去乙酰化酶SIRT1在肝癌干细胞自我更新中的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌(Hepatocellular carcinoma,HCC)是最常见的恶性肿瘤之一,全球发病率居恶性肿瘤第五位,死亡率居第三位,肝切除和射频消融对肝癌早期的小肿瘤是目前最好的选择。然而,肝癌患者术后或射频消融后容易复发,并且对放疗、化疗易产生耐药性。因此,肝癌患者预后很差。
     肿瘤干细胞理论表明,在肿瘤中存在一小群具有干细胞样的肿瘤细胞亚群,具有无限增殖、自我更新、高致瘤性,因此被称为肿瘤干细胞(CSCs)或肿瘤起始细胞(TICs)。目前研究认为,肿瘤干细胞更耐放化疗、具有EMT表型,是术后复发和转移的根源。因此剖析肝癌干细胞自我更新的机制,针对性开发杀伤肝癌干细胞的治疗方法成为当前肝癌研究的重点。本课题组在前期的研究中,已构建以Nanog为标记的肝癌干细胞模型,并指出Nanog的表达是受IGF信号调节。然而,调节肝癌干细胞自我更新的一些内在分子机制仍不清楚。
     SIRT1兼具调节组蛋白和非组蛋白的乙酰化化水平的活性。既往的研究证实,在实体肿瘤和血液病中,SIRT1的表达增高与病人的进展和预后不良有关。此外SIRT1也能增加对化疗药物的耐药性。而这些现象与肿瘤干细胞的特性高度吻合,提示SIRT1的高表达可能与肿瘤干细胞存在内在联系。基于以上文献回顾和前期研究,我们提出研究假设:去乙酰化酶SIRT1可能参与了肝癌干细胞自我更新的维持。本课题致力研究和探讨SIRT1参与肝癌干细胞自我更新维持的分子机制。
     本课题主要分三部分进行:第一部分检测SIRT1在肝癌干细胞的表达,并进一步采用体内和体外实验模型,研究SIRT1在肝癌干细胞自我更新中所发挥的作用。第二部分探讨SIRT1维持肝癌干细胞自我更新的分子机制,主要研究SIRT1对关键干细胞转录因子的调节及其分子机制。第三部分是在前两部分的基础上,进一步探讨SIRT1在临床标本的表达以及联合肝癌的小分子化合物多吉美(索拉非尼)对肝癌病人预后和治疗的意义。
     研究内容和主要结论如下:
     一、在NanogPos的肝癌干细胞中, SIRT1的表达显著高于NanogNeg的非肝癌干细胞
     (1)在肝癌干细胞中SIRT1高表达,在非肝癌干细胞SIRT1低表达;
     (2)在肝癌干细胞分化过程中,SIRT1表达水平呈显著下降趋势;
     (3)在肝癌干细胞的NOD/SCID小鼠移植瘤中,SIRT1的表达显著高于非肝癌干细胞的NOD/SCID小鼠移植瘤。
     二、在NanogPos肝癌干细胞中,干扰SIRT1的表达能够抑制肝癌干细胞的自我更新能力并延长NOD/SCID小鼠的生存时间
     (1)在肝癌干细胞中,干扰SIRT1后能显著抑制肝癌干细胞的增殖;
     (2)在肝癌干细胞中,干扰SIRT1的表达可显著地降低肝癌干细胞的自我更新能力;
     (3)在肝癌干细胞中,干扰SIRT1的表达可明显抑制NOD/SCID小鼠移植瘤的成瘤体积和重量;
     (4)在肝癌干细胞中,干扰SIRT1的表达能够延长NOD/SCID小鼠的存活时间。
     三、在NanogNeg非肝癌干细胞中,过表达SIRT1能够恢复肝癌干细胞的自我更新能力
     (1)采用腺病毒过表达SIRT1,可显著地提高非肝癌干细胞的克隆形成和成球形成能力;
     (2)采用腺病毒过表达SIRT1,可明显增加非肝癌干细胞在NOD/SCID小鼠体内的成瘤率。
     四、在NanogPos肝癌干细胞中,SIRT1通过SOX2调控肝癌干细胞自我更新
     (一)在NanogPos肝癌干细胞中,干扰或抑制SIRT1的表达或活性可抑制SOX2的表达
     (1)在肝癌干细胞中干扰SIRT1的表达或抑制SIRT1的活性能显著下调SOX2的表达,并且是早期发生事件;
     (2)在非肝癌干细胞中过表达SIRT1,能显著上调SOX2的表达;
     (3)在临床肝癌组织样本和肝癌细胞系中,SIRT1和SOX2的表达水平呈正相关;
     (二)在NanogPos肝癌干细胞干扰SIRT1同时过表达SOX2,能够恢复肝癌干细胞的自我更新能力和成瘤能力
     (1)在肝癌干细胞干扰SIRT1同时过表达SOX2,SOX2的蛋白表达水平显著升高;
     (2)在肝癌干细胞干扰SIRT1同时过表达SOX2,肝癌干细胞的克隆形成和成球能力显著增加;
     (3)在肝癌干细胞干扰SIRT1同时过表达SOX2能恢复在NOD/SCID小鼠移植瘤成瘤能力;
     (三)在NanogPos的肝癌干细胞中,SOX2是SIRT1调控肝癌干细胞自我更新的下游效应分子
     (1)在肝癌干细胞中,同时干扰SIRT1和SOX2与单独干扰SIRT1或SOX2相比,并不能显著降低SOX2的蛋白表达水平;
     (2)在肝癌干细胞中,同时干扰SIRT1和SOX2与单独干扰SIRT1或SOX2相比,其克隆形成和成球形成能力无显著性差异。
     五、在NanogPos肝癌干细胞中,SIRT1通过DNMT3A和组蛋白修饰调节SOX2的表达
     1.在NanogPos肝癌干细胞中,干扰SIRT1的表达,影响SOX2启动子的转录活性
     (1)干扰SIRT1的表达能降低SOX2启动子的转录活性;
     (2)干扰SIRT1后,能够增加5-甲基胞嘧啶在SOX2启动子的修饰水平,但同时下调5-羟甲基胞嘧啶的修饰水平;
     (3)干扰SIRT1后,SOX2启动子区DNA甲基化水平显著升高;
     (4)在肝癌干细胞中,干扰SIRT1后加DNA甲基化抑制剂5-氮胞苷(5-Aza’-2)能够恢复SOX2的表达。
     2.在NanogPos肝癌干细胞中干扰SIRT1, SOX2启动子区H3K4Me3水平下调,而H3K27Me3水平升高;
     3.在NanogPos肝癌干细胞中, DNMT3A是SIRT1调节SOX2表达的重要表观遗传调控因子
     (1)干扰SIRT1的表达,相比与DNMT1和DNMT3B,DNMT3A显著增加;
     (2)干扰SIRT1的表达,DNMT3A的表达随着时间逐渐增加;
     (3)ChIP实验表明在干扰SIRT1的情况下,DNMT1和DNMT3A结合到SOX2启动子的能力显著增强。
     4.在NanogPos肝癌干细胞中,SIRT1通过调控DNMT3A的乙酰化修饰影响其表达活性
     (1)在肝癌干细胞中,SIRT1和DNMT3A相互结合,存在于同一个复合物上;
     (2)在肝癌干细胞中,干扰SIRT1后,DNMT3A的乙酰化水平显著升高。
     六、在NanogPos肝癌干细胞中,SIRT1通过SOX2影响Nanog的表达
     (1)在肝癌干细胞中干扰SIRT1可降低SOX2结合到Nanog启动子的活性;
     (2)在肝癌干细胞中干扰SIRT1或加SIRT1的抑制剂-TV-6,可降低GFP或Nanog的表达;
     (3)皮下移植瘤中,干扰SIRT1同时过表达SOX2可恢复GFP或Nanog的表达;
     (4)SOX2结合到Nanog的启动子进而激活转录。
     七、SIRT1与SOX2在肝癌肿瘤组织中高表达,两者联合能够作为肝癌患者预后的一个独立指标
     (1) SIRT1表达的阳性信号主要定位在癌细胞的细胞核,SIRT1在癌组织表达阳性率为62%(92/148),而在相对应的癌旁中的阳性率为31%(48/148);SIRT1与肝癌的组织学分级、包膜浸润、血管癌栓具有显著差异(p=0.003、p=0.015、p=0.005),并且与患者的预后相关;
     (2)SOX2表达的阳性信号主要定位在癌细胞的细胞核,SOX2在肝癌在癌组织中表达阳性率为32.9%(49/149),而在相对应的癌旁中的阳性率为6.7%(10/148);SOX2与肝癌的血管癌栓、癌内间质增生、肝内转移具有显著差异(p=0.000、p=0.048、p=0.003),并且与患者的预后相关;
     (3)SIRT1与SOX2在肝癌的表达比值可能是预测肝癌患者预后的一个重要指标,SIRT1和SOX2的表达双阳性组,肝癌病人的预后更差;SIRT1和SOX2的表达双阴性组,肝癌病人的预后好,生存时间长;SIRT1和SOX2的表达与患者的复发、组织学级别、肝内转移有显著性差异(p=0.032、p=0.028、p=0.0084)。
     八、在NanogPos肝癌干细胞中,SIRT1对化疗药物-索拉菲尼耐药性的研究
     (1)在肝癌干细胞中,通过干扰或用抑制剂处理降低SIRT1表达或活性后,同时用索拉非尼处理其肝癌干细胞克隆耐受能力显著低于对照组;
     (2)先用2.5uM TV-6处理细胞6d,再用2.5uM索拉菲尼处理的细胞9d,其肝癌干细胞克隆耐受能力显著低于对照组;
     (3)干扰SIRT1联合索拉菲尼处理,能更有效地抑制NOD/SCID小鼠移植瘤肿瘤的生长;
     (4)干扰SIRT1联合索拉菲尼,与对照组相比,其细胞损伤更为严重:NOD/SCID小鼠移植瘤的病理形态学和免疫组化进一步证实抑制SIRT1联合索拉非尼对NOD/SCID小鼠移植瘤肿瘤的坏死率更广泛。
     九、SIRT1的表达水平可预示临床肝癌患者术后对索拉非尼治疗的敏感性
     在肝癌样本中SIRT1低表达或不表达患者接受索拉菲尼治疗,其生存时间显著高于SIRT1高表达的对照组。
     综上所述,本研究的主要结论是:
     1.去乙酰化酶SIRT1在维持肝癌干细胞中自我更新和高致瘤的特性中具有重要的作用。
     2.去乙酰化酶SIRT1通过影响DNMT3A的乙酰化进而改变SOX2的启动子活性,从转录水平调节SOX2的表达,参与维持肝癌干细胞自我更新和高致瘤性的特性。
     3. SIRT1上调SOX2后,可进一步激活Nanog,组成“干性”调控网络,维持肝癌干细胞自我更新和高致瘤的特性。
     4. SIRT1可作为治疗肝癌的潜在分子靶标。
     本研究首次报道了去乙酰化酶SIRT1在肝癌干细胞发生过程中的表达变化、以及维持肝癌干细胞自我更新的作用机制,从肝癌治疗的角度探讨了肝癌干细胞耐药的分子机制。研究发现其维持肝癌干细胞维持自我更新的分子机制为:SIRT1通过调控DNMT3A影响SOX2启动子区DNA甲基化进而激活其转录而实现的。在此基础上,提出SIRT1可作为治疗肝癌的一个潜在分子靶标。
Hepatocellular carcinoma (HCC) is the fifth most prevalent tumor and the thirdlethalcause of cancer-related deaths worldwide. Although surgery and radiofrequency ablation(RFA) are the best option for small tumors at early stage of HCC patients, the tumorrecurrence and resistance to chemotherapy and radiotherapy result in poor outcome of HCC.
