自锚式悬索桥非线性分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自锚式悬索桥以其造型美观、经济、适应性强等优点,越来越受到工程界的青睐,在国内外,已有多座自锚式悬索桥建成和建造中。自锚式悬索桥无论是在施工方面,还是在成桥后的受力方面,与地锚式悬索桥都有很大的区别,存在自身的特点。本文结合工程实际,在自锚式悬索桥的受力性能、极限跨度、极限承载力以及施工控制方面进行了研究和探讨,具体研究内容如下:
     (1)基于有限位移理论,针对自锚式悬索桥的受力特点,全面考虑大位移效应、主缆垂度效应、初始内力效应、混凝土收缩徐变、预应力损失等因素对自锚式悬索桥的非线性影响,给出了适于自锚式悬索桥非线性分析的有限元方法。利用有限位移理论,对一座跨度240m的自锚式混凝土悬索桥进行了详细分析,发现跨径达到200m的自锚式悬索桥近似满足弹性理论,非线性行为可以忽略;增大主缆矢跨比和加劲梁拱度,可以提高结构刚度,减小活载产生的内力;加劲梁的混凝土收缩徐变对结构内力和变形影响较大;在施工阶段,主梁因压缩和混凝土收缩徐变产生的变形对主缆线形影响很大,在确定主缆空缆线形时应加以考虑。
     (2)推导了常见的双塔三跨式自锚式悬索桥和单塔两跨式自锚式悬索桥的极限跨度的表达式,研究了极限跨度与主缆矢跨比λ、边跨与中跨跨度比β、索塔高度与跨度比μ、二期恒载、活载等影响因素的关系。结合目前桥梁常用的材料,考虑主要因素的影响,对混凝土加劲梁和钢加劲梁自锚式悬索桥的极限跨度进行了具体研究,给出了相应的极限跨度。研究结果表明,要想增大自锚式悬索桥的极限跨度,可以采取以下措施:中跨主缆采用较大的矢跨比;主缆和加劲梁采用高强度、轻质材料;尽量减轻二期恒载。
     (3)为了分析自锚式悬索桥的极限承载力,首先给出了平面梁单元考虑材料非线性的折减刚度法,建立了考虑滑移非线性效应的钢—混凝土组合梁非线性分析的“双层梁”有限元模型,推导了考虑滑移效应的剪力连接件单元刚度矩阵。
     通过对三座实际自锚式悬索桥的弹塑性极限承载力分析,发现对于全桥加载的情况,三座自锚式悬索桥的弹塑性极限荷载安全系数分别为3.00、2.88、3.30;三座悬索桥的破坏均与吊索或主缆的屈服有关,因此吊索和主缆的设计安全系数取值大小应予以重视;采用较小的边跨和中跨的跨度比时,锚固端压重过小,会使结构的极限承载力降低较大。
     对万新大桥进一步研究表明,按弹塑性和弹性计算的结果,无论是变形,还是内力,均有较大的差异,说明该桥进入弹塑性阶段,存在显著的内力重分布现象;该桥的无限弹性稳定安全系数远大于弹塑性极限荷载安全系数;加劲梁和索塔的配筋率、主缆的弹性模量、混凝土收缩和徐变对该桥的极限承载力影响不大,但对结构刚度影响明显。
     (4)从自锚式悬索桥的成桥状态和主缆矢跨比出发,采用分段悬链线理论计算了成桥主缆线形;考虑自锚式悬索桥主缆线形受主梁变形等因素的影响,利用悬链线理论,计算了主缆空缆状态的线形;研究了考虑非弹性变形时钢丝绳索股无应力长度的计算方法;
    
    摘要
    研究了主缆架设过程中跨度、索长、塔高、温度对线形的影响关系。针对自锚式悬索桥的
    施工特点,考虑吊索张拉过程中存在大位移非线性、支架接触非线性、混凝土收缩徐变、
    索鞍顶推、主缆弹性模量非线性等多种非线性因素的影响,编制了适于自锚式悬索桥施工
    控制的非线性有限元程序。
     针对吊索张拉这一复杂的非线性过程,研究了在结构承载力和张拉设备能力等约束条
    件下,吊索反复张拉次数和接长杆数量的优化方法和脱模状态的确定方法,解决了自锚式
    悬索桥施工控制中体系转换这一关键问题。对万新大桥施工计算表明,利用该方法,可以
    通过四次张拉达到理想的脱模状态,三次张拉可以达到满足要求的实际脱模状态。
     最后,以最小二乘法为基础,提出了自锚式悬索桥施工过程中的非线性误差调整方法。
    研究表明,对于施工过程中的索力误差,可以通过部分吊索索力的调整得以消除;而对于
    主梁和索塔的变形误差,则需要通过全桥吊索索力的调整加以消除,同时获得满足要求的
    吊索索力误差。
     (5)通过模型试验,对自锚式悬索桥的施工过程进行了模拟,对成桥结构进行了静
    载试验,实测结果与计算结果相吻合,验证了本文对自锚式悬索桥受力性能理论研究的正
    确性,同时为实桥的施工控制提出了有益的建议。
Self-anchored suspension bridges are increasingly appreciated by engineers for their aesthetic look, low cost and high adaptability. Many self-anchored suspension bridges have been completed or are in construction in the world. No matter for.construction or mechanical properties, self-anchored suspension bridges differ from conventional suspension bridge and have their own particularity. Combined with the engineering practice, this paper gives the study and discussion about mechanical properties, limit span, ultimate bearing-capacity and construction control of self-anchored suspension bridge. The main research work covers the following aspects:
    (1) Based on the finite displacement theory and considering mechanical properties of self-anchored suspension bridge, the nonlinear factors, including sag of main cable, large displacement, initial internal force, concrete shrinkage and creep and loss of prestress, are fully considered, and the finite element method suitable for nonlinear analysis of self-anchored suspension bridges is presented in this paper. Through detailed analysis of a self-anchored concrete suspension bridge with span of 240m by using the finite displacement