Sorafenib对肝癌侵袭转移潜能的影响及其干预—实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手术切除是原发性肝癌最有效的治疗方法,但即使根治术后5年转移复发率仍高达60-70%。对不能切除的肝癌和肝癌术后转移复发的预防,抗血管生成是一条可探索的途径,但新近的报道,抗血管生成也可促进转移。分子靶向药物sorafenib是目前唯一经Ⅲ期临床试验证实提高晚期肝癌病人生存期的药物,但仅延长3个月生存期;在东方晚期肝癌病人的Ⅲ期临床试验中,sorafenib虽延长生存期,但仅推迟肿瘤进展。作为包括抗血管生成作用的sorafenib是否也有促进癌转移的作用,也是需要弄清的问题。
     本文用不同转移潜能的人肝癌裸鼠模型,研究sorafenib治疗过程中肿瘤进展的原因,以及对肿瘤侵袭转移潜能的影响。鉴于肿瘤转移与肿瘤细胞及其所处微环境有关,在肝癌中也发现微环境中的炎症因子、巨噬细胞可预测肝癌患者术后复发转移。为此,本文拟从肿瘤细胞和肿瘤相关巨噬细胞两个方面进行研究,并探索进一步提高sorafenib疗效的途径。
     1.低剂量sorafenib诱导肝癌侵袭转移潜能增强
     本部分工作的主要目的是在不同转移潜能的人肝癌裸鼠模型中,探索不同剂量sorafenib对肿瘤侵袭转移潜能的影响。首先在我所高转移人肝癌裸鼠模型(LCI-D20)中,发现sorafenib低剂量(30mg/kg)和高剂量(100mg/kg)均明显抑制肿瘤生长,并延长荷瘤鼠生存期。Sorafenib虽抑制肺转移灶数量,但并未降低肺转移率;而考虑到sorafenib治疗组肿瘤体积更小,以标化肺转移率(肺转移灶数目/肿瘤体积)计算,sorafenib治疗组有促进肺转移趋势(sorafenib低剂量组与对照组比较,P=0.069)。研究还发现sorafenib低剂量(30mg/kg)明显促进肝内播散。尽管sorafenib大剂量(100mg/kg)组在用药期间未观察到促转移,但治疗一周后停药,总体生存更差,在对照组小鼠全部死亡之前,大剂量组小鼠都已死亡。
     为了进一步验证此现象,我们以低剂量sorafenib (30mg/kg)在荧光标记的不同转移潜能的人肝癌裸鼠原位模型LM3-RFP(高转移潜能,简称LM3)和HepG2-GFP(低转移潜能,简称HepG2)中重复此试验,发现低剂量sorafenib (30mg/kg)明显促进肝内播散,且不降低LM3模型腹腔转移率和肺转移率。通过流式细胞仪检测外周血肿瘤细胞(circulating tumor cells, CTC),发现低剂量sorafenib (30mg/kg)明显促进CTC增多。
     2.乏氧导致上皮-间质转化是sorafenib促侵袭转移的重要机理
     我们通过免疫组化染色内源性乏氧标记物乏氧诱导因子(hypoxia inducible factor-1α, HIF-1α)和外源性乏氧标记物哌莫硝唑(Pimodazole)发现sorafenib治疗组肿瘤组织明显乏氧。乏氧可通过诱导上皮-间质转化(EMT)促进侵袭转移,因此我们在LM3和]HepG2模型中,分别以免疫组化染色EMT相关指标E-cadherin、N-cadherin和Vimentin,发现sorafenib显著下调E-cadherin,同时上调N-cadherin和Vimentin,提示sorafenib治疗后肿瘤发生上皮-间质转化,且侵袭性增强。
     3. Sorafenib治疗下调HTATIP2等抑癌基因导致凋亡逃脱是重要分子基础
     我们发现sorafenib治疗后残余肿瘤对凋亡发生抵抗,“肿瘤信号通路发现者PCR芯片”提示6个抑癌基因HTATIP2、SERPINB5、SYK、Rb1、FAS、P53等和1个促凋亡基因肿瘤坏死因子(TNF)均下调,这些下调的基因均为促凋亡基因,且多数与P53有关。逃脱凋亡是恶性肿瘤细胞的6大特征之一,诱导或促进凋亡可抑制肿瘤细胞发生转移。为此我们推测,sorafenib治疗后,抗凋亡基因SERPINB5、SYK、Rb1、FAS、HTATIP2、P53、TNF等的下调,导致肿瘤逃脱凋亡。
     4.阿司匹林上调HTATIP2等,抑制sorafenib的促侵袭转移作用
     上述研究提示sorafenib治疗后,抑癌基因HTATIP2、SERPINB5、Rb1、FAS、P53、TNF等均下调,这些抗凋亡基因均与P53有关,且促进侵袭转移。而aspirin具有上调P53和促凋亡作用,为此探索合用aspirin是否可通过P53作为sorafenib的增敏剂。研究结果表明,合用aspirin后显著抑制肿瘤生长、转移,肝内播散灶消失,生存期延长。基因水平检测几种抑癌基因,发现aspirin仅显著上调HTATIP2-mRNA,但对P53-mRNA无影响。蛋白水平检测证实aspirin上调HTATIP2蛋白。
     我们推测sorafenib诱导的肝内播散灶增多和aspirin逆转sorafenib促肝内播散增多可能主要通过HTATIP2发挥作用。为此选择慢病毒下调的方法,得到慢病毒稳定转染shHTATIP2的细胞株LM3-LV-shHTATIP2和转染相应空载体对照细胞株LM3-LV-shNon,发现LM3-LV-shHTATIP2肿瘤相比LM3-LV-shNon肿瘤边界不清,提示局部侵袭性更强,LM3-LV-shHTATIP2肿瘤相比LM3-LV-shNon肿瘤,在sorafenib治疗下促进肝内播散的作用较弱,而合用aspirin后对sorafenib诱导的肝内播散的抑制作用也较弱(合用aspirin+sorafenib相比单用sorafenib,在LM3-LV-shHTATIP2肿瘤降低50%的肝内播散;而在LM3-LV-shNon肿瘤中降低100%肝内播散)。另外合用aspirin+sorafenib对肺转移的抑制作用,在LM3-LV-shHTATIP2肿瘤中也较LM3-LV-shNon肿瘤中更弱。