     Studies have demonstrated that a subpopulation of cancer cells, often referred to ascancer stem cells (CSCs) or tumor initiating cells (TICs), are capable of extensiveproliferation, self-renewal, and the increased frequency of tumor formation. The concept ofCSCs has significant clinical implications: CSCs have been shown to be more resistant tochemotherapy and radiotherapy; CSCs have the properties of EMT, metastasis and tumorrelapse after surgery. Therefore, understanding common mechanisms in self-renewal of CSCswill enable further research to focus efforts on therapeutic targets which may be most usefulin developing new approaches of treatment. Our previous study have identified transcriptionfactor Nanog as a novel marker for liver CSCs and demonstrated that Nanog could play acrucial role in regulating self-renewal of liver CSCs via IGF signaling pathway. Nevertheless,the key components and molecular mechanisms contributing to biology of liver CSCs arelargely unknown.
     In cancer, high expression of SIRT1(Sirtuin1, silent mating type information regulation2homolog-1) has been linked with aggressive progression and poor prognosis of leukemiaand solid tumors. Moreover, SIRT1not only regulates the Histone deacetylase andnon-histone proteins, but promotes chemotherapy resistance by enhancing efflux of drugs, aswell as renders cancer cells resist to the radiation-induced apoptosis. The similarities betweenCSCs and SIRT1enable us to put forward a hypothesis that SIRT1may participate theregulation of liver CSCs. In this study, we will explore the expression and biological functionof SIRT1in liver CSCs.
     In order to identify the relation between CSCs and SIRT1, we divided this study into three sections. The first section was to examine the SIRT1expression pattern in liver CSCs,then to clarify its functional role for maintenance of self-renewal in vitro and in vivo. Thesecond section was to verify that SIRT1regulated transcription of SOX2in liver CSCs. Thethird one was to discuss the SIRT1expression with drug resistance and survival in liver CSCsand HCC patients.
     A list of expression date and main conclusions are shown as following
     1. SIRT1is highly expressed in liver CSCs compared to non-CSCs, suggesting thatthe expression of SIRT1is essential for maintaining growth and progression of liverCSCs.
     (1) Expression of SIRT1in NanogPoscells of liver CSCs was significantly higher thanthose in NanogNegcells of non-CSCs.
     (2) Expression of SIRT1in NanogPoscells derived from xenograft tumors was higherthan that in NanogNegcells derived from xenograft tumors in NOD/SCID mice.
     (3) SIRT1is decreasing during the differentiation of liver CSCs in vitro.
     2. Knock-down of SIRT1expression in the NanogPoscells inhitiors self-renewal ofliver CSCs and prolong survival times in NOD/SCID mice.
     (1) Knock-down of SIRT1expression in the NanogPoscells significantly inhibit cellgrowth of liver CSCs.
     (2) Knock-down of SIRT1expression in the NanogPoscells was significantly inhibitcolony and sphere formation efficiency of liver CSCs, and the difference was statisticallysignificant.
     (3) Knock-down of SIRT1expression could significantly inhibited tumor’s growth, sizeand weight when subcutaneously implanted in NOD/SCID mice.
     (4) Kaplan-Merier analysis shown that knock-down SIRT1expression could prolongsurvival times in NOD/SCID mouse compared with control group.
     3. Overexpression of SIRT1restore self-renewal characteristics in liver non-CSCs.
     (1) Overexpression of SIRT1in the NanogNegcells increased the efficiencies of colonyand sphere formation significantly.
     (2) Survival rate of tumors was significantly increased in NOD/SCID mice implantedwith NanogNegcells infected with adenoviral vector expressing SIRT1.
     4. SIRT1control SOX2expression to derive self-renewal characteristics in liver CSCs.
     (1) Knock-down of SIRT1in the NanogPoscells was decreased SOX2expression in liverCSCs.
     1) Knock-down of SIRT1in the NanogPoscells was significantly inhibit SOX2expression levels of liver CSCs; Overexpression of SIRT1in the NanogNegwas significantlyincreased SOX2expression.
     2) Knock-down SIRT1in the NanogPoscells was decreased SOX2expression and itoccurred in the earlier time than Nanog of liver CSCs.
     3) Western blot results showed that SIRT1and SOX2were positive correlation in HCCcell lines and patients tumor tissues..
     (2) Overexpression SOX2in knock-down SIRT1cells could be restore theself-renewal characteristics in liver CSCs.
     1) Immunofluorescence and western blot datas showed that overexpression SOX2in theNanogPoscells with silencing SIRT1was increased SOX2expression level.
     2) Overexpression SOX2in NanogPoswith silencing of SIRT1that colony and sphereefficiency were significantly increased compared to silencing SIRT1in liver CSCs.
     3) Overexpression of SOX2in the NanogPoscells with silencing of SIRT1could generatetumor more efficiently as compared to silencing SIRT1in liver CSCs.
     (3) Co-knockdown SIRT1and SOX2expression did not significantly decreased SOX2expression level, and colony and sphere formation efficiency in liver CSCs.
     5. SIRT1regulates SOX2expression via DNMT3A
     (1)SOX2changes by knockdown SIRT1contributes to the transcription regulation inliver CSCs.
     1)PSOX2-luc luciferase system assay shown that silencing of SIRT1in NanogPoscellsexpressed decreased levels of SOX2.
     2) ChIP analysis shown that that NangPoscells displayed a relative enrichment oftrimethylated H3K4(H3K4Me3) compared to the levels with silencing of SIRT1. Meanwhile,the levels of trimethylation of H3K27(H3K27Me3) was an increased in silencing of SIRT1compared to CSCs.
     3) MeDIP assay shown that the increased level of5mC and decreased of5hmC in liverCSCs with silencing of SIRT1.
     4) BSP-PCR assay that the CpGs was a significantly increased in non-CSC or withsilencing of SIRT1relative in liver CSCs.
     5) Western-blot assay showen that SOX2expression was restored in response to5-azacytidine compared with silencing of SIRT1in liver CSCs.
     (2) DNA methylation is one of the important epigenetic modifications, knockdownSIRT1was increased SOX2DNA methylation in liver CSCs.
     1) qRT-PCR and western blot assay showed that with silencing of SIRT1expression inliver CSC resulted in significant increased DNMT3A expression.
     2) Western blot analysis demonstrated that increase expression of DNMT3A in atime-dependent manner with silencing of SIRT1.
     3) ChIP analysis showed that DNMT3A and DNMT1bound to SOX2promoter moreefficiently in liver CSC with silencing of SIRT1.
     (3) SIRT1effectively inhibits DNMT3A acetylation and expression in liver CSCs.
     1) Co-IP analysis shown that SIRT1interacts with DNMT3A in liver CSCs.
     2) DNMT3A acetylation relative expression was increased with silencing of SIRT1compared with liver CSCs.
     6. Modulation of Nanog expression by SIRT1is mediated by SOX2
     (1) PNanog-luc luciferase system assay shown that silencing of SIRT1in NanogPoscellsresulted in the reduced expression of GFP in NanogPoscells with silencing of SIRT1in liverCSCs.
     (2) Western blot assay shown that there was decreased expression of GFP in NanogPoscells with silencing of SIRT1in liver CSCs.
     (3) Western blot assay shown that there was decreased expression of GFP in xenografttumors derived from NanogPoscells with silencing of SIRT1.
     (4) ChIP analysis shown that SOX2can bind to Nanog promoter, with silencing ofSIRT1reduced SOX2binding to Nanog promoter capacity and overexpression of SOX2increased this ability.
     7. High SIRT1and SOX2expression correlates with poor prognosis in human HCCpatients.
     (1) Immunohistostaining analysis shown that SIRT1protein was mainly localized in thenucleus of cancer cells, positive rates of SIRT1expression in HCC cancerous tissue was62% (92/148). In contrast, SIRT1expression in adjacent noncancerous tissue was31%(48/148).Clinical and pathological analysis of HCC samples, it is showed that expression of SIRT1inHCC was correlated with tumor stage, capsular invasion and vascular thrombus.Kaplan-Merier analysis demonstrated that SIRT1expression in HCC was significantlycorrelated with overall and disease-free survival.
     (2) Immunohistostaining analysis shown that SOX2protein was mainly localized in thenucleus of cancer cell, and positive of SOX2expression in HCC was33.1%(49/148). Incontrast, SOX2expression in adjacent noncancerous tissue was6.76%(10/148). Clinical andpathological analysis of HCC samples, and results shown that SOX2expression in HCC wascorrelated with tumor interstitial hyperplasia of tumor、intrahepatic metastasis and vascularthrombus. Kaplan-Merier analysis demonstrated that SOX2expression in HCC wassignificantly correlated with overall and disease-free survival.
     (3) Kaplan-Merier analysis shown that SIRT1and SOX2expression in HCC wassignificantly correlated with overall and disease-free survival. Moreover, when patients werecombination of high SIRT1and SOX2expression has the poorest outcome compared with theother four possible combinations.
     8. Fundamental function of SIRT1on drug resistance of liver CSCs
     (1) The survival of liver CSCs was significantly reduced drug resistant clones when TV6or silencing of SIRT1expression was combined with sorafenib, as compared with that inNanogPoscells. Immunofluorescence analysis shown that treatment with sorafenib couldinduce higher level of DNA damage marker γ-H2AX focis with siliencing ofSIRT1expression compare with NanogPoscell.
     (2) Liver CSCs were treated with TV6or sorafenib could induce drug resistant clones. Incontrast, treatment of liver CSCs by combination of either of TV-6with sorafenib couldcompletely abolish drug resistant clones.
