摩擦式矿井提升机关键旋转体动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关键旋转体(主轴、卷筒、天轮)是摩擦式矿井提升机传递动力和承受载荷的枢纽构件,其动态特性与提升机的健康状态密切相关。当主轴处于弯曲、不平衡、关联组件松动、主轴滚动轴承缺陷等故障状态时,主轴会产生异常振动能量和频率。通过对主轴振动特性进行研究,可以诊断主轴的工作状态。卷筒应力主要包括提升容器载荷通过钢丝绳施加到筒壳上的压力和电动机扭矩通过主轴作用在辐板上的剪切力,通过对卷筒应力特性进行研究,可以有效监测提升机的载荷变化。天轮转动角度与提升钢丝绳过绳量有着良好的线性关系,与卷筒转动角度进行对比分析,可以对摩擦提升机打滑工况进行监测。因此,本文在国家863计划:矿井提升机恶性事故智能诊断技术、国家自然科学基金项目:基于传感网的超深立井提升系统健康监测方法的资助下,以摩擦提升机关键旋转体(主轴、卷筒、天轮)为研究对象,以提升机的可靠状态监测为研究目标,开展主轴振动、卷筒应力和天轮转动等动态特性研究,并针对主轴轴承座振动加速度、卷筒辐板应力、天轮转动角度等核心动态参数的检测进行了分析和研究。研究成果将为摩擦提升机主轴故障诊断、异常提升载荷预警、打滑监测等提供理论支持和技术手段,提高矿井提升机状态监测的可靠性。
     首先,本文分析了主轴弯曲、失衡、关联组件松动、滚动轴承故障等工况下主轴振动频谱的特点,着重讨论了摩擦提升机启动加速过程的振动特性分析,开展了基于能量增长率的主轴振动能量和基于多转速倍频相关分析的主轴振动频率研究,并以主轴滚动轴承故障诊断和混叠频谱解耦验证了能量增长率和多转速倍频相关分析可应用于主轴振动特性分析。
     其次,分析了摩擦提升机卷筒承受的径向力和切向力的特点;基于卷筒辐板应力参数和提升载荷参数,结合RBF神经网络,建立了卷筒辐板应力与提升载荷的关联模型,并依据关联模型建立了基于卷筒辐板应力的异常提升载荷预警模型。
     再次,为避免固定轮与游动轮转动不同步的恶性工况发生,基于固定轮和游动轮转动角度单独检测的需要,设计了一种新型的天轮转动角度检测装置;建立了基于天轮转动角度的摩擦提升机打滑状态监测模型,对提升机正常滑动、事故打滑、固定轮与游动轮转动不同步进行监测。
     最后,对主轴轴承座振动加速度、天轮转动角度的检测进行了分析;针对卷筒辐板应力检测的需求,提出了旋转体多点无线应力采集方法;基于无线传感网络、虚拟仪器和网络共享技术,研制了矿井提升机卷筒辐板应力检测系统,实现了对辐板应力的无线采集、本地监测以及远程共享,并通过试验验证了正确性。
The key rotators (main shaft, drum and sheave wheel) are the hub of the frictionmine hoist. Their dynamic characteristics are closely related to the healthy state of themine hoist. When the shaft is bent or unbalance, the associated component get looseand the rolling bearing fails, abnormal vibration energy and frequency of main shaftwill come into being. Therefore, the state of the main shaft can be diagnosed bystudies into the vibration characteristics. The drum stress mainly contains pressure onthe shell from the hoisting conveyance through wire ropes and the shear force on thespoke plate from the electromotor torque through main shaft. The drum stresscharacteristics can be effectively used to monitor the load of the mine hoist. Thesheave rotation angle is well linearly related to the passing length of the wire rope andhence can be used to detect the slipping. The thesis is supported by the NationalHigh-tech Research and Development Projects “Intelligent Diagnosis of MalignantAccident of Mine Hoist”, National Natural Science Foundation of China “HealthyMonitoring of Super Deep Vertical Shaft Hoist System based on WSN”. The keyrotators (main shaft, drum and sheave wheel) of the friction mine hoist is studied withthe reliable condition monitoring of the hoist as the target. The studies on the dynamiccharactoristics of the main shaft vibration, the drum spoke plate stress and the sheavewheel rotation are carried out. The key dynamic parameters of the vibrationacceleration of the main shaft bearing housing, the drum spoke plate stress and therotation angle of the sheave wheel are analyzed. Research results will provide theorytheoretical support and technological means for the fault diagnosis of the main shaftof the friction mine hoist, warning of the abnormal lifting load and monitoring of theslipping, which can and improve the reliability of mine hoist monitoring.