theory, it is found that a self-anchored suspension bridge with span 200m approximately meets the elasticity theory and the nonlinear behavior can be ignored. When greater the ratio of rise to span of main cable is adopted, the structural rigidity becomes greater and the internal force caused by live load becomes smaller. The concrete shrinkage and creep of stiffening girder has great influence on the internal force and deformation of the structure. Deformation of main girder due
    to compression and concrete shrinkage and creep has a significant influence on the configuration of main cable at the stage of construction. So it should be fully considered in design of the configuration of main cable.
    (2) The limit spans of the common twin-tower three-span self-anchored suspension bridges and single-tower two-span self-anchored suspension bridges are deduced. Some factors, such as ratio of rise to span X of main cable, ratio of side-span to mid-span β. ratio of tower height to main span μ, second dead load and live load, are analyzed in this paper. The limit span of the self-anchored suspension bridges with concrete stiffening girder and with steel stiffening girder, are discussed in detail, and the respective limit spans are given. The result shows that the following measures can increase limit span of a self-anchored suspension bridge: a larger ratio of rise to span is adopted for the main cable of mid-span; the main cable and the stiffening girder are made of high strength and light weight materials; and the second dead load is reduced as much as possible.
    (3) In order to analyze the ultimate bearing capacity of self-anchored suspension bridges, the reduced stiffness method for 2D beam element considering the nonlinearity of material is given, and the finite element model of double-layer beam for nonlinear analysis of steel-concrete composite beams considering nonlinear effect of slip is created. Then, through analysis of ultimate bearing capacity of three actual self-anchored suspension bridges, it is found that for the condition of loading on the entire bridge, the safety coefficients of ultimate bearing capacity of these three bridges are respectively 3.00, 2.88, 3.30. Breakage of these three suspension bridges is related to yield of hanger or main cable. Therefore, attention should be paid to selection of the safety coefficient in design of hanger and main cable. A smaller ratio of
    
    
    
    side-span and mid-span leads to too small reaction of the anchor, and causes much reduction of the ultimate bearing capacity. The further study shows that upon break of the bridge, the result based on elastoplasticity and that based on elasticity, no matter for deformation or for internal force, are greatly different, showing that the structure comes to the elastoplasticity stage with a significant redistribution of internal force. The elastic ultima
引文
[1]雷俊卿、郑明珠、徐恭义,悬索桥设计。北京:人民交通出版社,2002.1
    [2]铁道部大桥工程局桥梁科学研究所编..悬索桥.北京:科学技术文献出版社,1996.10.
    [3]钱冬生、陈仁福.大跨悬索桥的设计与施工.成都:西南交通大学出版社,1999.
    [4]楼庄鸿.近年来悬索桥发展的若干趋势.公路交通科技1999,16(3):35-39.
