. New York:Mc Graw-hill Book Company,1974:155-176
    [57]王永庆.纵流壳程换热器不同支承结构壳程特性研究与分析.郑州:郑州大学,2005
    [58]王定标,董其伍,刘敏珊等.纵流壳程换热器流动和传热的三维数值模拟.郑州工业大学学报.1999,20(2):18-20
    [59]吴金星,王定标,刘宏等.管壳式换热器壳侧流动和传热的数值模拟进展.流体机械.2002,30(5):28-32
    [60]黄兴华,王启杰,陆震.管壳式换热器壳程流动和传热的三维数值模拟.化工学报.2000,51(3):297-302
    [61]邓斌.换热器壳程流动和换热的数值模拟及实验研究.西安:西安交通大学,2003
    [62]王艳云,李志安,刘红禹等.Fluent软件对管壳式换热器壳程流体数值方法模拟可行性的验证.管道技术与设备.2007,6:46-48
    [63]胡岩,孙中宁.折流板结构对管壳式换热器壳程流动与传热的影响.应用科技,2007,30(9):14-18
    [64]谢洪虎.纵向多螺旋流换热器传热与阻力特性模拟研究.广州:华南理工大学,2009
    [65]张亚平.针翅式换热器的结构优化与传热性能研究,西安科技大学硕士论文.2004:4-25
    [66]高绪栋.管壳式换热器的数值模拟及优化设计,山东大学硕士论文.2009:5-10
    [67]钱颂文,杨丽明,吴汝胜.针翅管针翅温度场的数值分析与试验研究[J].化工装备技术,2001,22(6):15-18
    [68]方江敏,马小明,钱颂文.斜针翅强化混合管束换热器的优化设计.化工设备与管道.2002,39(3):26-29
    [69]G. Mckae, A. Westerbery. Combined analysis and optimization of extended heat transfer surfaces [J]. Heat Transfer V107,1985:537-532
    [70]Optimum shapes of convective pin fin with variable heat transfer coefficient.Journal of the Franklin institute V327,1990:965-982
    [71]Xiang xiang Yang and Rongzou weng. Two-Dimension-Sional Heat Transfer in a Fin as observed by finite element analysis.Journal of the Huaqiao University in China, Vol.8, NO.4,1987:708-714
    [72]李华.针翅管纵向流油品传热和压降性能与针翅结构优化研究.广州:华南理工大学,1996
    [73]张亚平.针翅式换热器的结构优化与传热性能研究,西安科技大学硕士论文.2004:4-6
    [74]L.W. Zhang, S. Balachandar, D.K. Tafti. Heat transfer enhancement mechanisms in inline and staggered parallel-plate fin heat exchangers [J]. International Journal of Heat and Mass Transfer,1997,40(10):2307-2325.
    [75]F. Chang, V.K. Dhir. Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection [J]. International Journal of Heat and Fluid Flow, 1995,16(2):78-87.
    [76]Y.S. Seo, S.P. Yu, S. J. Cho. The catalytic heat exchanger using catalytic fin tubes [J]. Chemical Engineering Science,2003,18(2):43-53.
    [77]E.S. Gaddis, V. Gnielinski. Pressure drop on the shellside of shell-and-tube heat exchangers with segmental baffles [J]. Chemical Engineering and Processing,1997,36: 149-159.
    [78]P. Dutta, S. Dutta. Effect of baffle size, Perfoartion, and orientation on internal heat transfer enhancement [J]. International Joural of Heat and Mass Transfer,1998,41(4): 3005-3013.
    [79]H. Li, V. Kottke. Local heat transfer in the first battle compartment of the Shell-and-tube heat exchanger for staggered tube arrangement [J]. Experimental Thermal and Fluid Science,1998,16(4):342-348.