     5.体外用aspirin与sorafenib合用观察促凋亡作用
     体外实验以sorafenib 5μM作用于LM3细胞,选择不同时间点(0h、3h、6h、12h、24h)观察sorafenib对HTATIP2-mRNA的作用。发现sorafenib 5μM明显下调HTATIP2-mRNA;选择aspirin 0.1mM/0.5mM作用于细胞株LM3-LV-shHTATIP2、LM3-LV-shNon和LM3-wt,选择不同时间点观察,发现aspirin 0.1 mM/0.5 mM均明显上调HTATIP2-mRNA和HTATIP2蛋白;合用sorafenib 5μM+aspirin 0.1mM/0.5mM明显逆转sorafenib 5μM对HTATIP2的抑制作用。Annexin V/PI检测细胞凋亡发现,sorafenib+aspirin明显增强sorafenib对LM3-wt和LM3-LV-shHTATIP2的促凋亡作用。因此证明aspirin主要通过上调HTATIP2增强sorafenib的促凋亡作用。
     6.巨噬细胞抑制剂减少sorafenib诱导的巨噬细胞浸润而增效
     在血浆和肿瘤组织中发现sorafenib治疗组巨噬细胞趋化因子VEGF、SDF-1α和CSF-1明显升高,伴随肿瘤组织中F4/80和CD11b阳性巨噬细胞浸润明显增多,以及外周血中F4/80和CD11b阳性细胞数目增多。合用巨噬细胞抑制剂唑来磷酸和氯磷酸盐脂质体通过减少巨噬细胞的浸润进一步抑制肿瘤生长,并减少肺转移。本部分工作提示,肿瘤在sorafenib治疗过程中导致肿瘤相关巨噬细胞通过分泌VEGF对抗sorafenib治疗作用,可用抑制骨转移药物唑来磷酸增强sorafenib对肝癌的抑制作用。
     结论
     1. Sorafenib低剂量在不同转移潜能人肝癌原位裸鼠模型中促进肝癌侵袭转移潜能。
     2. Sorafenib的促侵袭转移作用与下调抑癌基因HTATIP2有关。
     3. Aspirin上调HTATIP2促肝癌细胞凋亡,有逆转sorafenib的促侵袭转移潜能作用。
     4.巨噬细胞抑制剂唑来磷酸通过清除sorafenib诱导的巨噬细胞而增效。
     应用价值
     1.发现低剂量sorafenib促进肝癌侵袭转移潜能增强,合用aspirin和sorafenib通过上调HTATIP2促进肿瘤细胞凋亡和抑制肿瘤侵袭转移,为提高sorafenib临床疗效提供线索。
     2.合用巨噬细胞抑制剂唑来磷酸可提高sorafenib对肝癌的抑制作用。
     3.为今后针对凋亡通路开发抗肿瘤药物,或为寻找sorafenib的合用药物提供依据。
     创新点
     1.在人肝癌原位裸鼠模型发现sorafenib通过下调HTATIP2促进肝癌侵袭转移潜能。
     2.发现合用aspirin通过上调HTATIP2促进凋亡和抑制肿瘤侵袭转移,增强sorafenib对肝癌生长和转移的抑制作用。
     3.发现巨噬细胞浸润增多为sorafenib治疗逃脱机制之一,清除巨噬细胞可增强sorafenib抑制肝癌作用。
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers in Asia and Africa. Despite endeavors have been made to improve its prognosis, the overall survival, however, is still unsatisfied. The high rate of metastasis and recurrence after curative resection was responsible for the poor prognosis of resectable HCC. Anti-angiogenesis is an attractive treatment for HCC, because HCC is a typical hypervascular cancer, its growth, metastasis or even hepatocarcinogenesis depend on angiogenesis. Angiogenesis inhibitors have been hailed as opening a new era in cancer therapy. But a flurry of animal studies suggests that such drugs may in certain situations actually accelerate the spread of cancer.
     The phase III sorafenib SHARP trial as well as oriental sorafenib trial finally demonstrated a significant survival benefit, making sorafenib the new reference standard for systemic therapy of patients with advanced HCC. However, the survival benefit and a retardation of tumor progression were only about three months. As an angiogenesis inhibitor, it should be clarified whether sorafenib promote metastasis.
