一维无序系统中的长程关联作用机理及无序耦合微球谐振腔链的光学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究格点位能之间和格点间跳跃积分之间的长程关联对一维无序系统中局域化性质的影响,本文首先利用Fourier过滤法产生了具有长程幂律关联的随机数序列,这种序列的谱密度具有S(k)∝k-α的形式,同时它描述了分形布朗运动的轨迹,适合用来模拟自然界中普遍存在的各种长程关联,例如DNA分子的核苷酸序列之间的相互关联、薄膜生长时出现的界面粗糙度之间的高度-高度关联等。然后在格点位能之间引入了这种长程幂律关联,分析和对比了一维长程关联对角无序系统中不同局域区域内的局域化性质,并在格点间跳跃积分之间也引入了这种长程幂律关联,探讨了一维长程关联非对角无序系统中局域态与扩展态之间的相互转变。
     无序耦合微球谐振腔链作为一种更接近于实际应用的一维无序系统,也具有一维Anderson局域化性质,且由于其组成单元—微球谐振腔—具有极高的品质因子和极小的模式体积而使其在慢光、全光缓存、光存储和加强光物相互作用等方面具有极高的应用价值。但是,由于制备条件、方法等的不够完善而出现的微球尺寸大小不一、微球间距离不一及粗糙的微球表面等无序因素,极大的影响了光在链中的传输效率并使光损耗显著增加。为了探讨微球谐振腔的尺寸无序对耦合微球谐振腔链中光的传输性质的影响以及对光损耗进行统计分析,本文从Mie散射理论出发,利用传输矩阵方法在最近邻近似下对光在链中传输时的透射系数、反射系数和损耗进行了定义,并从数值上分别对链长远远大于局域长度的长链和链长小于局域长度的短链两种情况下链中光的传输性质进行了统计分析。
     对一维长程关联对角无序系统中的局域化性质进行研究后发现,由于长程幂律关联和对角无序的共同作用,弱无序弱关联局域区域与强无序强关联局域区域的局域化性质有着显著的区别,并且都有别于一维标准Anderson模型中的局域化性质。在弱无序弱关联情况下,电子波函数具有指数衰减形式,局域长度与系统尺寸N之间存在幂律函数关系ξ∝Nμ,μ随关联指数的增大而增大;Lyapunov指数呈正态分布,而其方差var(γ)∝N-v,v也随关联指数的增大而增大。在强无序强关联情况下,电子波函数是具有蝴蝶形状分布的局域态,Lyapunov指数不再呈正态分布并且局域长度与var(γ)都是常数而不随N的变化而变化。另外,我们还发现,单参数标度理论在这两种情况下都不再有效并且长程关联表现出了二重性:它既能抑制系统的局域化也能增强系统的局域化。
     在一维长程关联非对角无序系统中,尽管系统中存在着手性对称性,但格点间跳跃积分之间的长程关联与格点位能之间的长程关联都会使系统中的电子态由局域态向扩展态转变,产生这种转变的临界关联强度为αc=2.0.另一方面,在平均跳跃积分t0和能量本征值E都固定的情况下,当α>αc且无序度W较小时,增大W,系统中将出现退局域化-局域化转变,出现这种转变的临界无序度为Wc=2t0-|E|.此外,在t0和W都固定的情况下,当α>αc且W较小时,改变E,系统中也将出现退局域化-局域化转变,出现这种转变的临界能量本征值也即迁移率边界为Ec=±|2t0|-W|.