     (3) The treatment with sorafenib resulted in inhibition of tumor growth in tumor-bearinganimals with NanogPoscells. In contrast, treatment with sorafenib could eradicate tumors intumor-bearing animals with NanogPoscells with silencing of SIRT1expression. Pathologicaland immunohistochemistical analysis shown that dramatic necrosis and high levels ofγ-H2AX were observed in tumors derived from NanogPoscells with silencing of SIRT1expression.
     9. Association SIRT1expression with sorafenib treatment with poor prognosis ofHCC patients.
     Among31HCC cases, Kaplan-Merier analysis shown that positive SIRT1expressionwith sorafenib resulted was significantly correlated with overall and disease-free survival,patients had poor survival time. In contrast, negative SIRT1expression with sorafenibresulted was significantly correlated with overall and disease-free survival, patients hadlonger survival time.
     In conclusion, the above data suggest that
     1. SIRT1as a key regulator in the maintenance of self-renewal and tumorigenic potentialin liver CSCs.
     2. SIRT1maintains self-renewal and tumorigenic potential of liver CSCs through directregulation of SOX2expression.
     3. The up-regulation of SOX2by SIRT1and subsequently activate the network of Nanogmay regulate self-renewal and tumorigenic potential of liver CSCs.
     4. SIRT1serves as a potent molecular target for therapy in liver cancer.
     In summary, our study reported for the first time that the role and the maintenance ofself-renewal mechanisms of SIRT1in liver CSCs, moreover to discuss the function of SIRT1on drug resistance of liver CSCs. We suggested that high levels of SIRT1are needed tomaintain the undifferentiated state of human liver CSCs, which is achieved through tightcontrol of the levels and binding ability of DNM3A and histone modifiers at the regulatoryregions of pluripotency transcription factor SOX2gene. SIRT1may serve as attractivetherapeutic target for treatment of HCC by targeting liver CSCs.
引文
1Lasagna N, Fantappie O, Solazzo M, et al. Hepatocyte growth factor and inducible ntric oxide synthase areinvolved in multidrug Resistance induced angiog-enesis in hepatocellular carcinoma cell lines. Cancer Res,2006,1;66(5):2673-82
    2Simons BD, Clevers H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell,2011,10;145(6):851-62
    3Shan J, Shen J, Liu L, Xia F, Duan G, Xu Y, Ma Q, Yang Z, Zhang Q, Ma L, Liu J, Ping Y,Yu S,Xu S,Yan X, Zhang Z,Li X, Bie P, Cui Y, Bian X-W, Qian C. Nanog regulates self-renewal of cancer stem cells through the insulin-like growthfactor pathway in human hepatocellular carcinoma. Hepatology,2012,56,(3):1104-14.
    1Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol,2010,5:253-295.
    2Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2is anNAD-dependent histone deacetylase. Nature,2000,403:795-800
    3Stunkel W, Peh BK, Tan YC,et al. Function of the SIRT1protein deacetylase in cancer. Biotechnol J2007,2:1360-1368
    4Zhao W, Kruse JP, Tang Y, et al. Negative regulation of the deacetylase SIRT1by DBC1. Nature2008,451:587-590
    5Han MK, Song EK, Guo Y, et al. SIRT1regulates apoptosis and Nanog expression in mouse embryonic stem cells bycontrolling p53subcellular localization. Cell Stem Cell,2008,2(3):241-251.
    6Calvanese V, Lara E, Suarez-Alvarez B, et al. Sirtuin1regulation of developmental genes during differentiation of stemcells. Proc Natl Acad Sci USA,2010,107(3):13736-13741.
    7Li L, Wang L, Li L, et al. Activation of p53by SIRT1inhibition enhances elimination of CML leukemia stem cells incombination with imatinib. Cancer Cell,2012,21(2):266-281
    8Chang CJ, Hsu CC, Yung MC, et al. Oct4maintains the pluripotency of human embryonic stem cells by inactivating p53through Sirt1-mediated deacetylation.
    9Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1expression. Biochem Biophys Res Commun,2009,380(2):236-242.
    1Baylin SB and Jones PA. A decade of exploring the cancer epigenome-biological and translational implications.Nat.Rev.Cancer2011,11:726-34.
    2Tan M, Luo H, Lee S,et al. Indentification of67histone marks and histone lysine crotonylation as a new type of histonemodification. Cell,2011,146:1016-28
    3Wang Z, Zang C, Rosenfeld JA, et al. Combinatorial patterns of histone acetylations and methylations in humangenome. Nat Genet,2008,40:897-03.
    4Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellularfunctions. Science,2009,325:834-40.
    5Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene,2007,26:5420–5432
    1Olsen EA,Kim YH,Kuzel TM,et al.Phase Ⅱb multicenter trial of vorinostat patients with persistent,progressive,ortreatment refractory cutaneous T-cell lymphoma. J Clin Oncol,2007,25:3109-15.
    2Piekarz RL,Frye R, Tumer M,et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin asmonotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol,2009,27:5410-17
    3Federico M and Bagella L. Histone deacetylase inhibitors in the treatment of hematological malignancies and solidtumors. J Biomed Biotechnol,2011,475641
    4Kevin W et al. The role of histone acetylation in regulating early gene expression patterns during early embryonic stem celldifferentiation. J Biol Chem,2007,282:6696-06.
    5Lee J.H et al. Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis,2004,38:32-38
    6Liu C,Liu L,Shan J,Shen J,Xu Y,Zhang Q,Yang Z,Wu L,Xia F,Bie P,Cui Y,Zhang X,Bian X,Qian C. Histone deacetylase3participates in self-renewal of liver cancer stem cells through histone modification. Cancer Letters,2013,339(1):60-9
    1Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol,2012,13(4):225-238
    2Song NY, Surth YJ. Janus-faced role of SIRT1in tumorigenesis. Ann N Y Acad Sci,2012,1271:10-19.
    1Simons BD and Clevers H. Strategies for homeostatic stem cellself renewal in adult tissues. Cell,2011,145:851–862.
    2Boyer LA,Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells.Cell,2005,122:947-956
    3Chen X,Xu H, Yuan P, et al. Integration of external signaling pathways with the core transcriptional network inembryonic stem cells. Cell,2008,133:1106-1117
    4Jiang J,Ng HH. TGFbeta and SMADs take to Nanog in human embryonic stem cells. Cell Stem Cell,2008,3:127-128.
    5Kim J, Chu J, Shen X, et al. An extended transcriptional network for pluripotency of embryonic stem cells. Cell,2008,132:1049-1061
    6Sridharan R, Tchieu J, Mason MJ, et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell,2009,136:364-377
    7Sims RJ and D Reinberg. Is there a code emdedded in proteins that is based on post-translational modifications? Nat RevMol Cell Biol,2008,9:815-20
    8Zhang Z, Liao B, Xu M and Jin Y.Post-translational modification of POU domain transcription factor Oct-4by SUMO-1.Faseb J,2007,21:3042-51
    9Han MK, Song EK, Guo Y, et al. SIRT1regulates apoptosis and Nanog expression in mouse embryonic stem cells bycontrolling p53subcellular localization. Cell Stem Cell,2008,2(3):241-251.
    1Calvanese V, Lara E, Suarez-Alvarez B, et al. Sirtuin1regulation of developmental genes during differentiation of stemcells. Proc Natl Acad Sci USA,2010,107(3):13736-13741
    2Matsui K, Ezoe S, Oritani K, et al. NAD-dependent histone deacetylase, SIRT1, plays essential roles in themaintenance of hematopoietic stem cells. Biochem Biophys Res Commun,2012,418(4):811-817
    3Shan J, Shen J, Liu L, Xia F, Duan G, Xu Y, Ma Q, Yang Z, Zhang Q, Ma L, Liu J, Ping Y,Yu S,Xu S,Yan X, Zhang Z,Li X, Bie P, Cui Y, Bian X-W, Qian C. Nanog regulates self-renewal of cancer stem cells through the insulin-like growthfactor pathway in human hepatocellular carcinoma. Hepatology,2012,56,(3):1104-14.
    1Arnold K, Sarkar A, Yram MA,et al. Sox2adult stem and progenitor cells are important for tissue regeneration andsurvival of moce. Cell stem cell,2011,9:317-29
    2Bass AJ, Watanabe H, Mermel CH, et al. SOX2is an amplified lineage-survival oncogene in lung and esophagealsquamous cell carcinomas. Nat Genet,2009,41:1238–1242
    3Rudin CM, Durinck S, Stawiski EW et al. Comprehensive genomic analysis identifies SOX2as a frequently amplifiedgene in smallcell lung cancer. Nat Genet,2012,44:1111–1116
    1Liu C, Liu L, Chen X, Shen J, Shan J,Xu Y, Yang Z, Wu L, Xia F, Bie P, Cui Y, Bian X-W, Qian C. Decrease of5-Hydroxymethylcytosine Is Associated with Progression of Hepatocellular Carcinoma through Downregulation of TET1.PLoS One,2013,7(9):e62868
    2Vaquero A, Scher M, Erdjument-bromage H,et al. SIRT1regulates the histone methyl-transferase SUV39H1duringheterochromatin formation. Nature,2007,450:440-4.
    3Heather M,O’Hagan,Wei Wang,et al.Oxidative damage targets complexes containing DNA methyltransferases,SIRT1,and polycomb members to promoter CpGislands. Cancer cell,2011,20:606-619
    1Lachenmayer A, Hoshida Y, Llovet JM. Hippo tumor suppressor pathway:novel implications for the treatment ofhepatocellular carcinoma. Gastroenterology,2010,139:692
    2Llovet JM,Bruix J. Molecular targeted therapies in hepatocellilar carcinoma. Hepatology,2008,48:1312-27
    3Strumberg D. Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. DrugsToday,2005,41:773
    4Llovet JM,Ricci S,Mazzaferro V,et al.Sorafenib in advanced hepatocellular carcinoma. N Engl J Med,2008,359:378-90
    5Cheng AL,Kang YK,Chen Z,et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advancedhepatocellular carcinoma: A phase III randomised,double-blind,placebo-controlled trail. Lancet Oncol,2009,10:25-34
    6Escudier B, Eisen T,Stadler WM, et al. Sorafenib in advanced clear-cell renal–cell carcinoma. N Engl J Med,2007,356:125-34
    7Escudier B, Szczylik C, Hutson TE, et al. Randomized phase II trial of first-line treatment with sorafenib versusinterferon alfa-2a in patients with metastatic renal cell carcinoma. J Clin Oncol2009,27:12809
    8Paz-Ares LG, Biesma B, Heigener D, et al. Phase III, randomized, double-blind, placebo controlled trial ofgemcitabine/cisplatin alone or with sorafenib for the first-line treatment of advanced, nonsquamous non-small-cell lungcancer. J Clin Oncol2012,30:308492.