     First, the vibration spectrum of the main shaft under the bending or unbalance ofthe main shaft, loose of the associated component and faults in the rolling bearings areanslysed and the vibration characteristics of the friction hoist during run-up areemphasized. The vibration frequencies of the main shaft are studied based on theenergy growth rate of the vibration energy and the correlation of the multispeedmultiple frequency. Besides, diagnosis of the rolling bearing faults and decoupling ofthe aliased spectrum verify that energy growth rate and multispeed multiple frequencycorrelation can be applied to the main shaft vibration analysis.
     Second, the properties of the radial and tangential forces for the drum of thefriction mine hoist are analyzed. Based on the stress and lifting load parameters of thespoke plate for the drum and combining the RBF neural network, the correlationmodel between the stress of the drum spoke plate and the lifting load is establishedand based on the correlation model, the warning model of the abnormal lifting load isbuilt.
     Third, considering the rotation angles of the fixed wheel and the floating wheelsshould be detected respectively, a new detection device of rotation angle for thesheave wheel is designed to avoid being out of sync of the fixed wheel and thefloating wheels. A model of the slipping state for the friction mine hoist based on thesheave wheel rotation angle is built to monitor the normal slippling, serious slippingand discordance of the fixed wheel and the floating wheels.
     Finally, detections of the vibration acceleration of the bearing housing for themain shaft and the rotation angle of the drum are analyzed. The rotator’s multi-pointwireless stress collection method is proposed for the needs of the stress detection forthe spoke plate. Based on the wireless sensor network, virtual instruments andnetwork sharing, we developed the spoke plate stress detection system of the drumwhich achieves wireless collection, local monitoring and remote sharing and isverified to be feasible and reliable by field testing.
引文
[1]李炳文,王启广.矿山机械[M].徐州:中国矿业大学出版社,2007.
    [2]肖兴明.摩擦提升重大故障分析及预防[M].徐州:中国矿业大学出版社,1994.
    [3] Groves W.A., Kecojevic V.J., Komljenovic D. Analysis of fatalities and injuries involvingmining equipment[J]. Journal of Safety Research,2007,38(4):461-470.
    [4]张维屏,王锡良,傅振国等.多绳提升机的振动研究[J].煤炭科学技术,1983(6):29-34,60.
    [5]张维屏,王锡良,肖德运. JKM(I)型提升机运行与非运行状态的振动特性分析[J].煤炭科学技术,1984(7):26-33,62.
    [6]张维屏,肖德运.多绳提升井塔的振动特性与有害振动的控制[J].中国矿业学院学报,1985(3):145-151.
    [7]潘英.塔式多绳摩擦提升机整体振动的研究[J].煤炭学报,1997(4):104-107.
    [8]玄志成,李成荣,付华等.提升罐道故障诊断方法的研究[J].煤炭学报,1999,24(5):517-521.
    [9] Xiao X.M., Li Z.F., Zhang J. Study on fault mechanism of shaft hoist steelwork[C]. ProcediaEarth and Planetary Science,2009,1(1):1351-1356.
    [10] Jia C., Li Y.S., Wang B.H., et al. Research on nonlinear dynamical behaviors of mine hoisttransmission system under external excitation[J]. Advanced materials research,2013,619:9-13.
    [11]陈锡章.钢丝绳罐道提升容器的摆动[J].煤炭科学技术,1985(2):23-26,63.