     对光在无序耦合微球谐振腔链中的传输性质进行探讨后发现,对于链长远远大于局域长度的长链,尽管该链表现出了一维Anderson强局域化特性,但光在链中传输时的辐射损耗的统计性质与光在其他一维耗散光学系统中传输时的辐射损耗的统计性质有着显著的差别,该链中光的损耗A的统计分布具有f(A)∝A-2 exp[一(a一A)2/(b2A2)]的数学形式,并且与参数a、b相关的损耗的平均值与方差均是局域长度与耗散长度的比率的函数。对于链长远远小于局域长度的短链,尺寸无序对带边界区域光学性质的影响远远大于对带中心区域光学性质的影响,表明带边界附近的频率更适合于用来研究无序耦合微球谐振腔链的慢光效应。
To study the effect of long-range correlations (LRC) of the on-site energies or of the hopping integrals on the localization properties of one-dimensional (1D) systems, we firstly generated a sequence of random numbers with LRC by using the Fourier filtering method. This kind of sequence has a power-law spectral density of the form S(k)∞k-αand describes the trace of a fractional Brownian motion. It can be used to simulate stochastic processes in nature such as the correlations in the nucleotide sequence of DNA molecules and height-height correlations in the interface roughness appearing during growth. We then introduced this kind of LRC into the on-site energies and compared the localization properties of different localized regimes in a 1D system with long-range correlated diagonal disorder. We also introduced this kind of LRC into the hopping integrals and studied the phase transitions between the localized states and extended states in a ID system with long-range correlated off-diagonal disorder.
     As a 1D system, which has practical applications, the disordered chain of coupled microspherical resonators also demonstrates Anderson localization. Since its component—microspherical resonator—is characterized by an ultra-high quality factor and extremely small mode volume, it has been proposed for applications in slow light, all-optical buffer, optical storage and intensification of light-matter interaction. In practice, however, the structural fabrication imperfections such as the random variations in the size of the microspherical resonators and in the distance between the nearest-neighbor microspherical resonators, and the surface roughness, collectively termed as "disorder", significantly influence the transport efficiency and dramatically enhance the radiative losses when light is propagating in such a chain. To study the effect of size disorder on the transport properties and to investigate statistical properties of radiative losses in a chain of coupled microspherical resonators, we defined the transmission coefficient, reflection coefficient and radiative losses by using Mie scattering theory, transfer matrix method and the nearest-neighbor approximation. We also numerically studied transport properties of two types of structures:asymptotically long chain with system size is much larger than the localization length and relatively short chain with system size is shorter larger than the localization length.
     In 1D system with long-range correlated diagonal disorder, we found that, under the combined effect of LRC and disorder, the localization properties of localized regime with weak disorder and weak correlations (regime I) are significantly different from that of localized regime with strong disorder and strong correlations (regime II) and the localization properties of these two regimes are different from that of 1D standard Anderson model. In regime I, the wave functions are exponentially localized, the localization lengthξhas a power-law relation with the system size N,ξ∞Nμwithμincreases with the increasing correlation exponentα; the distribution of Lyapunov exponentγis normal and its variance var(γ) scales as var(γ)∞N-v with v also increases with the increasingα. In regime II, the localized mode exhibits a butterflylike form, which totally differs from exponentially localized modes excited in regime I; the distribution of Lyapunov exponent is not normal anymore and both of the localization length and var(γ)are constants, which don't change with the changing system size. Moreover, we found that the single parameter scaling theory is not valid anymore in both of these two regimes and LRC plays dual role in the system:it may either suppress or enhance localization.
     In 1D system with long-range correlated off-diagonal disorder, we found that, even though such a system has the property of chiral symmetry, like the introducing of LRC in on-site energies induces localization-delocalization transition (LDT), the introducing of LRC in hopping integrals also induces LDT and the critical correlation strength is alsoαc= 2.0. On the other hand, under the condition of fixed average hopping integral t0 and fixed eigenenergy E, whenα>αc and disorder strength W is small, the increasing of W will induce delocalization-localization transition (DLT) and the critical disorder strength is Wc= 2t0-|E|. In addition, under the condition of fixed t0 and fixed W, whenα>αand W is small, the changing of E will also induce DLT and the critical eigenenergy is Ec=±|2t0-W|.
     After studied the optical transport properties of the disordered chain of microspherical resonators, we found that, for a long chain, even though the chain behaves in some aspects as a typical strong Anderson localized system, its radiative loss statistics is strongly different from that observed for other lossy optical systems. The distribution function of loss A in this chain is found as f(A)∞A-2 exp[-(a-A)2/(b2A2)], the mean value and variance of A, which are related to parameters a and b, are the functions of a single scaling parameter:ratio between the localization length and the loss length in ordered chains. For a short chain, on another hand, we found that the band edges are much more sensitive to disorder than the band center showing that the frequencies near the band edges are more suitable to be used to study the effect of slow light.