     Using different orthotopic human hepatocelluar carcinoma nude mice model with deferent metastatic potential, we investigated the mechanism of tumor progression under sorafenib treatment, and the effect of sorafenib on metastatic potential of HCC. As tumor metastasis can be also affected by tumor microenvironment, including the inflammatory cytokines or macrophages. Therefore, we investigated both tumor cell and tumor associated macrophages, and to explore clinical available approach to improve the effect of sorafenib in HCC.
     1. Low-dose sorafenib promote local invasion and metastatic potential of HCC.
     The purpose of this part is to investigated different dosage of sorafenib on invasion and metastatic potential of sorafenib with human HCC orthotopic nude mouse model with different metastatic potential. In a patient-like model LCI-D20, we found low-dose sorafenib and high-dose sorafenib significantly inhibited tumor growth and prolonged survival of mice bearing tumors. Sorafenib reduced number of metastatic lesion in lung but did not decrease lung metastatic rate. Because sorafenib-treated tumor was much smaller than that of control, when applying standardized lung metastatic rate (number of lung metastasis/tumor volume) we found sorafenib significantly promoted metastasis potential to lung. Low-dose sorafenib also induced intrahepatic metastasis, but this phenomenon was not observed in high-dose sorafenib group.
     To confirm this effect, we reconducted sorafenib treatment using red-or green-fluoresce protein infected tumor cells established in our institute LM3-RFP (high metastatic potential) and HepG2-GFP (low metastatic potential) and found that low-dose sorafenib did significantly promoted intrahepatic metastasis with no reduction of abdomen metastatic rate or lung metastatic rate. Low-dose sorafenib also induced significant increased circulating tumor cells as measured by flow cytometry.
     2. Hypoxia induced EMT is one mechanism of sorafenib to promote invasion and metastatic potential of HCC.
     Immunohistochemistry staining for HIF-la and Pimodazole revealed significant hypoxia induced by sorafenib. Hypoxia promotes metastasis by inducing EMT. In LM3-RFP and HepG2 model, sorafenib induce significant change in expression of a panel of EMT markers, including decrease of E-cadherin and elevation of N-cadherin and Vimentin, indicating enhanced invasion and metastatic potential of HCC undergoing sorafenib treatment.