    [12]曹国华,朱真才,彭维红等.箕斗在装载过程中的震动特性研究[J].煤炭学报,2007,32(3):327-330.
    [13] Kimura H., Ito H., Nakagawa T. Vibration analysis of elevator rope forced vibration of ropewith time-varying length[J]. Journal of Environment and Engineering,2007,2(1):87-96.
    [14] Kaczmarczyk S., Ostachowicz W. Modelling of vibrations and prediction of failure in minehoisting cables[J]. Key Engineering Materials,1999,167:281-290.
    [15] Goroshko O.A. Evolution of the dynamic theory of hoist ropes[J]. International AppliedMechanics,2007,43(1):64-67.
    [16]朱真才,曹国华,彭维红等.钢丝绳在箕斗装载过程中的纵向振动行为研究[J].中国矿业大学学报,2007(3):325-329.
    [17]曹国华,朱真才,彭维红等.绳式防坠器制动过程制动绳冲击行为研究[J].中国矿业大学学报,2009,38(2):244-250.
    [18] Ma C., Xiao X.M. Kinetic analysis of a multi-rope friction mine hoist under overloadconditions[J]. Journal of Vibroengineering,2013,15(2):925-932.
    [19] Terumichi Y., Kaczmarczyk S., Turner S., et al. Modeling, simulation and analysis techniquesin the prediction of non-stationary vibration response of hoist ropes in lift systems[J].Materials Science Forum,2003,440-441:497-504.
    [20]卢锡焜. JKM型多绳摩擦轮提升机主轴装置检修技术[J].煤炭科学技术,1986(4):27-30.
    [21]荆双喜,张英琪,张东胜等.小波分析用于提升机振动故障诊断的研究[J].机械传动,1999,23(4):26-29.
    [22]肖林京,吴淼,黄素真等.基于小波包理论的提升机主轴故障诊断研究[J].矿山机械,2003,31(9):37-38.
    [23]张维屏,王克胜,王锡良等.提升机转子失衡对提升系统振动的影响[J].东北工学院学报,1979(3):17-30.
    [24]Du S.W. A New Method for Fault Diagnosis of Mine Hoist based on Manifold Learning andGenetic Algorithm Optimized Support Vector Machine[J]. Electronics and ElectricalEngineering,2012(7):99-102.
    [25]王增才,王树梁,任锴胜等.基于EEMD的提升机天轮轴承故障诊断方法[J].煤炭学报,2012(4):689-694.
    [26]王增才.提升机天轮运行状态自动监测系统研究[J].矿山机械,2001(6):46-47.
    [27]李臻.自适应提升小波的构造及其在齿轮箱早期故障诊断中的应用[J].煤炭学报,2010,(S1):228-231.
    [28]刘红新.大型提升机故障诊断分析[J].矿山机械,2003,31(8):43-44.
    [29]荆双喜,张英琦,王建生等.小波包在提升机减速箱故障诊断中的应用[J].振动与冲击,1999(4):22-26,89.
    [30]潘英,夏荣海.竖井提升机在紧急制动过程中钢绳的动张力[J].中国矿业学院学报,1982(3):56-74.
    [31]孙玉蓉.提升悬挂装置的疲劳可靠性设计[J].中国矿业大学学报,1993(2):16-22.
    [32]严世榕,闻邦椿.下放容器时提升钢丝绳的动力学仿真[J].煤炭学报,1998(5):84-88.
    [33]潘英.提升钢丝绳中最大动张力的计算公式[J].煤炭学报,2000(S1):138-141.
    [34] Cholewa W. Determination of stresses in hoisting ropes in multi-rope friction hoists[J].Mining Science and Technology,1989,9(1):101-106.
    [35] Mukhopadhyay A.K., Chattopadhyay A., Biswas R.K. Mathematical model for determiningmaximum stress in friction winder rope[J]. Transactions of the Institution of Mining andMetallurgy, Section A: Mining Technology,2002,111(A89-158):147-148.