引文
[1]P. W. Anderson. Absence of Diffusion in Certain Random Lattices. Phys. Rev., 1958,109(5):1492-1505
    [2]E. Abrahams, P. W. Anderson, D. C. Licciardello, et al. Scaling Theory of Localization:Absence of Quantum Diffusion in Two Dimensions. Phys. Rev. Lett.,1979,42:673-676
    [3]P. W. Anderson, D. J. Thouless, E. Abrahams, et al. New method for a scaling theory of localization. Phys. Rev. B,1980,22:3519-3526
    [4]P. W. Anderson. New method for scaling theory of localization. Ⅱ. Multichannel theory of a"wire"and possible extension to higher dimensionality. Phys. Rev. B, 1981,23:4828-4836
    [5]A. MacKinnon, B. Kramer. One-Parameter Scaling of Localization Length and Conductance in Disordered Systems. Phys. Rev. Lett.,1981,47(21):1546-1549
    [6]A. MacKinnon, B. Kramer. The scaling theory of electrons in disordered solids: Additional numerical results. Z. Phys. B,1983,53:1-13
    [7]P. A. Lee, T. V. Ramakrishnan. Disordered electronic systems. Rev. Mod. Phys., 1985,57:287-337
    [8]D. H. Dunlap, H. L. Wu, P. W. Phillips. Absence of localization in a random-dimer model. Phys. Rev. Lett.,1990,65(1):88-91
    [9]S. N. Evangelou, A. Z. Wang. Localization in paired correlated random binary alloys. Phys. Rev. B,1993,47(20):13126-13136
    [10]V. Bellani, E. Diez, R. Hey, et al. Experimental Evidence of Delocalized States in Random Dimer Superlattices. Phys. Rev. Lett.,1999,82(10):2159-2162
    [11]H. A. Makse, S. Havlin, M. Schwartz, et al. Method for generating long-range correlations for large systems. Phys. Rev. E,1996,53(5):5445-5449
    [12]C.-K. Peng, S. Havlin, M. Schwartz, et al. Directed-polymer and ballistic-deposition growth with correlated noise. Phys. Rev. A,1991,44(4): R2239-R2242
    [13]S. Prakash, S. Havlin, M. Schwartz, et al. Structural and dynamical properties of long-range correlated percolation. Phys. Rev. A,1992,46(4):R1724-R1727
    [14]F. A. B. F. de Moura, M. L. Lyra. Delocalization in the 1D Anderson Model with Long-Range Correlated Disorder. Phys. Rev. Lett.,1998,81(17):3735-3738
    [15]F. M. Izrailev, A. A. Krokhin. Localization and the Mobility Edge in One-Dimensional Potentials with Correlated Disorder. Phys. Rev. Lett.,1999, 82(20):4062-4065
    [16]U. Kuhl, F. M. Izrailev, A. A. Krokhin, et al. Experimental observation of the mobility edge in a waveguide with correlated disorder. Appl. Phys. Lett.,2000, 77(5):633-635
    [17]F. M. Izrailev, A. A. Krokhin, S. E. Ulloa. Mobility edge in aperiodic Kronig-Penney potentials with correlated disorder:Perturbative approach. Phys. Rev. B,2001,63(4):041102
    [18]邓超生,徐慧,刘小良,等.无序度对一维长程关联无序系统中局域化-退局域化转变的影响.物理学报,2008,57(4):2415-2420
    [19]H. Shima, T. Nomura, T. Nakayama. Localization-delocalization transition in one-dimensional electron systems with long-range correlated disorder. Phys. Rev. B,2004,70:075116
    [20]H. Shima, T. Nakayama. Breakdown of Anderson localization in disordered quantum chains. Microelectronics Journal,2005,36(3-6):422-424
    [21]Y. Zhao, S. Duan, W. Zhang. Critical parameters for the one-dimensional systems with long-range correlated disorder. Physica E,2010,42(5):1425-1430