    1Egger, G,; Liang, G,; Aparicio, A,; Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature2004,429,457-63.
    2Jones, P.A,; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat Rev Genet.2002,3,415-428
    3Jones, P.A,; Baylin, S.B.; The epigenomics of cancer. Cell2007,128,683-692
    4Jones, P.A,; Laird, P.W. Cancer epigenetics comes of age. Nat Genet.1999,21,163-167.
    5Feinberg, A.P,; Ohlsson, R,; Henikoff, S. The epigenetic progenitor origin of human cancer. Nat. Rev. Gent.2006,7,21-33.
    6Jones, P.A,; Martienssen, R. A blueprint for a human epigenome project: the AACR human epignome workshop. CancerRes2005,65,11241-11246.
    1Reya, T,; Morrison, S.J,; Clarke, M.F,; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature2001,414,105-111.
    2Evans, M.J,; Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature1981,292,154-156.
    3Pece, S,; Tosoni, D,; Confalonieri, S,; Mazzarol, G,; Vecchi, M,; Ronzoni, S,; Bernard, L,; Viale, G,; Pelicci, PG,; Di Fiore,P.P. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell2010,140,62–73.
    4Bonnet, D,; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitivehematopoietic cell. Nat. Med.1997,730-737
    5Ma, S,; Lee, T.K,; Zheng, B.J,; Chan, K.W,; Guan, X.Y. CD133+HCC cancer stem cells confer chemoresistance bypreferential expression of the Akt/PKB survival pathway. Oncogene2008,27,1749–1758.
    6Al-Hajj, M,; Wicha, M.S,; Benito-Hernandez, A,; Morrison, S.J,; Clarke, M.F. Prospective identification of tumorigenicbreast cancer cells. Proc. Natl. Acad. Sci. USA2003,100,3983–3988
    7Singh, S.K,; Clarke, I.D,; Terasaki, M,; Bonn, V.E,; Hawkins, C,; Squire, J,; Dirks, P.B. Identification of a cancer stemcell in human brain tumors. Cancer Res.2003,63,5821–5828.
    8O’Brien, C.A,; Pollett, A,; Gallinger, S,; Dick, J.E. A human colon cancer cell capable of initiating tumour growth inimmunodeficient mice. Nature2007,445,106–110.
    9Li, C,; Heidt, D.G,; Dalerba, P,; Burant, C.F,; Zhang, L,; Adsay, V,; Wicha, M,; Clarke, M.F,; Simeone, D.M..Identification of pancreatic cancer stem cells. Cancer Res.2007,67,1030–1037
    10Feinberg, A.P,; Tycko, B. The history of cancer epigenetics. Nat. Rev. Cancer2004,4,143–153
    1Esteller, M. Epigenetics in cancer. N. Engl. J. Med2008,358,1148-1159.
    2Wang, Y,; Leung, C.C. An evaluation of new criteria for CpG islands in the human genome as gene markers.Bioinformatics2004,20,1378-2385.
    3Li, E,; Bestor, T.H,; Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality.Cell1992,69,915–926.
    4Okano, M,; Bell, D.W,; Haber, D.A,; Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novomethylation and mammalian development. Cell1999,99,247–257.
    56Klose, R.J,; Bird, A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci.2006,31,89–97Klarmann, G.J,; Decker, A,; Farrar, W.L. Epigenetic gene silencing in the Wnt pathway in breast cancer. Epigenetics2008,3,59-63.
    1Lindvall, C,; Bu, W,; Williams, B.O,; Li, Y. Wnt signaling, stem cells, and the cellular origin of breast cancer. Stem cell2008,3,157-168
    2De Sousa, E.M.F,; Colak, S,; Buikhuisen, J,; Koster, J,; Cameron, K,; De Jong, J.H,; Tuynman, J.B,; Prasetyanti, P.R,;Fessler, E,; Van den Bergh S.P. et al. Methylation of cancer-stem-cell-Associated Wnt target genes predicts poor prognosisin colorectal cancer patients. Cell Stem Cell2011,9,476-485.
    3Sen, G.L,; Reuter, J.A,; Webster, D.E,; Zhu, L,; Khavari, P.A,; DNMT1maintains progenitor function in self-renewingsomatic tissue. Nature2010,463,563–567.
    4You, H,; Ding, W,; Rountree, C.B. Epigenetic regulation of cancer stem cell marker CD133by transforming growthfactor-beta. Hepatology2010,51,1635-44
    5Trowbridge, J.J,; Orkin, S.H,; Dnmt3a silences hematopoietic stem cell self-renewal. Nat Genet2011,44,13-14
    6Luger, K,; M der, A.W,; Richmond, R.K,; Sargent, D.F,; Richmond, T.J. Crystal structure of the nucleosome core
    7particle at2.8A resolution. Nature1997,389,251-260Kouzarides, T. Chromatin modifications and their functions. Cell2007,128,693-705.
    8Jenuwein, T,; Allis, C.D. Translating the histone code. Science2001,293,1074-1080.
    1Sharma, S,; Kelly, K.T,; Jones, P.A. Epigenetics in cancer. Carcinogenesis2010,31,27-36.
    2Kouzarides, T. Acetylation: A regulatory modification to rival phosphorylation? EMBO J.2000,19,1176-1179
    3Shahbazian, M.D,; Grunstein, M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem2007,76,75-100
    4Choudhary, C,; Kumar, C,; Gand, F,; Nielsen, M,; Rehman, M,; Walther, T.C,; Olsen, J.V,; Mann, M. Lysine acetylationtargets protein complexes and co-regulates major cellular functions. Science2009,14,834-840.
    5Sharma, S.V,; Lee, D.Y,; Li, B.H,; Quinlan, M.P,; Takahashi, F,; Maheswaran, S,; McDermott, U,; Azizian, N,; Zou, L,;Michael, A. et al. A chromatin-nediated reversible drug-tolerant state in cancer cell subpopulations. Cell2010,141,69-80.
    6Vermeulen, L,; Todaro, M,; de Sousa Mello, F,; Sprick, M.R,; Kemper, K,; Perez Alea, M,; Richel, D.J,; Stassi, G,;Medema, J.P. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl.Acad. Sci. USA2008,105,13427–13432.
    7Bolden, J.E,; Peart, M.J,; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov.2006,5,769–784
    8Pal, S,; Sif, S. Interplay between chromatin remodelers and protein arginine methyltransferases. J. Cell. Physiol.2007,213,306-315.
    1Shi, Y. Histone lysine demethylases: emerging roles in development, physiology and diseas. Nat Rev Genet2007,8,829-833.
    2Mosammaparast, N,; Shi, Y. Reversal of histone methylation: biochemical and molecular mechanisms of histonedemethylases. Annu. Rev. Biochem.2010,79,155–179.
    3Tsukada, Y,; Fang, J,; Erdjument-Bromage, H,; Warren, M.E,; Borhcers, C.H,; Tempst, P,; Zhang, Y. Histonedemethylation by a family of JmjC domain-containing proteins. Nature2006,439,811–816
    4Klose, R. J,; Kallin, E. M,; Zhang, Y. JmjC-domaincontaining proteins and histone demethylation. Nature Rev. Genet.2006,7,715–727
    5Harris, W.J,; Huang, X,; Lynch, J.T,; et al.The histone demethylase KDM1A sustains the oncogenic potential ofMLL-AF9leukemia stem cells. Cell Stem Cell2012,21,473-487.
    6Schenk, T,; Chen, W.C,; G llner, S,; et al. Inhibition of the LSD1(KDM1A) demethylases reactivates theall-trans-retinoic acid differentiation pathway in acute myeloid eukemia. Nature Med.2012,14,605-612
    7Roesch, A,; Fukunaga-Kalabis, M,; Schmidt, E.C,; Zabierowski, S.E,; Brafford, P.A,; Vultur, A,; Basu, D,; Gimotty, P,;Vogt, T,; Herlyn, M. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuoustumor growth. Cell2010,141,583–594
    8Visvader, J.E.,; Lindeman, G.J. Cancer Stem Cells: Current Status and Evolving Complexities. Cell Stem Cell2012,10,717-728.
    1Schwartz, Y.B,; Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev.
    2Genet.2007,8,9–22Levine, S.S,; Weiss, A,; Erdjument-Bromage, H,; Shao, Z,; Tempst, P,; Kingston, R.E. The core of the polycombrepressive complex is compositionally and functionally conserved in flies and humans. Mol. Cell. Biol.2002,22,6070–6078.
    3Valk-Lingbeek, M.E,; Bruggeman, S.W,; van Lohuizen, M. Stem cells and cancer; the polycomb connection. Cell2004,118,409–418
    4De Napoles, M,; Mermoud, J.E,; Wakao, R,; Tang, Y.A,; Endoh, M,; Appanah, R,; Nesterova, T.B,; Silva, J,; Otte, A.P,;Vidal, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X
    5inactivation. Dev. Cell2004,7,663–676.Wang, H,; Wang, L,; Erdjument-Bromage, H,; Vidal, M,; Tempst, P,; Jones, R.S,; Zhang, Y. Role of histone H2A
    6ubiquitination in Polycomb silencing. Nature,2004,431,873–878.Cao, R,; Wang, L,; Wang, H,; Xia, L,; Erdjument-Bromage, H,; Tempst, P,; Jones, R.S,; Zhang, Y. Role of histone H3
    7lysine27methylation in Polycomb-group silencing. Science2002,298,1039–1043Czermin, B,; Melfi, R,; McCabe, D,; et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3
    8methyltransferase activity that marks chromosomal Polycomb sites. Cell2002,111,185–196Gal-Yan, E.N,; Egger, G,; Iniguez L,; et al. Frequent switching of polycomb repressive marks and DNA
    9hypermethylation in the PC3prostate cancer cell line. Proc. Natl. Acad. Sci. U S A2008,105,12979-12984Sauvageau, M,; Sauvageau, G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. CellStem Cell2010,7,299-313
    10Ito, K,; Hirao, A,; Arai, F,; Matsuoka, S,; Takubo, K,; Hamaguchi, I,; Nomiyama, K,; Hosokawa, K,; Sakurada, K,;Nakagata, N. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells.Nature2004,431,997–1002
    1Nijnik, A,; Woodbine, L,; Marchetti, C,; et al. DNA repair is limiting for haematopoietic stem cells during ageing.Nature2007,447,686–690
    2Tzatsos, A,; Bardeesy, N. Ink4a/Arf regulation by let-7b and Hmga2: a genetic pathway governing stem cell aging. CellStem Cell2008,3,469–470.