    [5]周明,施耀忠.大跨径悬索桥、斜拉桥的发展趋势.中南公路工程,2000,25(3):32-34.
    [6]万国朝.90年代桥梁工程发展趋势.国外公路.1995,15(4):24-28.
    [7]张占强.特大跨度桥梁的发展.国外公路.1995,15(5):43-44.
    [8]韩大建、马文田、石国彬.我国现代悬索桥的特色、创新与展望.华南理工大学学报(自然科学版),1999,27(11):57-67.
    [9]严国敏,廖绍豪.现代悬索桥即将在中国兴起高潮.城市道桥与防洪.1996,1:19-23.
    [10]Greeman, A. Golden opportunity Geomechanics Abstracts Volume: 1997, Issue: 1, January, 1997, pp. 49.
    [11]Davis, D. C. C. Tsmg Ma Bridge, New Design Solutions for New Design Challenges. Journal of Constructional Steel Research, 1998,46(1-3): 24-25.
    [12]唐寰澄.世界长大桥梁技术和艺术的发展趋向.广东公路交通科技.2000,66(s1):73-80.
    [13]袁红茵.日本长大桥梁的现状及发展趋势.国外公路.1997,17(2):27-30.
    [14]金增洪.明石海峡大桥简介.国外公路.2001,21(1):13-19.
    [15]陈炳坤,胡贵琼.美国的17座新建大桥.国外公路.2000,20(2):21-25.
    [16]何灏基,章曾焕,林元培.重庆鹅公岩悬索桥设计.城市道桥与防洪.1999,1:17-22.
    [17]安琳,丁大钧.香港青马大桥简介.桥梁建设.1997,3:22-26.
    [18]罗福午.19世纪第一悬索桥——布鲁克林桥.建筑技术.2001,32(10):690-691.
    [19]颜娟 泽,自锚式悬索桥.国外桥梁,2002,:19-22.
    [20]楼庄鸿 译,自锚式悬索桥.中外公路,2002,6:49-51.
    [21]张元凯,肖汝诚,金成棣.自锚式悬索桥设计.桥梁建设.2002,5:30-32.
    [22]张元凯,肖汝诚,金成棣.自锚式悬索桥概念设计.公路.2002,11:46-49.
    [23]楼庄鸿,严文彪,自锚式悬索桥.中国公路学会桥梁和结构工程学会.2002年全国桥梁学术会议论文集,2002.10
    [24]张哲,窦鹏,石磊,刘春城.混凝土自锚式悬索桥的发展综述.世界桥梁2003,1:1-4.
    [25]严国敏 译,韩国永宗悬索桥.国外公路,1998,18(6):16-18.
    [26]谢红兵.韩国桥梁建设的一个顶峰.国外桥梁.2000,1:16.
    
    
    [27]C. Y.Cho, S.-W.Lee, S.-Y.Park, M.Lee, Korea Yongjong Self-anchored Suspension Bridge. 国际桥协(IABSE) Structural Engineering Intemational SEI Vol. 11,No. 1,2001.
    [28]H.Gil,C.Cho, Korea Yongjong Grand Suspension Bridge. 国际桥协 (IABSE) Structural .Engineering International SEI, 1998,8(2).
    [29]林荫岳 译,世界上第一座自锚体系斜吊杆悬索桥—日本此花大桥.国外桥梁,1993,1:1-4.
    [30]高小云 译, 日本Konohana桥.国外公路,1993,1:30-31.
    [31]M.Kamei,T.Mamyama,H.Tanaka,Japan Konohana Bridge,Japan. 国际桥协 (IABSE) Structural Engineering International SEI, 1992, 2(1).
    [32]J.F.Klein. 瑞士日内瓦湖上的新型悬索桥方案.哥本哈根IABSE学术会议论文集[C],1996.
    [33]石磊,张哲,刘春城.混凝土自锚式悬索桥设计及其力学性能分析.大连理工大学学报2003,43(2):202-206.
    [34]李映.常州广化桥设计.桥梁建设.2002,5:43-45
    [35]张哲,石磊,刘春城等.延吉布尔哈通河局子街桥设计[J].华东公路,2003,10(32):690-691.
    [36]张哲,邱文亮.一座跨度240m混凝土自锚式吊桥方案设计[J].东北公路2003,26(4):91-93.
    [37]Kwon, S.D.; Chang, S.P.; Kim, Y.S.; Park, S.Y.Aerodynamic stability of self-anchored double deck suspension bridge.Journal of Wind Engineering and Industrial Aerodynamics, 1995,54-55:25-34.