    [22]T. Kaya. Localization-delocalization transition in chains with long-range correlated disorder. Eur. Phys. J. B,2007,55(1):49-56
    [23]李正中.固体理论.北京:高等教育出版社,2002.505-507
    [24]黄昆,韩汝琦.固体物理学.北京:高等教育出版社,1988.228-235
    [25]N. F. Mott. Electrons in disordered structures. Adv. Phys.,1967,16:49-144
    [26]X. Huang, C. Gong. Property of Fibonacci numbers and the periodiclike perfectly transparent electronic states in Fibonacci chains. Phys. Rev. B,1998,58(2): 739-744
    [27]E. Macia, F. Dominguez-Adame. Physical Nature of Critical Wave Functions in Fibonacci Systems. Phys. Rev. Lett.,1996,76(16):2957-2960
    [28]G. J. Jin, Z. D. Wang, A. Hu, et al. Persistent currents in mesoscopic Fibonacci rings. Phys. Rev. B,1997,55(15):9302-9305
    [29]S. N. Evangelou, E. N. Economou. Reflectionless modes in chains with large-size homogeneous impurities. J. Phys. A,1993,26(12):2803-2813
    [30]J. C. Flores, M. Hilke. Absence of localization in disordered systems with local correlation. J. Phys. A,1993,26(24):L1255-L1259
    [31]F. M. Izrailev, T. Kottos, G. P. Tsironis. Scaling properties of the localization length in one-dimensional paired correlated binary alloys of finite size. J. Phys.: Condens. Matter,1996,8(16):2823-2834
    [32]A. P. Siebesma, L. Pietronero. Multifractal Properties of Wave Functions for One-Dimensional Systems with an Incommensurate Potential. EPL (Europhysics Letters),1987,4(5):597-602
    [33]H. Hiramoto, M. Kohmoto. Electronic spectral and wavefunction properties of one-dimensional quasiperiodic systems:a scaling approach. Int. J. Mod. Phys. B, 1992,3(4):281-320
    [34]T. Koschny, L. Schweitzer. Influence of correlated disorder potentials on the levitation of current carrying states in the quantum Hall effect. Physica E,2002, 12(1-4):654-657
    [35]E. Abrahams, M. J. Stephen. Resistance fluctuations in disordered one-dimensional conductors. J. Phys. C:Solid State Phys.,1980,13(15): L377-L381
    [36]J. W. Kantelhardt, S. Russ, A. Bunde, et al. Comment on "Delocalization in the 1D Anderson Model with Long-Range Correlated Disorder". Phys. Rev. Lett., 2000,84(1):198
    [37]S. Russ, J. W. Kantelhardt, A. Bunde, et al. Localization in self-affine energy landscapes. Phys. Rev. B,2001,64(13):134209
    [38]P. Dean. The Vibrational Properties of Disordered Systems:Numerical Studies. Rev. Mod. Phys.,1972,44(2):127-168
    [39]吴式玉,郑兆勃.无序体系的理论方法.物理学进展,1981,1(1):125-153
    [40]S. Y. Wu, Z.-b. Zheng. Amplitude analysis of localization in one-dimensional disordered systems. Vibrational states of an isotopically disordered binary chain. Phys. Rev. B,1981,24(8):4787-4795
    [41]徐慧.一维无序系统本征矢的解法.计算物理,1991,8(3):295-304
    [42]徐慧.一维Anderson无序模型电子局域态.计算物理,1992,9(3):267-273
    [43]徐慧,曾红涛.无序系统中电子局域态分布.物理学报,1992,41(10):1666-1671
    [44]徐慧.一维纳米固体的电子结构.物理学报,1992,41(10):1661-1665
    [45]R. Farchioni, G. Grosso, G. P. Parravicini. Electronic structure in incommensurate potentials obtained using a numerically accurate renormalization scheme. Phys. Rev. B,1992,45(12):6383-6389
    [46]G.-P. Zhang, S.-J. Xiong. Localization-delocalization transition in one-dimensional system with long-range correlated diagonal disorder. Eur. Phys. J.B,2002,29(3):491-495
    [47]徐慧,邓超生,刘小良,等.一维长程关联无序系统中的电子态.物理学报,2007,56(3):1643-1648