    3Bao, S,; Wu, Q,; McLendon, R.E,; et al. Glioma stem cells promote radioresistance by preferential activation of theDNA damage response. Nature2006,444,756–760.
    4Chang, C.Ju,; Yang, J.Y,; Xia, W.Y,; et al. EZH2promotes expansion of breast tumor initiating cells through activationof RAF1-β-catenin signaling. Cancer Cell2011,19,86-100.
    5Wilson, B.G,; Wang, X,; Shen, X.H,;et al. Epigenetic antagonism between polycomb and SWI/SNF complexes duringoncogenic transformation. Cancer Cell2010,18,316–328.
    6Haupt, Y,; Bath, M.L,; Harris, A.W,; Adams, J.M. Bmi-1transgene induces lymphomas and collaborates with myc intumorigenesis. Oncogene1993,8,3161–3164.
    7Jacobs, J.J,; Scheijen, B,; Voncken, et al. Bmi-1collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-inducedapoptosis via INK4a/ARF. Genes Dev.1999,13,2678–2690.
    8Lessard, J,; Sauvageau, G. Bmi-1determines the proliferative capacity of normal and leukaemic stem cells. Nature2003,423,255–260.
    1Godlewski, J,; Nowicki, M.O,; Bronisz, A,; et al. Targeting of the Bmi-1oncogene/stem cell renewal factor bymicroRNA-128inhibits glioma proliferation and self-renewal. Cancer Res.2008,68,9125–9130.
    2Lukacs, R.U,; Memarzadeh, S,; Wu, H,; Witte, O.N. Bmi-1is a crucial regulator of prostate stem cell self-renewal andmalignant transformation. Cell Stem Cell2010,7,682-693.
    3He, L,; Hannon, G.J. MicroRNs, small RNAs with big role in gene regulation. Nat. Rev. Genet.2004,5,522-531.
    4Bourguignon, L.Y.; Earle, C.; Wong, G.; et al. Stem cell marker (Nanog) and Stat-3signaling promote MicroRNA-21expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene2012,2,149–160
    Shimono, Y,; Zabala, M,; Cho, R.W,;. et al. Downregulation of miRNA-200c links breast cancer stem cells with normalstem cells. Cell2009,138,592–603.
    1Fabri, M,; Garzon, R,; Cimmino, A,; et al. MicoRNA-29family reverts aberrant methylation in lung cancer by targetingDNA methyltransfease3A and3B. Proc. Natl. Acad. Sci. USA2007,104,15805-15810
    2Feiedaman, J.M. Liang, G.N,; Liu, C.C,;et al. The putative tumor suppressor MicoRNA-101modulates the cancerepigenome by repressing the polycomb group protein EZH2. Cancer Res.2009,69,2623-2629.
    3Sander, S,; Bullinger, L,; Klapproth, K,; Fiedler, K,; Kestler, H.A,; Barth, T.F,; Mo¨ ller, P,; Stilgenbauer, S,; Pollack,J.R,; Wirth, T. MYC stimulatesEZH2expression by repression of its negative regulator miR-26a. Blood2008,112,4202–4212.
    4Dawson, M.A,; Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell2012,150,12-26
    5Kaminskas, E,; Farrell, A,; Abraham, S,; et al. Approval summary: azacitidine for treatment of myelodysplasticsyndrome subtypes. Clin Cancer Res2005,11,3604-3608
    6Kantarjian, H,; Issa, J.P,; Rosenfeld, C.S,; et al. Decitabine improves patient outcomes in myelodysplastic syndromes:results of a phase III randomized study. Cancer2006106,1794-1803.
    7Piekarz, R.L,; Frye, R,; Turner, M,; et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsinas monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol.2009,27,5410–5417
    Belinsky, S.A,; Klinge, D.M,; Stidley, C.A,; et al. Inhibition of DNA methylation and histone deacetylation preventsmurine lung cancer. Cancer Res2007,63,7089-7093
    Visvader, J. E,; Lindeman G.J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. NatRev Cancr2008,8,755-768.
    Fan, S. T,; Yang, Z.F,; Ho, D.W,; et al. Prediction of posthepatectomy recurrence of hepatocellular carcinoma bycirculating cancer stem cells: a prospective study. Ann Surg2011,254,569-576.
    1Tahiliani, M,; Koh, K.P,; Shen, Y,; et al. Conversion of5-methylcytosine to5-hydroxymethylcytosine in mammalianDNA by MLL partner TET1. Science2009,324,930–935.
    2Ito, S,; D’Alessio, A.C,; Taranova, O.V,;et al. Role of Tet proteins in5mC to5hmC conversion, ES-cell self-renewaland inner cell mass specification. Nature2010,466,1129–1133.
    3Globisch, D,; Münzel, M,; Müller, M,; et al. Tissue distribution of5-hydroxymethylcytosine and search for activedemethylation intermediates. PLoS One,2010,5, e15367.
    4Song, C.X,; Szulwach, K.E,; Fu, Y,; et al. Selective chemical labeling reveals the genomewide distribution of
    5-hydroxymethylcytosine. Nat. Biotechnol2011,29,68–72.
    5Udani, V.M. The continuum of stem cell transdifferentiation: possibility of hematopoietic stem cell plasticity withconcurrent CD45expression. Stem Cells Dev2006,15,1-3
    6Liu, Y,; Rao, M.S. Trans differentiation-factor or artifact. J Cell Biochem2003,88,29-40.
    1. Lasagna N, Fantappie O, Solazzo M, et al. Hepatocyte growth factor andinducible ntric oxide synthase are involved in multidrug Resistance induced angiog-enesis in hepatocellular carcinoma cell lines. Cancer Res,2006,1;66(5):2673-82.
    2. Simons BD, Clevers H. Strategies for homeostatic stem cell self-renewal in adulttissues. Cell,2011,10;145(6):851-62
    3. Shan J, Shen J, Liu L, Xia F, Duan G, Xu Y, Ma Q, Yang Z, Zhang Q, Ma L, Liu J, PingY,Yu S,Xu S,Yan X, Zhang Z, Li X, Bie P, Cui Y, Bian X-W, Qian C. Nanog regulatesself-renewal of cancer stem cells through the insulin-like growth factor pathway inhuman hepatocellular carcinoma. Hepatology,2012,56,(3):1104-14.
    4. Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance.Annu Rev Pathol,2010,5:253-295.
    5. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing andlongevity protein Sir2is an NAD-dependent histone deacetylase. Nature,2000,403:795-800.
    6. Huffman DM, Grizzle WE, Bamman MM, et al. SIRT1is significantly elevated in mouseand human prostate cancer. Cancer Res2007,67:6612-6618.
    7. Bradbury CA, Khanim FL, Hayden R, et al. Histone deacetylases in acute myeloidleukaemia show a distinctive pattern of expression that changes selectively in response todeacetylase inhibitors. Leukemia2005,19:1751-1759.
    8. Stunkel W, Peh BK, Tan YC,et al. Function of the SIRT1protein deacetylase in cancer.Biotechnol J2007,2:1360-1368.
    9. Deng CX. SIRT1, Is It a Tumor Promoter or Tumor Suppressor? Int J Biol Sci2009,5:147-152.
    10. Lim CS. SIRT1: Tumor promoter or tumor suppressor? Med Hypotheses2006,67:341-344.
    11. Zhao W, Kruse JP, Tang Y, et al. Negative regulation of the deacetylase SIRT1by DBC1.Nature2008,451:587-590.
    12. Han MK, Song EK, Guo Y, et al. SIRT1regulates apoptosis and Nanog expression inmouse embryonic stem cells by controlling p53subcellular localization. Cell Stem Cell,2008,2(3):241-251.
    13. Calvanese V, Lara E, Suarez-Alvarez B, et al. Sirtuin1regulation of developmental genesduring differentiation of stem cells. Proc Natl Acad Sci USA,2010,107(3):13736-13741.
    14. Matsui K, Ezoe S, Oritani K, et al. NAD-dependent histone deacetylase, SIRT1, playsessential roles in the maintenance of hematopoietic stem cells. Biochem Biophys ResCommun,2012,418(4):811-817.
    15. Li L, Wang L, Li L, et al. Activation of p53by SIRT1inhibition enhances elimination ofCML leukemia stem cells in combination with imatinib. Cancer Cell,2012,21(2):266-281.
    16. Zhang ZN, Chung SK, Xu Z,Xu Y. Oct4maintains the pluripotency of humanembryonic stem cells by inactivating p53through Sirt1-mediated deacetylation. StemCells,2013, doi:10.1002
    17. Chang CJ, Hsu CC, Yung MC, et al. Enhanced radiosensitivity and radiation-inducedapoptosis in glioma CD133-positive cells by knockdown of SirT1expression. BiochemBiophys Res Commun,2009,380(2):236-242.
    18. Baylin SB and Jones PA. A decade of exploring the cancer epigenome-biological andtranslational implications. Nat.Rev.Cancer2011,11:726-34.
    19. Wu H and Zhang Y. Mechanisms and functions of Tet protein-mediated5-methylcytosineoxidation. Genes Dev,2011,25:2436-52.
    20. Kouzarides T. Chromation modifications and their function. Cell,2007,128:693-05.
    21. Tan M, Luo H, Lee S,et al. Indentification of67histone marks and histone lysinecrotonylation as a new type of histone modification. Cell,2011,146:1016-28.
    22. Heintzman ND,Stuart RK,Hon G,et al.Distinct and predictive chromatin signatures oftranscriptional promoters and enhancers in the human genome. Nat Genet,2007,39:311-18.
    23. Wang Z, Zang C, Rosenfeld JA, et al. Combinatorial patterns of histone acetylationsand methylations in human genome. Nat Genet,2008,40:897-03.
    24. Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes andco-regulates major cellular functions. Science,2009,325:834-40.
    25. Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene,2007,26:5420–5432.
    26. Blackwell L, Norris J, Suto CM, Janzen WP. The use of diversity aprofiling tocharacterize chemical modulators of the histone deacetylases. Life Sci,2008,82:1050–1058.
    27. Olsen EA,Kim YH,Kuzel TM,et al.Phase Ⅱb multicentertrial of vorinostat patients withpersistent,progressive,or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol,2007,25:3109-15.
    28. Piekarz RL,Frye R, Tumer M,et al. Phase II multi-institutional trial of the histonedeacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-celllymphoma. J Clin Oncol,2009,27:5410-17.