    [38]Kim, Ho-Kyung; Lee, Myeong-Jae; Chang, Sung-Pil. Non-linear shape-finding analysis of a self-anchored suspension bridge. Engineering Structures, 2002,24(12): 1547-1559.
    [39]John A.Ochsendorf.Divid P.Billington. Self-Anchored Suspension Bridges. Journal of Bridge Engineering, 1999,4(3): 155-155.
    [40]张哲,张洪金,邱文亮.抚顺万新大桥模型试验研究[J].大连理工大学学报(投稿中).
    [41]义乌江大桥施工图设计.杭州市政设计院,2002.
    [42]Tezcan S.S. Stiffness analysis of suspension bridge by iteration, symposium on suspension bridge,Lisben, 1966.
    [43]Divid P. and Billington M. History and esthetics in suspension bridge. Structural division, ASCE. April, 1978,103(ST8): 1655~1673.
    [44]Alan Jermings and John E. Mairs. Static Analysis of suspension bridges. Structural division, ASCE. April, 1978,91(ST11):2433~2455.
    [45]Pugsley A.The theory of suspension bridges,and.Ed. 1968.
    [46]Steinman D B.Theory of archer and suspension bridges,Chicago, 1913.
    [47]Johnson J B,Bryan C W, Tumeaure F E.The theory and pratice of modem framed structures,Patr Ⅱ .New York,John Wiley&Sons, 1916.
    
    
    [48]Steinman D B.A practical treatise on suspension bridges,2nd.Ed,Wiley. 1928.
    [49]Timoshenko S:Steifigkeit von hangebruchen ,ZAMM,1928.
    [50]Timoshenko S:The stiffness of suspension bridges,Tran.ASCE,Vol,94,1930.
    [51]仓西茂.连续吊桥研究,土木学会论文集,第84号,1962.
    [52]仓西茂。行列构造解析,土木学会论文集,第81号,1962.
    [53]Poskitt T J:StructuraA analysis of suspension bridge, ASCE, 1966,92(1).
    [54]Brotton D M.A general computer programme for the solution of suspension bridge problem. Structural Engineering, 1996,44(5).
    [55]Saafan S A.Theoretical analysis of suspension bridges, Proc. ASCE, 1966,92(ST4): 1~11.
    [56]R.D.Cook, Concepts and Applications of Finite Element Analysis, John Wiley, 1974.
    [57]后藤茂夫.有限变形吊桥的解法,土木学会论文集,第156号,1968.
    [58]杜国华,毛昌时,司徒妙龄.桥梁结构分析.同济大学出版社,1994.
    [59]项海帆主编.高等桥梁结构理论.人民交通出版社,1995.
    [60]华孝良,徐光辉.桥梁结构非线性分析.人民交通出版社。1997.
    [61]周上君.大跨度斜拉桥非线性分析.桥梁建设,1982,4:11-24.
    [62]陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内力分析的UL列式法.土木工程学报,1992,25(5).
    [63]田启贤.悬索桥非线性结构分析.桥梁建设,1998,2:63~66.
    [64]D. Cobo Del Arco, A. C. Aparicio. Preliminary static analysis of suspension bridges. Engineering Structure, 2001,23:1096~1103.
    [64]A. Rajaraman, K. Longanathan, N. V. Raman, Nonlinear analysis of cable-stayed bridges. IABSE Proc., 1980,80(3):205~216.
    [65]M. Como et al. Statical behavior of long span cable-stayed bbridges. Inter. J. Solids and Struct. , 1985,21 (8):831~850.
    [66]K. J. Bathe, S. Bolourechi. Large displacement analysis of three dimension beam structures. Int. J. Num. Method Engng., 1979,14:961~986.
    [67]李福文,沈锐利.悬索桥的非线性静力分析.桥梁建设,1988.
    [68]姚玲森,傅强.悬索桥空间非线性分析.第十二届全国桥梁学术会议论文集,广州,1996.
    [69]张翔.大跨径悬索桥的几何非线性分析.第十二届全国桥梁学术会议论文集,广州,1992.
    [70]郭文复.现代吊桥几何非线性分析.第十二届全国桥梁学术会议论文集,广州,1992.
    [71]黄文,李明瑞,黄文彪.杆系结构的几何非线性分析——Ⅰ.平面问题.计算结构力学及其应用.1995,12(1):7~16.