     3. Down regulation of HTATIP2 and evasion of apoptosis induced by sorafenib as important molecular basis.
     Tumor Pathway Finder PCR Array was applied to screen possible key genes responsible for sorafenib induced invasion and metastatic potential. Twelve genes was significantly changed by sorafenib, and 6 of them were antioncogene HTATIP2、SERPINB5、SYK、Rb1、FAS、P53 and 1 was pro-apoptosis gene TNF. Since most of the antioncogenes were related to P53 and function as pro-apoptosis genes, we postulated that antioncogene down-regulation may help tumor cells evading apoptosis.
     4. Aspirin up-regulated HTATIP2 to revert the metastatic promotion effect of sorafenib.
     Aspirin has been revealed to induce apoptosis by up-regulating P53 and is clinical available, so we combined aspirin with sorafenib. Combination of aspirin and sorafenib significantly suppressed tumor growth and reduced lung metastasis in HCC model, and intrahepatic metastasis induced by sorafenib disappeared after combined with aspirin. RT-PCR was applied to evaluate gene level change of antioncogene and found aspirin only up-regulated HTATIP2-mRNA, but P53 and other antioncogenes were unaffected by aspirin. Down-regulation of HTATIP2 was also confirmed by western blotting at protein level. So we postulated that HTATIP2 was responsible for anti-metastatic potential effect of aspirin when combined with sorafenib.
     We constructed LM3 cells infected with LV-sh HTATIP2, LV-shNon, and started treatment with sorafenib or combination of sorafenib and aspirin after orthotopically inoculation. We found LM3-LV-shHTATIP2 model had more invasive tumor compared with LM3-wt tumor, and sorafenib did not induce more intrahepatic metastasis compared to control. And after treat by combination of aspirin, intrahepatic metastasis was reduced to a less extent compared with that in the LM3-wt model (50% vs.100). Aspirin also reduced lung metastasis in combination with sorafenib, but to a less extent compared with that in the LM3-wt model.
     5. In vitro experiments demonstrated apoptosis induction effect of combination of aspirin and sorafenib.
     We treated LM3 cells with sorafenib 5μM by a time course of 0h,3h,6h,9h and 12h, and revealed a reduction of HTATIP2 was most prominent in 3-6h. LM3-LV-shHTATIP2, LM3-LV-shNon and LM3-wt cell lines were exposes to 5μM sorafenib or 0.1 mM/0.5 mM aspirin, HTATIP2-mRNA was measured by RT-PCR and apoptosis were evaluated by Annexin V-PI using flow cytometry. Aspirin reverted down-regulation of HTATIP2 by sorafenib, enhanced apoptosis and reduced invasion cells when combined with sorafenib compared to sorafenib alone.
     6. Macrophage depletion enhanced effect of sorafenib by antiangiogenic and antimetastatic effect.
     Although sorafenib significantly inhibited tumor growth, it induced elevation of F4/80-and CD11b-positive cells in peripheral blood and increased infiltration of intratumoral macrophages, which was associated with elevation of plasma VEGF, SDF-la and CSF-1, suggesting that macrophages played a role in the progression of tumor undergoing sorafenib treatment. With depletion of macrophages by clodrolip or zoledronic acid, tumor progression, tumor angiogenesis, and metastasis were significantly inhibited compared with that of mice treated by sorafenib alone. Zoledronic acid is clinical available and is promising to be combined with sorafenib for HCC patients.
     Conclusions:
     1. Low-dose sorafenib promoted invasion and metastatic potential in human HCC nude mouse models with different metastatic potential.
     2. HTATIP2 down-regulation contributed to enhanced metastatic potential of HCC induced by sorafenib.
     3. Combination of aspirin with sorafenib promoted apoptosis and reverted sorafenib's pro-invasion and pro-metastasis effect by down-regulating HTATIP2.
     4. Zoledronic acid enhanced antitumor effect of sorafenib by macrophage depletion.
     The novelties of this work:
     1. Sorafenib promoted metastatic potential by down-regulating HTATIP2 in two orthotopic human HCC nude mouse models.
     2. Combination of aspirin enhanced antitumor effect of sorafenib by promoting apoptosis and inhibiting invasion and metastasis through up-regulating HTATIP2.
     3. Macrophage recruitment and infiltration contributed to evasive resistance in mice undergoing sorafenib treatment. Macrophage depletion enhanced antitumor effect of sorafenib.