    29. Federico M and Bagella L. Histone deacetylase inhibitors in the treatment ofhematological malignancies and solid tumors. J Biomed Biotechnol,2011,475641.
    30. Kevin W et al. The role of histone acetylation in regulating early gene expression patternsduring early embryonic stem cell differentiation. J Biol Chem,2007,282:6696-06.
    31. Jeong-Heon Lee, et al. Histone deacetylase activity is required for embryonic stem celldifferentiation. Genesis,2004,38:32-38.
    32. Rodríguez PM, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med,2011,17:330-39.
    33. Hattori N, et al. Epigenetic regulation of Nanog gene in embryonic stem cell andtrophoblast stem cells. Genes to Cells,2007,12:387-96.
    34. Lee J.H et al. Histone deacetylase activity is required for embryonic stem celldifferentiation. Genesis,2004,38:32-38.
    35. Liu C,Liu L,Shan J,Shen J,Xu Y,Zhang Q,Yang Z,Wu L,Xia F,Bie P,Cui Y,Zhang X,BianX,Qian C. Histone deacetylase3participates in self-renewal of liver cancer stem cellsthrough histone modification. Cancer Letters,2013,339(1):60-9.
    36. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism andhealthspan. Nat Rev Mol Cell Biol,2012,13(4):225-238.
    37. Song NY, Surth YJ. Janus-faced role of SIRT1in tumorigenesis. Ann N Y Acad Sci,2012,1271:10-19.
    38. Simons BD and Clevers H. Strategies for homeostatic stem cellselfrenewal in adulttissues. Cell,2011,145:851–862.
    39. Boyer LA,Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in humanembryonic stem cells. Cell,2005,122:947-956.
    40. Chen X,Xu H, Yuan P, et al. I ntegration of external signaling pathways with the coretranscriptional network in embryonic stem cells. Cell,2008,133:1106-1117.
    41. Jiang J,Ng HH. TGFbeta and SMADs take to Nanog in human embryonic stem cells. CellStem Cell,2008,3:127-128.
    42. Kim J, Chu J, Shen X, et al. An extended transcriptional network for pluripotency ofembryonic stem cells. Cell,2008,132:1049-1061.
    43. Loh YH,Wu Q, Chew JL,et al. The Oct4and Nanog transcription network regulatespluripotency in mouse embryonic stem cells. Nat Genet,2006,38:431-440.
    44. Sridharan R, Tchieu J, Mason MJ, et al. Role of the murine reprogramming factors in theinduction of pluripotency. Cell,2009,136:364-377.
    45. Glozak MA, Sengupta XZ and Seto E. Acetylation and deacetylation ofnon-histoneproteins. Gene,2005,363:15-23.
    46. Sims RJ and D Reinberg. Is there a code emdedded in proteins that is based onpost-translational modifications? Nat Rev Mol Cell Biol,2008,9:815-20
    47. Zhang Z, Liao B, Xu M and Jin Y.Post-translational modification of POU domaintranscription factor Oct-4by SUMO-1. Faseb J,2007,21:3042-51.
    48. Han MK, Song EK, Guo Y, et al. SIRT1regulates apoptosis and Nanog expression inmouse embryonic stem cells by controlling p53subcellular localization. Cell Stem Cell,2008,2(3):241-251.
    49. Calvanese V, Lara E, Suarez-Alvarez B, et al. Sirtuin1regulation of developmental genesduring differentiation of stem cells. Proc Natl Acad Sci USA,2010,107(3):13736-13741.
    50. Matsui K, Ezoe S, Oritani K, et al. NAD-dependent histone deacetylase, SIRT1, playsessential roles in the maintenance of hematopoietic stem cells. Biochem Biophys ResCommun,2012,418(4):811-817.
    51. Shan J, Shen J, Liu L, Xia F, Duan G, Xu Y, Ma Q, Yang Z, Zhang Q, Ma L, Liu J, PingY,Yu S,Xu S,Yan X, Zhang Z, Li X, Bie P, Cui Y, Bian X-W, Qian C*. Nanog regulatesself-renewal of cancer stem cells through the insulin-like growth factor pathway inhuman hepatocellular carcinoma. Hepatology,2012,56,(3):1104-14.
    52. Arnold K, Sarkar A, Yram MA,et al. Sox2adult stem and progenitor cells are importantfor tissue regeneration and survival of moce. Cell stem cell,2011,9:317-29.
    53. Bass AJ, Watanabe H, Mermel CH, et al. SOX2is an amplified lineage-survivaloncogene in lung and esophageal squamous cell carcinomas. Nat Genet,2009,41:1238–1242.
    54. Rudin CM, Durinck S, Stawiski EW et al. Comprehensive genomic analysis identifiesSOX2as a frequently amplified gene in smallcell lung cancer. Nat Genet,2012,44:1111–1116
    55. Liu C, Liu L, Chen X, Shen J, Shan J,Xu Y, Yang Z, Wu L, Xia F, Bie P, Cui Y, BianX-W, Qian C. Decrease of5-Hydroxymethylcytosine Is Associated with Progression ofHepatocellular Carcinoma through Downregulation of TET1. PLoS One,2013,7(9):e62868..
    56. Vaquero A, Scher M, Erdjument-bromage H,et al. SIRT1regulates the histone methyl-transferase SUV39H1during heterochromatin formation. Nature,2007,450:440-4.
    57. Heather M,O’Hagan,Wei Wang,et al.Oxidative damage targets complexes containingDNA methyltransferases,SIRT1,and polycomb members to promoter CpGislands.Cancer cell,2011,20:606-619.
    58. Lachenmayer A, Hoshida Y, Llovet JM. Hippo tumor suppressor pathway:novelimplications for the treatment of hepatocellular carcinoma. Gastroenterology,2010,139:692.
    59. Llovet JM,Bruix J. Molecular targeted therapies in hepatocellilar carcinoma. Hepatology,2008,48:1312-27.
    60. Strumberg D. Preclinical and clinical development of the oral multikinase inhibitorsorafenib in cancer treatment. Drugs Today,2005,41:773.
    61. Llovet JM,Ricci S,Mazzaferro V,et al.Sorafenib in advanced hepatocellular carcinoma.N Engl J Med,2008,359:378-90.
    62. Cheng AL,Kang YK,Chen Z,et al. Efficacy and safety of sorafenib in patients in theAsia-Pacific region with advanced hepatocellular carcinoma: A phase IIIrandomised,double-blind,placebo-controlled trail. Lancet Oncol,2009,10:25-34.
    63. Raoul JL, Bruix J, Greten TF, et al. Relationship between baseline hepatic status andoutcome, and effect of sorafenib on liver function: SHARP trial subanalyses. J Heptol,2012,56:1080-88.
    64. Escudier B, Eisen T,Stadler WM, et al. Sorafenib in advanced clear-cell renal–cellcarcinoma. N Engl J Med,2007,356:125-34.
    65. Escudier B, Szczylik C, Hutson TE, et al. Randomized phase II trial of first-line treatmentwith sorafenib versus interferon alfa-2a in patients with metastatic renal cell carcinoma. JClin Oncol2009,27:12809.
    66. Scagliotti G, Novello S, von Pawel J, et al. Phase III study of carboplatin and paclitaxelalone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol,2010;28:183542.
    67. Paz-Ares LG, Biesma B, Heigener D, et al. Phase III, randomized, double-blind, placebocontrolled trial of gemcitabine/cisplatin alone or with sorafenib for the first-line treatment ofadvanced, nonsquamous non-small-cell lung cancer. J Clin Oncol2012,30:308492.
    68. Chen J, Zhang B, Wong N, et al. Sirtuin1is upregulated in a subset of hepatocellularcarcinomas Where It Is Essential for telomere maintenance andtumor cell growth. CancerRes.2011,71(12),4138–4149.
    1. Egger, G,; Liang, G,; Aparicio, A,; Jones, P.A. Epigenetics in human disease and prospectsfor epigenetic therapy. Nature2004,429,457-63.
    2. Jones, P.A,; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat RevGenet.2002,3,415-428.
    3. Jones, P.A,; Baylin, S.B.; The epigenomics of cancer. Cell2007,128,683-692.
    4. Jones, P.A,; Laird, P.W. Cancer epigenetics comes of age. Nat Genet.1999,21,163-167.
    5. Feinberg, A.P,; Ohlsson, R,; Henikoff, S. The epigenetic progenitor origin of humancancer. Nat. Rev. Gent.2006,7,21-33.
    6. Jones, P.A,; Martienssen, R. A blueprint for a human epigenome project: the AACRhuman epignome workshop. Cancer Res2005,65,11241-11246.
    7. Reya, T,; Morrison, S.J,; Clarke, M.F,; Weissman, I.L. Stem cells, cancer, and cancer stemcells. Nature2001,414,105-111.
    8. Evans, M.J,; Kaufman, M.H. Establishment in culture of pluripotential cells from mouseembryos. Nature1981,292,154-156.
    9. Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured inmedium conditioned by teratocarcinoma stem cells. Proc. Natl Acad Sci. USA1981,78,7634-7638.
    10. Pece, S,; Tosoni, D,; Confalonieri, S,; Mazzarol, G,; Vecchi, M,; Ronzoni, S,; Bernard, L,;Viale, G,; Pelicci, PG,; Di Fiore, P.P. Biological and molecular heterogeneity of breastcancers correlates with their cancer stem cell content. Cell2010,140,62–73.
    11. Bonnet, D,; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy thatoriginates from a primitive hematopoietic cell. Nat. Med.1997,730-737.
    12. Ma, S,; Lee, T.K,; Zheng, B.J,; Chan, K.W,; Guan, X.Y. CD133+HCC cancer stem cellsconfer chemoresistance by preferential expression of the Akt/PKB survival pathway.Oncogene2008,27,1749–1758.
    13. Al-Hajj, M,; Wicha, M.S,; Benito-Hernandez, A,; Morrison, S.J,; Clarke, M.F.Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA2003,100,3983–3988.
    14. Singh, S.K,; Clarke, I.D,; Terasaki, M,; Bonn, V.E,; Hawkins, C,; Squire, J,; Dirks, P.B.Identification of a cancer stem cell in human brain tumors. Cancer Res.2003,63,5821–5828.
    15. O’Brien, C.A,; Pollett, A,; Gallinger, S,; Dick, J.E. A human colon cancer cell capable ofinitiating tumour growth in immunodeficient mice. Nature2007,445,106–110.
    16. Li, C,; Heidt, D.G,; Dalerba, P,; Burant, C.F,; Zhang, L,; Adsay, V,; Wicha, M,; Clarke,M.F,; Simeone, D.M.. Identification of pancreatic cancer stem cells. Cancer Res.2007,67,1030–1037.