    
    
    [72]黄文,李明瑞,黄文彪.杆系结构的几何非线性分析——Ⅱ.空间问题.计算结构力学及其应用.1995,12(2):34~43.
    [73]Peyrot, A. H and Goulois, A. M. Analysis of cable structure. Computer & Structures, 1979, 15(10):805~813.
    [74]Saafan S A.Theoretical analysis of suspension bridges, Proc. ASCE, 1966,92(ST4): 1~11.
    [75]Peyrot, A. H and Goulois, A. M. Analysis of flexible transmission lines. Structural Division, ASCE, 1978,6:763~779.
    [76]Moisseiff L. E, Lienhard E suspension bridge under the action of lateral force. Proc. ASCE, 1973:301~316.
    [78]O'Brien. General solution of suspension cable problems. Structural Division, ASCE, 1967,93(ST1):1~25.
    [79]Alan Jennings and John E. Maris. Static analysis of suspension bridges. Structural Division, ASCE, 1978,104(ST11):2433~2455.
    [80]Ahmed M. Abdel-Ghaffar. Free lateral Vibration of suspension bridges. Structural Division, ASCE, 1978,104(ST3):503~525.
    [81]Trevor J. Poskitt. Structure analysis of suspension bridges. Structural Division, ASCE, 1966,92(ST1):49~73.
    [82]S. G. Arzoumanidis and M. P. Bieniek. Finite element analysis of suspension bridges. Computer & Structures, 1985, 21(6):805~813.
    [83]Takeo Fukuda. Analysis of multispan suspension bridges. Structural Division, ASCE, 1967,93(ST1):63~87.
    [84]Aslam Kassimali and Reza Abbasnia. Large deformation analysis of elastic space frames. Journal of Structural Engineering, ASCE, 1991,117(7):2069~2087.
    [85]Yeong-Bin Yang A. M and William Mcguire F. Stiffness maxtrix for Geometric nonlinear analysis. Journal of Structural Engineering, ASCE, 1986,112(4):853~877.
    [86]Alan Jenning. Gravity stiffness of classical suspension bridges. Journal of Structural Engineering, ASCE, 1983,109(1):16~37.
    [87]Hisashi OhShima, Koichi Sato and Noborn Watanabe. Structural Analysis of suspension bridges. Journal of Structural Engineering, ASCE, 1984,110(3):392~405.
    [88]王伯惠.斜拉桥的极限跨径[J].公路,2002,3:46~53.
    [89]邬晓光.斜拉桥极限跨度分析.重庆交通学院学报.1996,15(3):36~38.
    [90]邬晓光.拱桥极限跨度技术研究.东北公路.1996,3:54~56.
    
    
    [91]李俊升,贺到荣,刘玉海,斜拉桥极限跨度及分析.华东公路.1999,1:7~8.
    [92]M. C. Tang. Buckling of cable-stayed girder bridge, Prod., ASCE, 1976,102(ST09).
    [93]F. Leonhardt等,陈炳坤译,美国华盛顿州,帕斯科与肯尼威市间跨越哥伦比亚河的预应力混凝土斜拉桥,国外桥梁,1981,1:1~28.
    [94]樊勇坚.斜拉桥稳定问题的研究.中南公路工程,1984,4:49~63.
    [95]颜全胜.大跨度钢斜拉桥极限承载力分析.长沙铁道学院博士学位论文,1992.
    [96]钱莲萍,项海帆.斜拉桥稳定分析的实用方法.中国土木工程学会桥梁与结构学会第八届年会,1988,5。
    [97]李国豪.桥梁结构振动与稳定.北京,中国铁道出版社,1992.
    [98]曾庆元,朱汉华.斜拉桥稳定问题简介及塔柱与主梁自由长度计算.长沙铁道学院学报,1991,9f3).
    [99]E. Reissner, Lateral Buckling of Beam. Computer & Structure, 1989,33(5): 1289~1306.
    [100]伏魁先,刘学信,黄华彪.斜拉桥面内整体失稳分析.铁道学报,1993,15(4).
    [101]S. R Seif, W. H. Dilger, Nonlinear analysis and collapse load of P/C cable-stayed bridge, ASCE, J. Struct. Engng. 1990,116(3).
    [102]舒兴平,钢框架结构弹塑性有限变形理论分析及试验研究,湖南大学博士论文,1992,10.