引文
1. Folkman J, Role of angiogenesis in tumor growth and metastasis. Semin Oncol, 2002.29(6 Suppl 16):15-8.
    2. Rubenstein JL, Kim J, Ozawa T, et al., Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia,2000.2(4):306-314.
    3. Lamszus K, Kunkel P, and Westphal M, Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir Suppl,2003.88:169-77.
    4. Kunkel P, Ulbricht U, Bohlen P, et al., Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Research,2001.61(18): 6624-6628.
    5. Leenders WPJ, Kusters B, Verrijp K, et al., Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res,2004.10(18):6222-6230.
    6. Ebos JM, Lee CR, Cruz-Munoz W, et al., Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell,2009.15(3): 232-9.
    7. Paez-Ribes M, Allen E, Hudock J, et al., Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell,2009.15(3):220-31.
    8. Steeg PS, Angiogenesis inhibitors:motivators of metastasis? Nature Medicine, 2003.9(7):822-823.
    9. Franco M, Man S, Chen L, et al., Targeted anti-vascular endothelial growth factor receptor-2 therapy leads to short-term and long-term impairment of vascular function and increase in tumor hypoxia. Cancer Research,2006.66(7): 3639-3648.
    10. Yang ZF, Poon RTP, Liu YQ, et al., High doses of tyrosine kinase inhibitor PTK787 enhance the efficacy of ischemic hypoxia for the treatment of hepatocellular carcinoma:dual effects on cancer cell and angiogenesis. Molecular
    Cancer Therapeutics,2006.5(9):2261-2270.
    11. Yu JL, Rak JW, Coomber BL, et al., Effect of p53 status on tumor response to antiangiogenic therapy. Science,2002.295(5559):1526-8.
    12. Blagosklonny M, Hypoxia-inducible factor:Achilles' heel of antiangiogenic cancer therapy (review). Int J Oncol.,2001.19(2):257-62.
    13. Sullivan R and Graham CH, Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev,2007.26(2):319-31.
    14. Miyoshi A, Kitajima Y, Ide T, et al., Hypoxia accelerates cancer invasion of hepatoma cells by upregulating MMP expression in an HIF-1alpha-independent manner. Int J Oncol,2006.29(6):1533-9.
    15. Sun BS, Dong QZ, Ye QH, et al., Lentiviral-mediated miRNA against osteopontin suppresses tumor growth and metastasis of human hepatocellular carcinoma. Hepatology,2008. in press.
    16. Rofstad EK, Rasmussen H, Galappathi K, et al., Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptors. Cancer Research,2002.62(6):1847-1853.
    17. Bottaro DP and Liotta LA, Cancer-out of air is not out of action. Nature,2003. 423(6940):593-595.
    18. Pennacchietti S, Michieli P, Galluzzo M, et al., Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell,2003. 3(4):347-361.
    19. Krishnamachary B, Zagzag D, Nagasawa H, et al., Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Research,2006.66(5):2725-2731.
    20. Esteban MA, Tran MGB, Harten SK, et al., Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res,2006.66(7):3567-3575.
    21. Imai T, Horiuchi A, Wang CJ, et al., Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. American Journal of Pathology,2003.163(4):1437-1447.
    22. Yang AD, Fan F, Camp ER, et al., Chronic Oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res,2006.12(14):4147-4153.
    23. Fransvea E, Angelotti U, Antonaci S, et al., Blocking transforming growth factor-beta up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology,2008.47(5):1557-66.
    24. Osada T, Sakamoto M, Ino Y, et al., E-cadherin is involved in the intrahepatic metastasis of hepatocellular carcinoma. Hepatology,1996.24(6):1460-7.
    25. Cho SB, Lee KH, Lee JH, et al., Expression of E-and N-cadherin and clinicopathology in hepatocellular carcinoma. Pathol Int,2008.58(10):635-42.
    26. Yang MH, Chen CL, Chau GY, et al., Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology,2009.50(5):1464-74.
    27. Matsuo N, Shiraha H, Fujikawa T, et al., Twist expression promotes migration and invasion in hepatocellular carcinoma. BMC Cancer,2009.9:240.
    28. Lee TK, Poon RT, Yuen AP, et al., Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res,2006.12(18):5369-76.
    29. Gupta GP and Massague J, Cancer metastasis:building a framework. Cell,2006. 127(4):679-95.
    30. Gupta GP, Nguyen DX, Chiang AC, et al., Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature,2007.446(7137): 765-770.