    17. Feinberg, A.P,; Tycko, B. The history of cancer epigenetics. Nat. Rev. Cancer2004,4,143–153.
    18. Esteller, M. Epigenetics in cancer. N. Engl. J. Med2008,358,1148-1159.
    19. Wang, Y,; Leung, C.C. An evaluation of new criteria for CpG islands in the humangenome as gene markers. Bioinformatics2004,20,1378-2385.
    20. Li, E,; Bestor, T.H,; Jaenisch, R. Targeted mutation of the DNA methyltransferase generesults in embryonic lethality. Cell1992,69,915–926.
    21. Okano, M,; Bell, D.W,; Haber, D.A,; Li, E. DNA methyltransferases Dnmt3a andDnmt3b are essential for de novo methylation and mammalian development. Cell1999,99,247–257.
    22. Klose, R.J,; Bird, A.P. Genomic DNA methylation: the mark and its mediators. TrendsBiochem. Sci.2006,31,89–97.
    23. Klarmann, G.J,; Decker, A,; Farrar, W.L. Epigenetic gene silencing in the Wnt pathway inbreast cancer. Epigenetics2008,3,59-63.
    24. Lindvall, C,; Bu, W,; Williams, B.O,; Li, Y. Wnt signaling, stem cells, and the cellularorigin of breast cancer. Stem cell2008,3,157-168.
    25. De Sousa, E.M.F,; Colak, S,; Buikhuisen, J,; Koster, J,; Cameron, K,; De Jong, J.H,;Tuynman, J.B,; Prasetyanti, P.R,; Fessler, E,; Van den Bergh S.P. et al. Methylation ofcancer-stem-cell-Associated Wnt target genes predicts poor prognosis in colorectal cancerpatients. Cell Stem Cell2011,9,476-485.
    26. Br ske, A.M,; Vockentanz, L,; Kharazi, S,; Huska, M.R,; Mancini, E,; Scheller, M,; Kuhl,C,; Enns, A,; Prinz, M,; Jaenisch, R. et al. DNA methylation protects hematopoietic stemcell multipotency from myeloerythroid restriction. Nat Genet2009,41,1207–1215.
    27. Sen, G.L,; Reuter, J.A,; Webster, D.E,; Zhu, L,; Khavari, P.A,; DNMT1maintainsprogenitor function in self-renewing somatic tissue. Nature2010,463,563–567.
    28. You, H,; Ding, W,; Rountree, C.B. Epigenetic regulation of cancer stem cell markerCD133by transforming growth factor-beta. Hepatology2010,51,1635-44.
    29. Challen, G.A,; Sun, D,; Jeong, M,; Luo, M,; Jelinek, J,; Berg, J.S,; Bock, C,;Vasanthakumar, A,; Gu, H,; Xi, Y. et al. Dnmt3a is essential for hematopoietic stem celldifferentiation. Nat Gene.2011,44,23-31.
    30. Trowbridge, J.J,; Orkin, S.H,; Dnmt3a silences hematopoietic stem cell self-renewal. NatGenet2011,44,13-14.
    31. Luger, K,; M der, A.W,; Richmond, R.K,; Sargent, D.F,; Richmond, T.J. Crystal structureof the nucleosome core particle at2.8A resolution. Nature1997,389,251-260.
    32. Kouzarides, T. Chromatin modifications and their functions. Cell2007,128,693-705.
    33. Jenuwein, T,; Allis, C.D. Translating the histone code. Science2001,293,1074-1080.
    34. Sharma, S,; Kelly, K.T,; Jones, P.A. Epigenetics in cancer. Carcinogenesis2010,31,27-36.
    35. Kouzarides, T. Acetylation: A regulatory modification to rival phosphorylation? EMBO J.2000,19,1176-1179.
    36. Yang, X.J. Lysine acetylation and the bromodomain: a new partnership for signaling.Bioessays2004,26,1076-1078.
    37. Lee, K.K,; Workman, J.L. Histone acetyltransferase complexes: One size doesn't fit all.Nat. Rev. Mol. Biol.2007,8,284-295.
    38. Shahbazian, M.D,; Grunstein, M. Functions of site-specific histone acetylation anddeacetylation. Annu Rev Biochem2007,76,75-100.
    39. Choudhary, C,; Kumar, C,; Gand, F,; Nielsen, M,; Rehman, M,; Walther, T.C,; Olsen, J.V,;Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellularfunctions. Science2009,14,834-840.
    40. Sharma, S.V,; Lee, D.Y,; Li, B.H,; Quinlan, M.P,; Takahashi, F,; Maheswaran, S,;McDermott, U,; Azizian, N,; Zou, L,; Michael, A. et al. A chromatin-nediated reversibledrug-tolerant state in cancer cell subpopulations. Cell2010,141,69-80.
    41. Vermeulen, L,; Todaro, M,; de Sousa Mello, F,; Sprick, M.R,; Kemper, K,; Perez Alea,M,; Richel, D.J,; Stassi, G,; Medema, J.P. Single-cell cloning of colon cancer stem cellsreveals a multi-lineage differentiation capacity. Proc. Natl. Acad. Sci. USA2008,105,13427–13432.
    42. Bolden, J.E,; Peart, M.J,; Johnstone, R.W. Anticancer activities of histone deacetylaseinhibitors. Nat. Rev. Drug Discov.2006,5,769–784.
    43. Pal, S,; Sif, S. Interplay between chromatin remodelers and protein argininemethyltransferases. J. Cell. Physiol.2007,213,306-315.
    44. Shi, Y. Histone lysine demethylases: emerging roles in development, physiology anddiseas. Nat Rev Genet2007,8,829-833.
    45. Mosammaparast, N,; Shi, Y. Reversal of histone methylation: biochemical and molecularmechanisms of histone demethylases. Annu. Rev. Biochem.2010,79,155–179.
    46. Trewick, S. C,; McLaughlin, P. J,; Allshire, R. C. Methylation: lost in hydroxylation?EMBO Rep.2005,6,315–320.
    47. Tsukada, Y,; Fang, J,; Erdjument-Bromage, H,; Warren, M.E,; Borhcers, C.H,; Tempst,P,; Zhang, Y. Histone demethylation by a family of JmjC domain-containing proteins.Nature2006,439,811–816.
    48. Klose, R. J,; Kallin, E. M,; Zhang, Y. JmjC-domaincontaining proteins and histonedemethylation. Nature Rev. Genet.2006,7,715–727.
    49. Harris, W.J,; Huang, X,; Lynch, J.T,; Spencer, G.J,; Hitchin, J.R,; Li, Y.Y,; Ciceri, F,;Blaser, J.G,; Greystoke, B.F,; Jordan, A.M. The histone demethylase KDM1A sustainsthe oncogenic potential of MLL-AF9leukemia stem cells. Cell Stem Cell2012,21,473-487.
    50. Schenk, T,; Chen, W.C,; G llner, S,; Howell, L,; Jin, L.Q,; Hebestreit, K,; Klein, H.U,;Popescu, A.C,; Burnett, A,; Mills, K. Inhibition of the LSD1(KDM1A) demethylasesreactivates the all-trans-retinoic acid differentiation pathway in acute myeloid eukemia.Nature Med.2012,14,605-612.
    51. Roesch, A,; Fukunaga-Kalabis, M,; Schmidt, E.C,; Zabierowski, S.E,; Brafford, P.A,;Vultur, A,; Basu, D,; Gimotty, P,; Vogt, T,; Herlyn, M. A temporarily distinctsubpopulation of slow-cycling melanoma cells is required for continuous tumor growth.Cell2010,141,583–594.
    52. Visvader, J.E.,; Lindeman, G.J. Cancer Stem Cells: Current Status and EvolvingComplexities. Cell Stem Cell2012,10,717-728.
    53. Schwartz, Y.B,; Pirrotta, V. Polycomb silencing mechanisms and the management ofgenomic programmes. Nat. Rev. Genet.2007,8,9–22.
    54. Levine, S.S,; Weiss, A,; Erdjument-Bromage, H,; Shao, Z,; Tempst, P,; Kingston, R.E.The core of the polycomb repressive complex is compositionally and functionallyconserved in flies and humans. Mol. Cell. Biol.2002,22,6070–6078.
    55. Valk-Lingbeek, M.E,; Bruggeman, S.W,; van Lohuizen, M. Stem cells and cancer; thepolycomb connection. Cell2004,118,409–418.
    56. de Napoles, M,; Mermoud, J.E,; Wakao, R,; Tang, Y.A,; Endoh, M,; Appanah, R,;Nesterova, T.B,; Silva, J,; Otte, A.P,; Vidal, M. et al. Polycomb group proteins Ring1A/Blink ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev.Cell2004,7,663–676.
    57. Wang, H,; Wang, L,; Erdjument-Bromage, H,; Vidal, M,; Tempst, P,; Jones, R.S,; Zhang,Y. Role of histone H2A ubiquitination in Polycomb silencing. Nature,2004,431,873–878.
    58. Cao, R,; Wang, L,; Wang, H,; Xia, L,; Erdjument-Bromage, H,; Tempst, P,; Jones, R.S,;Zhang, Y. Role of histone H3lysine27methylation in Polycomb-group silencing.Science2002,298,1039–1043.
    59. Cao, R,; Zhang, Y. The functions of E(Z)/EZH2-mediated methylation of lysine27inhistone H3. Curr. Opin. Genet. Dev.2004,14,155–164.
    60. Czermin, B,; Melfi, R,; McCabe, D,; Seitz, V,; Imhof, A,; Pirrotta, V. Drosophilaenhancer of Zeste/ESC complexes have a histone H3methyltransferase activity thatmarks chromosomal Polycomb sites. Cell2002,111,185–196.
    61. Kirmizis, A,; Bartley, S.M,; Kuzmichev, A,; Margueron, R,; Reinberg, D,; Green, R,;Farnham, P.J. Silencing of human polycomb target genes is associated with methylationof histone H3Lys27. Genes Dev.2004,18,1592–1605.
    62. Kuzmichev, A,; Nishioka, K,; Erdjument-Bromage, H,; Tempst, P,; Reinberg, D. Histonemethyltransferase activity associated with a human multiprotein complex containing theEnhancer of Zeste protein. Genes Dev.2002,16,2893–2905.
    63. Gal-Yan, E.N,; Egger, G,; Iniguez L,; Holster, H,; Einarsson, S,; Zhang, X,; Lin, J.C,;Liang, G,; Jones, PA,; Tanay, A. Frequent switching of polycomb repressive marks andDNA hypermethylation in the PC3prostate cancer cell line. Proc. Natl. Acad. Sci. U S A2008,105,12979-12984.