    [103]张国正.铁路悬索桥非线性分析及其承载能力研究.铁科院博士学位论文,1992.
    [104]程进,肖汝诚,项海帆.超大跨径缆索桥梁极限承载力分析的现状与展望.中国公路学报,1999,12(4):59~63.
    [105]程进,江见鲸,肖汝诚,项海帆.拱桥结构极限承载力的研究现状与发展.公路交通科技,2002,19(4):57~59.
    [106]梁硕,曾庆元,张起森.大跨度混凝土斜拉桥极限承载力分析综述.长沙交通学院学报,1997,13(3):39~46.
    [107]李德建,戴公连,曾庆元.钢管混凝土拱桥极限承载力分析的截面内力塑性系数法.中南工业大学学报(自然科学版),2003,34(3):320~323.
    [108]王建平,钢筋混凝土框架—剪力墙结构在强震作用下的非线性分析和控制,湖南大学博士论文,1994,3.
    [109]方志,钢筋混凝土平面及空间框架非线性分析,湖南大学博士论文,1990,2.
    [110]程进,江见鲸,肖汝诚,项海帆.大跨度拱桥极限承载力的参数研究.中国公路学报,2003,16(2):45~47.
    [111]潘家英,张国正,程庆国.大跨度桥梁极限承载力的几何与材料非线性耦合分析.土木工程学报,
    
    2000,33(1):5~8.
    [112]娄有原.钢筋混凝土组合梁桥全过程的非线性分析.中国公路学报,1994,7(1):59~63.
    [113]颜全胜,韩大建.解放大桥钢管混凝土系杆拱桥的非线性稳定.华南理工大学学报(自然科学版),1999,27(11):98~103.
    [114]胡庆安,吕永新.柳州第二大桥极限承载力的非线性有限元分析.西北建筑工程学院学报,1995,3:23~31.
    [115]谭也平.黄山太平湖大桥整体稳定分析.中国公路学报,2001,14(1):52~55.
    [116]程进,江见鲸,肖汝诚,项海帆.大跨度钢拱桥结构极限承载力分析.工程力学,2003,20(2):7~10.
    [117]朱聘如.钢-混凝土组合梁设计原理[M].北京:中国建筑工业出版社,1989.
    [118]聂建国,李勇等.钢-混凝土组合梁刚度的研究[J].清华大学学报(自然科学版),1998,(10):38-41.
    [119]GBJ17-88,钢结构设计规范[S].
    [120]周履.混凝土收缩徐变引起的钢—混凝土结合梁的内力重分配.桥梁建设,2001,2:1~4.
    [121]聂建国,崔玉平,石中柱,刘冲,郭邵斌.部分剪力连接钢—混凝土组合梁受弯极限承载力的计算.工程力学,2000,17(3):37~42.
    [122]王连广,李立新,刘之洋,徐伟.钢与混凝土组合梁非线性全过程分析.东北大学学报(自然科学版),2001,22(1):51~53.
    [123]宗周红.预应力钢—混凝土组合梁有限元非线性分析.中国公路学报,2000,13(2):48~51.
    [124]L.C.P.Yam, J.C.Chapman. The inelastic behaviour of continuous composite beams of steel and concrete [J]. Proc.,Institution of Civ. Engrs, 1972,2(53):487-501.
    [125]Tarantino, A. M., Dezi, L. Creep effects in composite beams with flexible shear connectors. J. Struct. Engrg., ASCE, 1992,118(8), 2063-2081.
    [126]M.A.Bradford, R.I.Gilbert. Non-linear behavior of composite beams at service loads[J]. The Structural Engineer, 1989,67(14) :263-268.
    [127]R.I.Gilbert, M.A.Bradford. Time-dependent behavior of continuous composite beams at service loads[J]. Journal of Structural Engineering, 1995,121(2):319-327.
    [128]Claudio Amadiao and Massimo Fragiacomo. Simplified approach to evaluate creep and shrinkage effects in steel-concrete composite beams. Journal of Structural Engineering,1997,123(9): 1153~1162.
    [129]Sebastian, W. M., McConnel, R. E. Nonlinear FE analysis of steel-concrete composite structures. J. Struct. Engrg., ASCE, 2000,126(6), 662-674.
    [130]Teraskiewicz, J.S. Static and fatigue behavior of simply supported and continuous composite beams of steel and concrete. PhD thesis, University of London, England. 1967.