    31. Xian X, Hakansson J, Stahlberg A, et al., Pericytes limit tumor cell metastasis. J Clin Invest,2006.116(3):642-51.
    32. Polyak K and Weinberg RA, Transitions between epithelial and mesenchymal states:acquisition of malignant and stem cell traits. Nat Rev Cancer,2009.9(4): 265-73.
    33. Yang J and Weinberg RA, Epithelial-mesenchymal transition:at the crossroads of development and tumor metastasis. Dev Cell,2008.14(6):818-29.
    34. Skobe M, Rockwell P, Goldstein N, et al., Halting angiogenesis suppresses carcinoma cell invasion. Nat Med,1997.3(11):1222-7.
    35. Nguyen DX, Bos PD, and Massague J, Metastasis:from dissemination to organ-specific colonization. Nat Rev Cancer,2009.9(4):274-84.
    36. Kuriyama S, Yamazaki M, Mitoro A, et al., Hepatocellular carcinoma in an orthotopic mouse model metastasizes intrahepatically in cirrhotic but not in normal liver. Int J Cancer,1999.80(3):471-6.
    37. Hanahan D and Weinberg RA, The hallmarks of cancer. Cell,2000.100(1):57-70.
    38. Dikshit P, Chatterjee M, Goswami A, et al., Aspirin induces apoptosis through the inhibition of proteasome function. J Biol Chem,2006.281(39):29228-35.
    39. Alfonso LF, Srivenugopal KS, Arumugam TV, et al., Aspirin inhibits camptothecin-induced p21CIP1 levels and potentiates apoptosis in human breast cancer cells. Int J Oncol,2009.34(3):597-608.
    40. Ito M, Jiang C, Krumm K, et al., TIP30 deficiency increases susceptibility to tumorigenesis. Cancer Res,2003.63(24):8763-7.
    41. Li X, Zhang Y, Cao S, et al., Reduction of TIP30 correlates with poor prognosis of gastric cancer patients and its restoration drastically inhibits tumor growth and metastasis. Int J Cancer,2009.124(3):713-21.
    42. Shi M, Yan SG, Xie ST, et al., Tip30-induced apoptosis requires translocation of Bax and involves mitochondrial release of cytochrome c and Smac/DIABLO in hepatocellular carcinoma cells. Biochim Biophys Acta,2008.1783(2):263-74.
    43. Shi M, Zhang X, Wang P, et al., TIP30 regulates apoptosis-related genes in its apoptotic signal transduction pathway. World J Gastroenterol,2005.11(2):221-7.
    44. Zhao J, Chen J, Lu B, et al., TIP30 induces apoptosis under oxidative stress through stabilization of p53 messenger RNA in human hepatocellular carcinoma. Cancer Res,2008.68(11):4133-41.
    45. Cole BF, Logan RF, Halabi S, et al., Aspirin for the chemoprevention of colorectal adenomas:meta-analysis of the randomized trials. J Natl Cancer Inst,2009. 101(4):256-66.
    46. Zhang W, Zhu XD, Sun HC, et al., Depletion of tumor-associated macrophages enhances effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res.2010. accepted.
    47. Ottewell PD, Monkkonen H, Jones M, et al., Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J Natl Cancer Inst, 2008.100(16):1167-78.
    48. Thompson K, Rogers MJ, Coxon FP, et al., Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis. Mol Pharmacol,2006.69(5):1624-32.
    49. Zeisberger SM, Odermatt B, Marty C, et al., Clodronate-liposome-mediated depletion of tumour-associated macrophages:a new and highly effective antiangiogenic therapy approach. Br J Cancer,2006.95(3):272-81.
    50. Hiraoka K, Zenmyo M, Watari K, et al., Inhibition of bone and muscle metastases of lung cancer cells by a decrease in the number of monocytes/macrophages. Cancer Sci,2008.99(8):1595-602.
    51. Gazzaniga S, Bravo AI, Guglielmotti A, et al., Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol,2007.127(8):2031-41.
    52. Nakao S, Kuwano T, Tsutsumi-Miyahara C, et al., Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest,2005.115(11):2979-91.
    53. Condeelis J and Pollard JW, Macrophages:Obligate partners for tumor cell migration, invasion, and metastasis. Cell,2006.124(2):263-266.
    54. Sharp AK and Colston MJ, The regulation of macrophage activity in congenitally athymic mice. Eur J Immunol,1984.14(1):102-5.