    [48]P. Carpena, P. Bernaola-Galvan, P. C. Ivanov, et al. Metal-insulator transition in chains with correlated disorder. Nature,2002,418(6901):955-959
    [49]赵义.一维长程关联无序系统的局域性.物理学报,2010,59:532-535
    [50]F. Domi-acutenguez-Adame, E. Macia-acute, A. Sa-acutenchez. Delocalized vibrations in classical random chains. Phys. Rev. B,1993,48(9):6054-6057
    [51]F. A. B. F. de Moura, M. D. Coutinho-Filho, E. P. Raposo, et al. Delocalization in harmonic chains with long-range correlated random masses. Phys. Rev. B,2003, 68(1):012202
    [52]G. Schubert, A. WeiBe, H. Fehske. Delocalisation transition in chains with correlated disorder. Physica B,2005,359-361:801-803
    [53]F. A. B. F. de Moura, M. D. Coutinho-Filho, E. P. Raposo, et al. Delocalization and spin-wave dynamics in ferromagnetic chains with long-range correlated random exchange. Phys. Rev. B,2002,66(1):014418
    [54]P. W. Brouwer, C. Mudry, B. D. Simons, et al. Delocalization in Coupled One-Dimensional Chains. Phys. Rev. Lett.,1998,81(4):862-865
    [55]L. Tessieri. Delocalization phenomena in one-dimensional models with long-range correlated disorder:a perturbative approach. J. Phys. A,2002,35(45): 9585-9600
    [56]T. Sedrakyan, A. Ossipov. Localization-delocalization transition in the quasi-one-dimensional ladder chain with correlated disorder. Phys. Rev. B,2004, 70(21):214206
    [57]A. Esmailpour, et al. Metal-insulator transition in a ternary model with long range correlated disorder. J. Stat. Mech.,2007,2007(09):P09014
    [58]A. Esmailpour, M. Esmaeilzadeh, E. Faizabadi, et al. Metal-insulator transition in random Kronig-Penney superlattices with long-range correlated disorder. Phys. Rev. B,2006,74(2):024206
    [59]G. Sordi, A. Amaricci, M. J. Rozenberg. Metal-Insulator Transitions in the Periodic Anderson Model. Phys. Rev. Lett.,2007,99:196403
    [60]L. I. Deych, M. V. Erementchouk, A. A. Lisyansky. Scaling properties of 1D Anderson model with correlated diagonal disorder. Physica B,2003,338(1-4): 79-81
    [61]L. I. Deych, M. V. Erementchouk, A. A. Lisyansky. Scaling properties of the one-dimensional Anderson model with correlated diagonal disorder. Phys. Rev. B, 2003,67(2):024205
    [62]F. Dominguez-Adame, V. A. Malyshev, F. A. B. F. de Moura, et al. Bloch-Like Oscillations in a One-Dimensional Lattice with Long-Range Correlated Disorder. Phys. Rev. Lett.,2003,91(19):197402
    [63]P. Carpena, P. Bernaola-Galvan, P. C. Ivanov. New Class of Level Statistics in Correlated Disordered Chains. Phys. Rev. Lett.,2004,93(17):176804
    [64]H. Cheraghchi, S. M. Fazeli. Statistical properties of a localization-delocalization transition induced by correlated disorder. J. Stat. Mech.,2006:P11004
    [65]W. Zhao, J. W. Ding. Enhanced localization and delocalization in surface disordered quantum waveguides with long-range correlation. EPL (Europhysics Letters),2010,89(5):57005
    [66]U. Kuhl, F. M. Izrailev, A. A. Krokhin. Enhancement of Localization in One-Dimensional Random Potentials with Long-Range Correlations. Phys. Rev. Lett.,2008,100(12):126402
    [67]N. F. Mott, E. A. Davis. Electronic processes in non-crystalline materials. Oxford:Clarendon Press,1971.