    64. Sauvageau, M,; Sauvageau, G. Polycomb group proteins: multi-faceted regulators ofsomatic stem cells and cancer. Cell Stem Cell2010,7,299-313.
    65. Ito, K,; Hirao, A,; Arai, F,; Matsuoka, S,; Takubo, K,; Hamaguchi, I,; Nomiyama, K,;Hosokawa, K,; Sakurada, K,; Nakagata, N. et al. Regulation of oxidative stress by ATMis required for self-renewal of haematopoietic stem cells. Nature2004,431,997–1002.
    66. Nijnik, A,; Woodbine, L,; Marchetti, C,; Dawson, S,; Lambe, T,; Liu, C,; Rodrigues, N.P,;Crockford, T.L,; Cabuy, E,; Vindigni, A. et al. DNA repair is limiting for haematopoieticstem cells during ageing. Nature2007,447,686–690.
    67. Rossi, D.J,; Seita, J,; Czechowicz, A,; Bhattacharya, D,; Bryder, D,; Weissman, I.L.Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNAdamage accumulation during aging. Cell Cycle2007,6,2371–2376.
    68. Ruzankina, Y,; Pinzon-Guzman, C,; Asare, A,; Ong, T,; Pontano, L,; Cotsarelis, G,;Zediak, V.P,; Velez, M,; Bhandoola, A,; Brown, E.J. Deletion of the developmentallyessential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. CellStem Cell2007,1,113–126.
    69. Bracken, A.P,; Kleine-Kohlbrecher, D,; Dietrich, N,; Pasini, D,; Gargiulo, G,; Beekman,C,; Theilgaard-Monch, K,; Minucci, S,; Porse, B.T,; Marine, J.C. et al. The Polycombgroup proteins bind throughout the INK4A-ARF locus and are disassociated in senescentcells. Genes Dev.2007,21,525–530.
    70. Tzatsos, A,; Bardeesy, N. Ink4a/Arf regulation by let-7b and Hmga2: a genetic pathwaygoverning stem cell aging. Cell Stem Cell2008,3,469–470.
    71. Bao, S,; Wu, Q,; McLendon, R.E,; Hao, Y,; Shi, Q,; Hjelmeland, A.B,; Dewhirst, M.W,;Bigner, D.D,; Rich, J.N. Glioma stem cells promote radioresistance by preferentialactivation of the DNA damage response. Nature2006,444,756–760.
    72. Zhang, M,; Behbod, F,; Atkinson, R.L,; Landis, M.D,; Kittrell, F,; Edwards, D,; Medina,D,; Tsimelzon, A,; Hilsenbeck, S,; Green, J.E. et al. Identification of tumor-initiatingcells in a p53-null mouse model of breast cancer. Cancer Res.2008,68,4674–4682.
    73. Chang, C.Ju,; Yang, J.Y,; Xia, W.Y,; Chen, C.Te,; Xie, X.M,; Chao, C.H,; Woodward,W.A,; Hsu, J.M,; Hortobagyi, G.N. et al. EZH2promotes expansion of breast tumorinitiating cells through activation of RAF1-β-catenin signaling. Cancer Cell2011,19,86-100.
    74. Wilson, B.G,; Wang, X,; Shen, X.H,; McKenna, E.S,; Lemieux, M.E,; Cho, Yoon-Jae,;Koellhoffer, E.C,; Pomeroy, S.L, Orkin, S.H,; Roberts1,C.W.M. Epigenetic antagonismbetween polycomb and SWI/SNF complexes during oncogenic transformation. CancerCell2010,18,316–328.
    75. Haupt, Y,; Bath, M.L,; Harris, A.W,; Adams, J.M. Bmi-1transgene induces lymphomasand collaborates with myc in tumorigenesis. Oncogene1993,8,3161–3164.
    76. Jacobs, J.J,; Scheijen, B,; Voncken, J.W,; Kieboom, K,; Berns, A,; van Lohuizen, M.Bmi-1collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosisvia INK4a/ARF. Genes Dev.1999,13,2678–2690.
    77. Lessard, J,; Sauvageau, G. Bmi-1determines the proliferative capacity of normal andleukaemic stem cells. Nature2003,423,255–260.
    78. Godlewski, J,; Nowicki, M.O,; Bronisz, A,; Williams, S,; Otsuki, A,; Nuovo, G,;Raychaudhury, A,; Newton, H.B,; Chiocca, E.A,; Lawler, S. Targeting of the Bmi-1oncogene/stem cell renewal factor by microRNA-128inhibits glioma proliferation andself-renewal. Cancer Res.2008,68,9125–9130.
    79. Lukacs, R.U,; Memarzadeh, S,; Wu, H,; Witte, O.N. Bmi-1is a crucial regulator ofprostate stem cell self-renewal and malignant transformation. Cell Stem Cell2010,7,682-693.
    80. He, L,; Hannon, G.J. MicroRNs, small RNAs with big role in gene regulation. Nat. Rev.Genet.2004,5,522-531.
    81. Bourguignon, L.Y.; Earle, C.; Wong, G.; Spevak, C.C.; Krueger, K. Stem cell marker(Nanog) and Stat-3signaling promote MicroRNA-21expression and chemoresistance inhyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene2012,2,149–160.
    82. Shimono, Y,; Zabala, M,; Cho, R.W,; Lobo, N,; Dalerba, P,; Qian, D,; Diehn, M,; Liu, H,;Panula, S.P,; Chiao, E. et al. Downregulation of miRNA-200c links breast cancer stemcells with normal stem cells. Cell2009,138,592–603.
    83. Fabri, M,; Garzon, R,; Cimmino, A,; Liu, Z,; Zanesi, N,; Callegari, E,; Liu, S,; Alder, H,;Costinean, S,; Fernandez-Cymering, C,; Volinia, S. et al. MicoRNA-29family revertsaberrant methylation in lung cancer by targeting DNA methyltransfease3A and3B. Proc.Natl. Acad. Sci. USA2007,104,15805-15810.
    84. Feiedaman, J.M. Liang, G.N,; Liu, C.C,; Wolff, E.M,; Tsai, Y.C,; Ye, W,; Zhou, X.H,;Jones, P.A. The putative tumor suppressor MicoRNA-101modulates the cancerepigenome by repressing the polycomb group protein EZH2. Cancer Res.2009,69,2623-2629.
    85. Sander, S,; Bullinger, L,; Klapproth, K,; Fiedler, K,; Kestler, H.A,; Barth, T.F,; Mo¨ ller,P,; Stilgenbauer, S,; Pollack, J.R,; Wirth, T. MYC stimulatesEZH2expression byrepression of its negative regulator miR-26a. Blood2008,112,4202–4212.
    86. Dawson, M.A,; Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell2012,150,12-26.
    87. Kaminskas, E,; Farrell, A,; Abraham, S,; Baird, A,; Hsieh, L.S,; Lee, S.L,; Leighton, J.K,;Patel, H,; Rahman, A,; Sridhara, R. et al. Approval summary: azacitidine for treatment ofmyelodysplastic syndrome subtypes. Clin Cancer Res2005,11,3604-3608.
    88. Kantarjian, H,; Issa, J.P,; Rosenfeld, C.S,; Bennett, J.M,; Albitar, M,; DiPersio, J,; Klimek,V,; Slack, J,; de Castro, C,; Ravandi, F,; et al. Decitabine improves patient outcomes inmyelodysplastic syndromes: results of a phase III randomized study. Cancer2006106,1794-1803.
    89. Olsen, E.A,; Kim, Y.H,; Kuzel, T.M,; Pacheco, T.R,; Foss, F.M,; Parker, S,; Frankel, S.R,;Chen, C,; Ricker, J.Lv Arduino, J.M. et al. Phase IIb multicenter trial of vorinostat inpatients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma.J. Clin. Oncol.2007.25,3109–3115.
    90. Piekarz, R.L,; Frye, R,; Turner, M,; Wright, J.J,; Allen, S.L,; Kirschbaum, M.H,; Zain, J,;Prince, H.M,;Leonard, J.P,; Geskin, L.J. et al. Phase II multi-institutional trial of thehistone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneousT-cell lymphoma. J. Clin. Oncol.2009,27,5410–5417.
    91. Belinsky, S.A,; Klinge, D.M,; Stidley, C.A,; Issa, J.P,; Herman, J.G,; March, T.H,; Baylin,S.B. Inhibition of DNA methylation and histone deacetylation prevents murine lungcancer. Cancer Res2007,63,7089-7093.
    92. Visvader, J. E,; Lindeman G.J. Cancer stem cells in solid tumours: accumulatingevidence and unresolved questions. Nat Rev Cancr2008,8,755-768.
    93. Singh, A,; Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis ofevil in the war on cancer. Oncogene2010,29,4741-4751.
    94. Fan, S. T,; Yang, Z.F,; Ho, D.W,; Ng, M.N,; Yu, W.C,; Wong, J. Prediction ofposthepatectomy recurrence of hepatocellular carcinoma by circulating cancer stem cells:a prospective study. Ann Surg2011,254,569-576.
    95. Tahiliani, M,; Koh, K.P,; Shen, Y,; Pastor, W.A,; Bandukwala, H,; Brudno, Y,; Agarwal,S,; Iyer, L.M., Liu, D.R,; Aravind, L. et al. Conversion of5-methylcytosine to5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science2009,324,930–935.
    96. Ito, S,; D’Alessio, A.C,; Taranova, O.V,; Hong K,; Sowers, L.C,; Zhang, Y. Role of Tetproteins in5mC to5hmC conversion, ES-cell self-renewal and inner cell massspecification. Nature2010,466,1129–1133.
    97. Globisch, D,; Münzel, M,; Müller, M,; Michalakis, S,; Wagner, M,; Koch, S,; Bru¨ ckl, T,;Biel, M,; Carell, T. Tissue distribution of5-hydroxymethylcytosine and search for activedemethylation intermediates. PLoS ONE2010,5, e15367.
    98. Song, C.X,; Szulwach, K.E,; Fu, Y,; Dai, Q,; Yi, C,; Li, X,; Li, Y,; Chen, C.H,; Zhang,W,; Jian, X. et al. Selective chemical labeling reveals the genomewide distribution of5-hydroxymethylcytosine. Nat. Biotechnol2011,29,68–72.
    99. Udani, V.M. The continuum of stem cell transdifferentiation: possibility of hematopoieticstem cell plasticity with concurrent CD45expression. Stem Cells Dev2006,15,1-3.
    100.Liu, Y,; Rao, M.S. Transdifferentiation-factor or artifact. J Cell Biochem2003,88,29-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700