    [80]C.C. Gentry. Rod baffles heat exchanger. Chemical Engineering Progress.1990,86(7): 48-57
    [81]李静.新型异径布管夹持结构换热器的研究与开发.郑州大学博士学位论文,2006:28-32
    [82]李静.纵流式换热器的结构研究进展.化工进展,2002,5(21):306-309
    [83]郑津洋,徐平,方晓斌译ASEE压力容器设计指南.化工工业出版社,2001:41-46
    [84]龙曙光,谢桂兰,黄云清,ANSYS参数化编程与命令手册.机械工业出版社,2010:183-202
    [85](美国)法尔ASME压力容器设计指南.化工出版社.2003:204-212
    [86]吴粤盛.压力容器安全技术手册.机械工业出版社,1999:127-130
    [87]陈钟顺.传热学专题讲座.北京:高等教育出版社.1989:121-123
    [88]李铁苍.热工仪表与自动装置.北京:中国电力出版社,2000:27-57
    [89]高胜利.不同边界条件下管外对流换热性能的实验研究.重庆大学硕士论文.2006:13-15
    [90]三0四所.热电偶.北京:国防工业出版社,1978:151-153,236-238.
    [91]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,2002:130-131
    [92]J.G. Collier, J.R. Thome. Convective Boiling and Condensation,3rd Claredon Press, Oxford,1994
    [93]D, Chisholm. L.A. Sutherland. Prediction of Pressure Gradients in Pipeline Systems during Two-Phase Flow. Sym. on Fluid Machannics and Measurements in Two-Phase Flow Systems. University of Leeds. Sept.1969
    [94]李勇.非能动余热排出换热器换热特性研究.哈尔滨:哈尔滨工程大学博士学位论文,2011:35-43
    [95]俞惠敏,蔡业彬.几种换热管强化传热性能实验分析与比较.流体机械,2003,31(6):7-10.
    [96]丁铭,阎昌琪,缪红建等.整体针翅管强化传热实验研究.核动力工程,2005,26(5):452-455
    [97]阎昌琪,侯山高,曹夏听.滑油冷却器强化换热实验研究.核动力工程,2008,29(2):16-19
    [98]A. E. Bergles. EXHFT for Fourth Generation Heat Transfer Technology [J]. Experimental Thermal and Fluid Science,2002,26:2-4
    [99]牛广林,阎昌琪,孙中宁,石帅,南金秋.整体针翅管混合管束滑油冷却器传热特性对比实验研究.核科学与工程.2011,31(4):318-322
    [100]王福军.计算流体动力学分析—CFD软件原理与应用.清华大学出版社,2004.
    [101]FLUENT Inc. FLUENT User's Guide. FLUENT Inc.2003.
    [102]Y.L. He, W.Q. Tao, F.Q. Song. Three-dimensional numerical study of heat characteristics of plain plate fin-and-tube heat exchangers from view point of field synergy principle [J]. Heat and Fluid Flow,2005,26:459-473
    [103]Y.T. Yang, C.Z. Hwang. Calculation of turbulent flow and heat transfer porous-baffled channel [J]. International Journals of Heat and Mass Transfer,2003, 6:771-780
    [104]C.J. Chen, S.Y. Jaw. Fundamentals of turbulence modeling. Washington D C: Taylor& Francis,1998
    [105]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004
    [106]古新.管壳式换热器数值模拟与斜向流换热器研究.郑州大学博士论文.2006:42-44
    [107]苏立建.帘式折流片换热器的研究与开发.郑州大学硕士论文.2005:32-35
    [108]许欣.夹套式热管传热特性实验研究及其换热器壳程流场数值模拟.中南大学硕士论文.2009:23-25
    [109]S.V. Patankar, D.B. SPaldnig. Acalculation procedure for the transient and state behavior of shell-and-tube heat Exchangers [M]. In Afgna N and Schlunder E V (eds.), Heat Exchager Design and Theory Soucrebook, Washington D C:Seripta book Company,1974:155-176
    [110]W.T. Sha, C.I. Yang. Multidimensional numerical modeling of heat Exchangers [J]. Jomurnal of Heat Transefer:the ASME,1982,104:417-425
    [111]D. Missirlis, K. Yakinthos, A. Palikaras. Experimental and numerical investigation of the flow field through a heat exchnager for aeor-engine applications [J]. International Journal of Heat and Fluid Flow,2005,26(3):440-458.