    [36] Kaczmarczyk S., Ostachowicz W. Transient vibration phenomena in deep mine hoistingcables, Part1: Mathematical model[J]. Journal of Sound and Vibration,2003,262(2):219-244.
    [37] Kaczmarczyk S., Ostachowicz W. Transient vibration phenomena in deep mine hoistingcables, Part2: Numerical simulation of the dynamic response[J]. Journal of Sound andVibration,2003,262(2):245-289.
    [38] Yin Y., Grondin G.Y., Obaia K.H., et al. Fatigue life prediction of heavy mining equipmentPart1: Fatigue load assessment and crack growth rate tests[J]. Journal of Constructional SteelResearch,2007,63(11):1494-1505.
    [39]李占芳,肖兴明,刘正全等.矿井提升钢丝绳的动力学研究[J].煤矿安全,2007(10):11-14.
    [40] Ostapenko V.A. Exact solution of the problem for dynamic field of displacements in rods ofvariable length[J]. Archive of Applied Mechanics,2007,77(5):313-324.
    [41] Ma J., Ge S.R., Zhang D.K. Distribution of wire deformation within strands of wire ropes[J].Journal of China University of Mining and Technology,2008,18(3):475-478.
    [42] Mapelli C., S. Barella. Failure analysis of a cableway rope[J]. Engineering Failure Analysis,2009,16(5):1666-1673.
    [43] Kyureghyan K. Emergency Braking of Mining Hoisting Device with the Use of LinearlyGrowing Value of Braking Force[J]. Maintenance and Reliability,2009(1):39-45.
    [44] Vorontsov A. Volokhovsky V., Slesarev D. Combined approach to damaged wire ropeslife-time assessment based on NDT results and rope mechanics[J]. Journal of Physics:Conference Series,2011,305(1).
    [45] Greenway M.E. Lateral stiffness and deflection of vertical ropes with application to mineshaft hoisting[J]. Australian Journal of Mechanical Engineering,2008,5(1):59-70.
    [46] Cock M.J.L. Winder control technology for the reduction of dynamic rope stresses[J]. Miningtechnology,1995,77(891):339-341.
    [47] Dumitrescu I., Ridzi M.C., Itu V. Stress and displacements in the structure of the extractingtowers[J]. Mathematics and Computers in Science and Engineering,2008,358-363.
    [48] Galloway L.C., Tiley P.M. The Performance of Fixed Guidance System in Mine Shafts[J].CIM Bulletin,1982(11):54-60.
    [49]张本昭,贾福音.罐笼承接装置的研究[J].中国矿业大学学报,1994(3):78-83.
    [50]王东权,史天生,郭晋蒲等.立井刚性井筒装备与提升容器相互作用模拟试验研究[J].煤炭学报,1998,23(2):60-64.
    [51]吴永祥.卡箕斗故障的分析与对策[J].煤炭科学技术,1998,26(8):13-16.
    [52]张景峰,张明奎.箕斗提升防坠保护装置[J].煤炭科学技术,2001,29(7):14-15.
    [53] Khan M.M., Krige G.J. Evaluation of the structural Integrity of Aging Mine Shafts[J].Engineering Structures,2002,24:901-907.
    [54]闫文瑞.煤矿主井提升及定量装卸载综合自动控制系统[J].煤炭科学技术,2008,36(11):7-10.
    [55]韩晓东,孟凡喜.核子称重技术在主井卸载检测控制系统中的应用[J].煤炭科学技术,2009(5):62-64.
    [56]欧阳名三,柏方艳,王仲根.基于核检测技术的箕斗残煤检测的实现[J].煤炭科学技术,2009,37(9):94-96.
    [57]恒放.矿井提升机的动载响应研究[D].重庆:重庆大学,2010.
    [58]贾福音,董孟娟.深立井摩擦提升井底安全稳罐技术[J].煤炭学报,2011(S1):177-180.
    [59] Davey R.J. Dynamic forces in a shaft unloading mechanism[C]. National ConferencePublication-Institution of Engineers,1993,93:113-122.