    [131]Deric John Oehlers and George Sved. Composite beams with limited-slip-capacity shear connectors.
    
    Journal of Structural Engineering, 1995,121 (6):932~938.
    [132]赵鸿铁.钢与混凝土组合结构[M].北京:科技出版社,2001.
    [133]徐岳,张劲泉,鲜正洪.悬索桥施工控制方法研究.西安公路交通大学学报,1997,17(4):46~50.
    [134]黄建华.悬索桥施工控制的基本框架.铁道建筑技术,2000,2:20~23.
    [135]郭文复,肖汝诚.大跨度悬索桥的施工控制.城市道路与防洪,1995,1:28~32.
    [136]向中富,徐君兰,代正宏.悬索桥施工控制分析的恒定无应力索长迭代法.重庆交通学院学报,2000,19(3):16~21.
    [137]王惠东.悬索桥施工控制分析与恒载初内力分析的解析迭代法.桥梁建设,1994,1;64~69.
    [138]黄平明,梅葵花,徐岳.大跨度悬索桥主缆系统施工控制计算.西安公路交通大学学报,2000,20(4):19~28.
    [139]程进,华孝良.悬索桥主缆的结构分析.西安公路交通大学学报,1998,18(3):25~28.
    [140]李小珍,强士中.悬索桥主缆空缆状态的线形分析.重庆交通学院学报,1999,18(3):7~13.
    [141]肖汝诚,贾丽君,王小同.确定大跨度悬索桥主缆成桥线形的虚拟梁法.计算力学学报,1999,16(1):108~114.
    [142]潘永仁,范立础.悬链线单元在悬索桥主缆下料长度计算中的应用.工程施工,1998,3:20~24.
    [143]唐茂林,强士中,沈锐利.悬索桥成桥主缆线形计算的分段悬链线法.铁道学报,2003,25(1):87~91.
    [144]肖海波,俞亚南,沈毅.悬索桥主缆成桥线形精确分析.中国市政工程,2003,104(4):21~23.
    [145]朱金国,肖玉德.悬索桥主缆的静力分析.安徽建筑工业学院学报(自然科学版).2003,11(1):19~22.
    [146]沈锐利.悬索桥主缆系统设计及架设计算方法研究.土木工程学报,1996,29(2);3~9.
    [147]H. B. Jayaraman and W. C. Knudson. A curved element for the analysis of cable structures. Computers & Structures, 1981,14(3):325~333.
    [148]李小珍,胡大琳,陈祥宝.大跨度悬索桥施工状态的计算机仿真分析.中国公路学报,1998,11(4):64~69.
    [149]张新军,陈艾荣,王刚,江新元.悬索桥施工理想初态及成桥状态计算方法研究.上海铁道大学学报,1999,20(6):43~48.
    [150]潘永仁,范立础.大跨度悬索桥加劲梁架设过程的倒拆分析方法.同济大学学报,2001,29(5):510~514.
    [151]吕建鸣.大跨度悬索桥施工控制分析.公路交通科技,1994,1:33~39.
    [152]官万轶,韩大建.斜拉桥的索力调整.昆明理工大学学报,2000,25(1):125~128.
    [153]陈金旺,李孟绪,李秋生.斜拉桥成桥后的误差调整.公路,2000,7:21~24.
    
    
    [154]李明,袁向荣,陈锋.斜拉桥施工阶段索力的最优化调整.石家庄铁道学院学报,2002,15(3):14~22.
    [155]郝超.大跨度钢斜拉桥施工误差调整方法研究.浙江大学学报(工学版),2003,37(3):310~313.
    [156]花迎春,张劲泉.卡尔曼虑波法应用于悬索桥施工控制—主缆架设阶段.公路交通科技,1999,16(2):35~38.
    [157]花迎春,张劲泉.卡尔曼虑波法应用于悬索桥施工控制—钢箱梁吊装阶段.公路交通科技,1999,16(2):39~41.
    [158]混凝土斜拉桥中的最佳的索力调整.国外桥梁,1997,1:25~31.
    [159]颜东煌,文钰,刘光栋,易伟建.斜拉桥的施工最优控制.国外公路,1999,3:53~58.
    [160]陈德伟,郑信光,项海帆.混凝土斜拉桥的施工控制.土木工程学报,1993,26(1):1~11.
    [161]林元培.卡尔曼虑波法在斜拉桥施工中的应用.土木工程学报,1983,16(3):7~14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700