    55. Du R, Lu KV, Petritsch C, et al., HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell,2008.13(3):206-20.
    56. Grunewald M, Avraham I, Dor Y, et al., VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell,2006.124(1):175-89.
    57. Petit I, Jin D, and Rafii S, The SDF-1-CXCR4 signaling pathway:a molecular
    hub modulating neo-angiogenesis. Trends Immunol,2007.28(7):299-307.
    58. Goswami S, Sahai E, Wyckoff JB, et al., Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res,2005.65(12):5278-83.
    59. Siveen KS and Kuttan G, Role of macrophages in tumour progression. Immunol Lett,2009.123(2):97-102.
    60. Lin EY, Li JF, Bricard G, et al., Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol,2007. 1(3):288-302.
    61. Giraudo E, Inoue M, and Hanahan D, An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest,2004.114(5):623-33.
    1. Steeg PS. Angiogenesis inhibitors:motivators of metastasis? Nature Medicine 2003; 9(7):822-823.
    2. Rubenstein JL, Kim J, Ozawa T, et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2000; 2(4):306-314.
    3. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005; 8(4):299-309.
    4. Kunkel P, Ulbricht U, Bohlen P, et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Research 2001;
    61(18):6624-6628.
    5. Chang YS, Adnane J, Trail PA, et al. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol 2007; 59(5):561-74.
    6. Mangiameli D, Blansfield J, Kachala S, et al. Combination therapy targeting the tumor microenvironment is effective in a model of human ocular melanoma. Journal of Translational Medicine 2007; 5(1):38.
    7. Lamszus K, Brockmann MA, Eckerich C, et al. Inhibition of glioblastoma angiogenesis and invasion by combined treatments directed against vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and vascular endothelial-cadherin. Clinical Cancer Research 2005; 11(13):4934-4940.
    8. Leenders WPJ, Kusters B, Verrijp K, et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 2004; 10(18):6222-6230.
    9. Norden AD, Young GS, Setayesh K, et al. Bevacizumab for recurrent malignant gliomas:Efficacy, toxicity, and patterns of recurrence. Neurology 2008; 70(10):779-787.
    10. Narayana A, et al. Anti-angiogenic therapy using bevacizumab in recurrent high grade glioma:impact on local control and survival. J. Neurosurg. (in the press).
    11. Murray L, Abrams T, Long K, et al. SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clinical and Experimental Metastasis 2003; 20(8):757-766.
    12. Paez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009; 15(3):220-31.
    13. Ebos JM, Lee CR, Cruz-Munoz W, et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 2009; 15(3):232-9.
    14. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008; 8(8):592-603.
    15. Steeg PS. Angiogenesis inhibitors and hypoxia-Reply. Nature Medicine 2003; 9(9):1104-1105.
    16. Bottaro DP, Liotta LA. Cancer-out of air is not out of action. Nature 2003; 423(6940):593-595.
    17. Franco M, Man S, Chen L, et al. Targeted anti-vascular endothelial growth factor receptor-2 therapy leads to short-term and long-term impairment of vascular function and increase in tumor hypoxia. Cancer Research 2006; 66(7):3639-3648.
    18. Yang ZF, Poon RTP, Liu YQ, et al. High doses of tyrosine kinase inhibitor PTK787 enhance the efficacy of ischemic hypoxia for the treatment of hepatocellular carcinoma:dual effects on cancer cell and angiogenesis. Molecular Cancer Therapeutics 2006; 5(9):2261-2270.
    19. Yu JL, Rak JW, Coomber BL, et al. Effect of p53 status on tumor response to antiangiogenic therapy. Science 2002; 295(5559):1526-8.
    20. Pennacchietti S, Michieli P, Galluzzo M, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003; 3(4):347-361.
    21. Blagosklonny M. Hypoxia-inducible factor:Achilles' heel of antiangiogenic cancer therapy (review). Int J Oncol.2001; 19(2):257-62.
    22. Sullivan R, Graham CH. Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev 2007; 26(2):319-31.
    23. Rofstad EK, Rasmussen H, Galappathi K, et al. Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptors. Cancer Research 2002; 62(6):1847-1853.
    24. Miyoshi A, Kitajima Y, Ide T, et al. Hypoxia accelerates cancer invasion of hepatoma cells by upregulating MMP expression in an HIF-1alpha-independent manner. Int J Oncol 2006; 29(6):1533-9.