    [60]陈华豪.大型矿井提升机主轴结构受力分析及其优化设计[D].太原:太原理工大学,2003.
    [61]徐尚龙.基于数值模拟的矿井提升机主轴疲劳与断裂性能研究[D].西安:西安科技大学,2003.
    [62]Smith R.G., Reiter W.F., Vitupier G., et al. Nonlinear Modeling of Flexible Cable Loads onLarge Sheaves[J]. Journal of Bridge Engineering,2005,10(1):5-11.
    [63]游俊红.基于ANSYS的矿井提升机摩擦轮强度研究[D].西安:西安科技大学,2006.
    [64]周广林,张红华.基于ANSYS的苏制2×5×2.3型提升机支轮结构改造[J].煤炭学报,2008(1):99-102.
    [65] Li Y.L., Zhu Z.C., Wang Y., et al. Simulation of stress field of hoist sheave wheel andexperimental validation[C].20103rdIEEE International Conference on Computer Science andInformation Technology, Chengdu, China,2010,3:1-4.
    [66] Wolny S., Badura S. Stress analysis in structural components of the koepe pulley in hoistinginstallations[J]. Engineering transactions,2012,60(2):155-170.
    [67]张家骏,丁乐夫,张英岳等.多绳提升纲丝绳张力的测定[J].煤矿安全,1986(10):17-14.
    [68]于会喜.多绳提升钢丝绳张力平衡的研究与应用[J].煤矿安全,1987(7):26-31,41.
    [69]游柏生.论影响多绳提升张力平衡因素及张力测定方法分析[J].煤炭科学技术,1988(8):38-42.
    [70]范云霄.提升机运行中的卡罐和松绳故障报警[J].煤矿安全,1993(10):20-22,49.
    [71]张耀成,杨兆建,贾昌喜等.多绳提升机钢丝绳张力动态测试调整研究[J].煤炭学报,1995(5):519-524.
    [72]陈先中,魏任之,苍大强.多绳摩擦提升机钢丝绳张力在线监测传感器[J].北京科技大学学报,1998(5):434-437.
    [73]姚文斌,邵千钧,张蔚.矿井提升钢丝绳张力检测仪的研制[J].煤炭学报,2004(3):371-375.
    [74] Beus M.J., Ruff T.M., Iverson S., et al. Mine-shaft conveyance monitoring[J]. MiningEngineering,2000,52(10):55-58.
    [75]李春静,谭继文,田军.钢丝绳张力检测的研究现状及趋势[J].煤矿安全,2006(01):53-55.
    [76]张洪伟,冯明磊.提升钢丝绳张力平衡状态的测定及调整[J].煤矿安全,2006(5):39-41.
    [77]Wang H.Y., Xu Z., Hua G., et al. Key technique of a detection sensor for coal mine wireropes[J]. Mining Science and Technology,2009(2):170-175.
    [78]胡彩凤,张新.基于LabVIEW的多绳提升钢丝绳张力动态检测系统[J].煤矿安全,2010(7):87-89.
    [79]杜帆,杨兆建.基于非均匀弦振动的提升机钢丝绳张力测试方法[J].煤炭学报,2010(5):840-843.
    [80] Wang Y., Zhu Z.C., Chen G.Z., et al. Sheave Wheel Stress Wireless Monitoring SystemResearch of Mine Hoist[C]. The2ndIEEE International Conference on Advanced ComputerControl, Shenyang, China,2010(1):535-539.
    [81] Beus M.J., Ruff T.M., Mccoy W.G. Conveyance monitoring to improve mine hoistingsafety[C]. IAS Annual Meeting (IEEE Industry Applications Society),1997,3:2091-2097.
    [82] Darrell G., Phil J., Mike B. Improving safety and efficiency of mine hoisting[J]. Hoist&Haul,2010,201-212.
    [83] Liu C.S., Wu W.D., Huang H.Z. Analysis of steel wire-ropes tension monitoring accuracy ofmulti-rope friction winders[C]. Proceedings of the2004International Symposium on SafetyScience and Technology,2004(B):1775-1780.