    [112]D.N. Sorensen, S.L. Hvid, M.B. Hnasen. Local heat transfer and flow distributional three-pass industiral heat ex changer [J]. International Jounals of Heat and Mass transfer 2001,44:3179-3187.
    [113]黄兴华,王启杰,陆震.管壳式换热器壳程流动和传热的三维数值模拟.化工学报,2000,51(3):297-302
    [114]黄兴华,陆震,刘冬暖.换热器壳侧紊流流动特性的数值研究.上海交通大学学报,2000,34(9):1191-1194
    [115]张尉然,赵斌.多孔介质强迫对流换热及研究进展.河北理工大学学报,2002,31(4):11-13
    [116]谢永红,郭方中,吴洪涛等.紧凑换热器的多孔介质模型化.核动力工程,1995,16(2):177-181
    [117]贝尔J.李竞生,陈崇希译.多孔介质流体动力学.北京:中国建筑工业出版社,1983:505-518
    [118]林瑞泰.多孔介质传热传质引论.北京:科学出版社,1995:2-7
    [119]S V. Patankar, D.B. Spalding. Computer Analysis of the Three-dimensional flow and heat transfer in a steam generator. Forschung Ing. Wes.1978,44:47-52
    [120]S V. Patankar. Recent developments in computational heat transfer, ASME J. Heat Transfer,1988,110:1037-1045
    [121]W.T. Sha. An overview on rod-bundle thermal-hydraulic analysis. Nuclear Engineering and Design.1980,62:1-24
    [122]N. Karayannis, N.C.G. Markatos. Mathematical modeling of heat exchangers. Proceedings of theTenth International Heat Transfer Conference, Brighton, UK, The Industrial Sessions Papers,1994:13-18
    [123]L.Y. Huang, J.X. Wen, T.G. Karaynannis et.al. CFD modeling of fluid flow and heat transfer in shell-and-tube heat exchangers. Phoenics J. CFD Appl,1996,9(2): 189-209
    [124]M. Prithiviraj, M.J. Andrews. Three dimensional numerical simulations of shell-and-tube heat exchangers, Part Ⅰ:Foundation and Fluid Mechanics. Numerical Heat Transfer, Part A,1998,33:799-816
    [125]M. Prithiviraj, M.J. Andrews. Three dimensional numerical simulations of shell-and-tube heat exchangers, Part Ⅱ:Heat Transfer. Numerical Heat Transfer, Part A,1998,33:817-828
    [126]M. Prithiviraj, M.J. Andrews. Comparison of a three dimensional numerical model with existing methods for prediction of flow in shell-and-tube heat exchangers. Heat Transfer Eng,1999,20(2):15-19
    [127]邓斌,陶文铨.管壳式散热器壳侧湍流流动的数值模拟及实验研究.西安交通大学学报,2003,37(9):889-893
    [128]谢永红,郭方中,吴洪涛等.紧凑散热器的多孔介质模型化.核动力工程,1995,16(2):177-182
    [129]黄兴华,王启杰,陆震.管壳式散热器壳程流动和传热的三维数值模拟.化工学报,2000,51(3):297-302
    [130]解衡,高祖瑛.管壳式散热器流场三维数值模拟.核科学与工程,2002,22(3):240-243
    [131]马正军.毛细蒸发器流场数值模拟研究.哈尔滨工程大学硕士学位论文2007:39-40
    [132]曾琦.环式冷却机冷却功效数值分析与漏风率测试方法研究.中南大学硕士论文.2010:23-24
    [133]高绪栋.管壳式换热器的数值模拟及优化设计.山东大学硕士论文.2009:46-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700