    25. Sun BS, Dong QZ, Ye QH, et al. Lentiviral-mediated miRNA against osteopontin suppresses tumor growth and metastasis of human hepatocellular carcinoma. Hepatology 2008; in press.
    26. Yang AD, Fan F, Camp ER, et al. Chronic Oxaliplatin resistance induces
    epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res 2006; 12(14):4147-4153.
    27. Krishnamachary B, Zagzag D, Nagasawa H, et al. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Research 2006; 66(5):2725-2731.
    28. Esteban MA, Tran MGB, Harten SK, et al. Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res 2006; 66(7):3567-3575.
    29. Imai T, Horiuchi A, Wang CJ, et al. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. American Journal of Pathology 2003; 163(4):1437-1447.
    30. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438(7069):820-7.
    31. Kaplan RN, Rafii S, Lyden D. Preparing the "soil":the premetastatic niche. Cancer Res 2006; 66(23):11089-11093.
    32. Pezzella F, Pastorino U, Tagliabue E, et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol.1997; 151(5):1417-23.
    33. Blouw B, Song HQ, Tihan T, et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 2003; 4(2):133-146.
    34. Du R, Lu KV, Petritsch C, et al. HIF1 [alpha] induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008; 13(3):206-220.
    35. Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284(5422):1994.
    36. Imanishi Y, Hu B, Jarzynka MJ, et al. Angiopoietin-2 stimulates breast cancer metastasis through the alpha-5-beta-1 integrin-mediated pathway. Cancer Res 2007; 67(9):4254-4263.
    37. Hu B, Jarzynka MJ, Guo P, et al. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alpha-v-beta-1 integrin and focal adhesion kinase signaling pathway. Cancer Res 2006; 66(2):775-783.
    38. Fan F, Jane SW, Marya FM, et al. Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 2005; 24(16):2647.
    39. Ai J, Zheng S, Zeng Y, et al. The expression and significance of vascular endothelial growth factor and its receptors in hepatocellular carcinoma cell lines with various metastatic potentialities. Zhonghua Gan Zang Bing Za Zhi.2008; 16(2):105-8.
    40. Yang AD, Camp ER, Fan F, et al. Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Res 2006; 66(1):46-51.
    41. Gao P, Zhou G-Y, Zhang Q-H, et al. Clinicopathological significance of peritumoral lymphatic vessel density in gastric carcinoma. Cancer Letters 2008; 263(2):223-230.
    42. Xian X, Hakansson J, Stahlberg A, et al. Pericytes limit tumor cell metastasis. J Clin Invest.2006; 116(3):642-51.
    43. Kobayashi H, Yagyu T, Kondo T, et al. Suppression of urokinase receptor expression by Thalidomide is associated with inhibition of Nuclear Factor kappa B activation and subsequently suppressed ovarian cancer dissemination. Cancer Res 2005; 65(22):10464-10471.
    44. Pandey MK, Sung B, Kunnumakkara AB, et al. Berberine modifies cysteine 179 of I kappa B alpha Kinase, suppresses Nuclear Factor-kappa B-regulated antiapoptotic gene products and potentiates apoptosis. Cancer Res 2008; 68(13):5370-5379.
    45. Emilia Fransvea UASAGG. Blocking transforming growth factor-beta up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology 2008; 47(5):1557-1566.
    46. Melisi D, Ishiyama S, Sclabas GM, et al. LY2109761, a novel transforming growth factor (3 receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol Cancer Ther 2008; 7(4):829-840.
    47. Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nature Reviews Cancer 2008; 8(8):604-617.
    48. Figlin RA, Kondagunta GV, Yazji S, et al. Phase Ⅱ study of volociximab (M200), an alpha 5 beta 1 anti-integrin antibody in refractory metastatic clear cell renal cell cancer (RCC). Journal of Clinical Oncology 2006; 24(18):225S-225S.
    49. Stoeltzing O, Liu WB, Reinmuth N, et al. Inhibition of integrin alpha(5)beta(1) function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. International Journal of Cancer 2003; 104(4):496-503.
    50. Jain RK. Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy. Science 2005; 307(5706):58-62.
    51. de Bouard S, Herlin P, Christensen JG, et al. Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro-oncol 2007; 9(4):412-423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700