    [84]肖兴明,洪晓华.摩擦提升机的滑动分析[J].煤炭科学技术,1995,23(12):44-46.
    [85]夏荣海,夏平,叶尔赞.矿井提升机紧急制动测试中的问题[J].煤炭科学技术,1995,23(9):45-47.
    [86]张同庄,曹以龙,谢桂林.矿井交流提升机低频拖动系统的智能控制[J].中国矿业大学学报,1999,28(2):74-77.
    [87]任子晖,陈军.提升机性能测试分析方法与仪器的研究[J].中国矿业大学学报,2001(5):89-92.
    [88] Burger N.D.L., Von Wielligh A. J., De Wet P.R., et al. Underwind and overwind protectionsystems with enhanced self-sufficiency[J]. Journal of the South African Institute of Miningand Metallurgy,2004,104(7):411-416.
    [89]马军,封仕彩.多绳摩擦式提升机钢丝绳防滑在线监测系统的开发[J].煤炭科学技术,2004(1):25-27.
    [90] Qian Y.B., Wu X.J., Liu X.C. Digital distance control system research and implementation[C].Procedia Earth and Planetary Science,2009,1(1):1375-1379.
    [91]刘建永.矿井提升机监控系统的分析与设计[D].北京:中国地质大学(北京),2009.
    [92] Badenhorst W., Zhang J.F., Xia X.H. Optimal hoist scheduling of a deep level mine twin rockwinder system for demand side management[J]. Electric Power Systems Research,2011,81(5):1088-1095.
    [93] Cock M.J.L. Mine hoist automation and control systems[J]. Mining technology,1995,77(886):163-173.
    [94]徐福来.国外提升容器位置监测的研究[J].煤矿安全,1982(5):52-53.
    [95]袁树兴.深度指示器传动系统的失灵保护[J].煤矿安全,1986(7):33-35.
    [96]李文华,郭仁宁,郑连宏等.竖井提升的松绳保护[J].煤矿安全,2002,33(1):40-41.
    [97]周孟然,吴永祥.基于红外激光定位技术的矿井提升机位置跟踪系统的研究[J].煤炭学报,2002(6):658-660.
    [98]周孟然.矿井提升机运动位置测量高精度算法的研究[J].煤炭科学技术,2005,33(2):53-58.
    [99] Kovalchik P.G., Duda F.T. Speed and position sensors for mine hoists and elevators[C]. IEEEindustry applications society,1995,3:2054-2056.
    [100] Paresh G., Scheffer C. Practical Machinery Vibration Analysis and PredictiveMaintenance[M]. Burlington: Newnes,2004
    [101] Tadina M., Bolte ar M. Improved model of a ball bearing for the simulation of vibrationsignals due to faults during run-up[J]. Journal of Sound and Vibration,2011,330(17):4287-4301.
    [102] S chting S., Sherrington I., Lewis S.D., et al. An evaluation of the effect of simulated launchvibration on the friction performance and lubrication of ball bearings for space applications[J].Wear,2006,260(11-12):1190-1202.
    [103] Tian L., Wang W.J., Peng Z.J. Effects of bearing outer clearance on the dynamic behaviorsof the full floating ring bearing supported turbocharger rotor[J]. Mechanical Systems andSignal Processing,2012,31:155-175.
    [104] Kim B.S., Lee S.H., Lee M.G., et al. A comparative study on damage detection in speed-upand coast-down process of grinding spindle-typed rotor-bearing system[J]. Journal ofMaterials Processing Technology,2007,187–188:30-36.
    [105] Subrahmanyam M., Sujatha C. Using neural networks for the diagnosis of localized defectsin ball bearings[J]. Tribology International,1997,30(10):739-752.
    [106] Tsao W.C., Li Y.F., Le D.D., et al. An insight concept to select appropriate IMFs forenvelope analysis of bearing fault diagnosis[J]. Measurement,2012,45(6):1489-1498.
    [107] K ral Z., Karagülle H. Vibration analysis of rolling element bearings with various defectsunder the action of an unbalanced force[J]. Mechanical Systems and Signal Processing,2006,20(8):1967-1991.
    [108] Ocak H., Loparo K.A. Estimation of the running speed and bearing defect frequencies of aninduction motor from vibration data[J]. Mechanical Systems and Signal Processing,2004,18(3):515-533.
    [109] Harpham C., Dawson C.W. The effect of different basis functions on a radial basis functionnetwork for time series prediction: A comparative study[J]. Neurocomputing,2006,69(16–18):2161-2170.
    [110] Yang Y., Yu D.J., Cheng J.S. A roller bearing fault diagnosis method based on EMD energyentropy and ANN[J]. Journal of Sound and Vibration,2006,294(1-2):269-277.
    [111] Immovilli F., Bellini A. Detection of Generalized-Roughness Bearing Fault bySpectral-Kurtosis Energy of Vibration or Current Signals[J]. IEEE Transactions on IndustrialElectronics,2009,56(11):4710-4717.
    [112] Wang G.F., Luo Z.G., Qin X.D., et al. Fault identification and classification of rollingelement bearing based on time-varying autoregressive spectrum[J]. Mechanical Systems andSignal Processing,2008,22(4):934-947.
    [113] Kankar P.K., Sharma S.C., Harsha S.P. Vibration based performance prediction of ballbearings caused by localized defects[J]. Nonlinear Dynamics,2012,69(3):847-875.
    [114] Wang H.Q., Chen P. Fuzzy Diagnosis Method for Rotating Machinery in Variable RotatingSpeed[J]. IEEE Sensors Journal,2011,11(1):23-24.
    [115] Dong G.M., Chen J. Noise resistant time frequency analysis and application in faultdiagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing,2012,33:212-236.
    [116] Huang N.E., Shen Z., Long S.R., et al. The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the RoyalSociety of London,1998,454:903-995.
    [117] Du Q.H., Yang S.N. Application of the EMD method in the vibration analysis of ballbearings[J]. Mechanical Systems and Signal Processing,2007,21(6):2634-2644.
    [118] Wu G.B., Zhang L.J., Lu H., et al. A Real-Time And High-Precision Algorithm ForFrequency Estimation By Fusing Multi-Segment Signals[J]. Procedia Engineering,2011,15:2313-2317.
    [119] Hossen A., Heute U. Parametric modelling of decomposed subbands: resolutionimprovement and applications for narrow-band signals[J]. Signal Processing,2004,84(11):2195-2206.
    [120] Sarkar I., Fam A.T. The interlaced chirp Z transform[J]. Signal Processing,2006,86(9):2221-2232.
    [121] Wang Y.X., He Z.J., Zi Y.Y. Enhancement of signal denoising and multiple fault signaturesdetecting in rotating machinery using dual-tree complex wavelet transform[J]. MechanicalSystems and Signal Processing,2010,24(1):119-137.
    [122] Jiang H.K., Li C.L., Li H.X. An improved EEMD with multiwavelet packet for rotatingmachinery multi-fault diagnosis[J]. Mechanical Systems and Signal Processing,2013,36(2):225-239.
    [123] Tandon N., Choudhury. A. A review of vibration and acoustic measurement methods for thedetection of defects in rolling element bearings[J]. Tribology International,1999,32(8):469-480.
    [124] Scheffer C., Girdhar P. Practical machinery vibration analysis and predictive maintenance[J].Newnes, Burlington,2004.
    [125] K ral Z., Karagülle H. Vibration analysis of rolling element bearings with various defectsunder the action of an unbalanced force[J]. Mechanical Systems and Signal Processing,2006,20(8):1967-1991.
    [126] Ocak H.,Loparo K.A. Loparo. Estimation of the running speed and bearing defectfrequencies of an induction motor from vibration data[J]. Mechanical Systems and SignalProcessing,2004,18(3):515-533.
    [127] Pat Kinney. IEEE802.15WPAN Task Group4(TG4)[EB/OL].http://www.ieee802.org/15/pub/TG4.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700