    [68]F. J. Dyson. The Dynamics of a Disordered Linear Chain. Phys. Rev.,1953, 92(6):1331-1338
    [69]I. M. Lifshitz. Energy spectrum structure and quantum states of disordered condensed systems. Sov. Phys. Usp.,1965,7(4):549
    [70]G. Theodorou, M. H. Cohen. Extended states in a one-demensional system with off-diagonal disorder. Phys. Rev. B,1976,13(10):4597-4601
    [71]L. Fleishman, D. C. Licciardello. Fluctuations and localization in one dimension. J. Phys. C:Solid State Phys.,1977,10(6):L125-L126
    [72]T. P. Eggarter, R. Riedinger. Singular behavior of tight-binding chains with off-diagonal disorder. Phys. Rev. B,1978,18(2):569-575
    [73]M. Kappus, F. Wegner. Anomaly in the band centre of the one-dimensional Anderson model. Z. Phys. B,1981,45(1):15-21
    [74]A. D. Stone, J. D. Joannopoulos. Probability distribution and new scaling law for the resistance of a one-dimensional Anderson model. Phys. Rev. B,1981,24(6): 3592-3595
    [75]R. Oppermann, F. Wegner. Disordered system with n orbitals per site:l/n expansion. Z. Phys. B,1979,34(4):327-348
    [76]R. L. Bush. On the anomalous behaviour at the band centre of a one-dimensional system with off-diagonal disorder. J. Phys. C:Solid State Phys.,1975,8(23): L547-L549
    [77]M. Weissmann, N. V. Cohan. Density of states of a one-dimensional system with off-diagonal disorder. J. Phys. C:Solid State Phys.,1975,8(9):L145-L147
    [78]J. B. Pendry. Off-diagonal disorder and 1D localisation. J. Phys. C:Solid State Phys.,1982, (28):5773-5778
    [79]C. M. Soukoulis, I. Webman, G. S. Grest, et al. Study of electronic states with off-diagonal disorder in two dimensions. Phys. Rev. B,1982,26(4):1838-1841
    [80]T. A. L. Ziman. Localization with off-diagonal disorder:A qualitative theory. Phys. Rev. B,1982,26(12):7066-7069
    [81]S. N. Evangelou. Spectral singularities and localisation in one- and quasi-one-dimensional systems with off-diagonal disorder. J. Phys. C:Solid State Phys.,1986,19(22):4291-4302
    [82]J. A. Verges, L. Brey, E. Louis, et al. Localization in a one-dimensional quasiperiodic Hamiltonian with off-diagonal disorder. Phys. Rev. B,1987, 35(10):5270-5272
    [83]J. C. Flores. Transport in models with correlated diagonal and off-diagonal disorder. J. Phys.:Condens. Matter,1989,1(44):8471-8479
    [84]M. Inui, S. A. Trugman, E. Abrahams. Unusual properties of midband states in systems with off-diagonal disorder. Phys. Rev. B,1994,49(5):3190-3196
    [85]D. A. Parshin, H. R. Schober. Multifractal structure of eigenstates in the Anderson model with long-range off-diagonal disorder. Phys. Rev. B,1998, 57(17):10232-10235
    [86]L. P. Gor'kov, O. N. Dorokhov. Singularities in the density of electronic states of one-dimensional conductors with disorder. Solid State Commun.,1976,20(8): 789-792
    [87]D. J. Thouless. A relation between the density of states and range of localization for one dimensional random systems. J. Phys. C:Solid State Phys.,1972,5(1): 77-81
    [88]H. Mathur. Feynman's propagator applied to network models of localization. Phys. Rev. B,1997,56(24):15794-15805
    [89]M. Steiner, Y. Chen, M. Fabrizio, et al. Statistical properties of a localization-delocalization transition in one dimension. Phys. Rev. B,1999, 59(23):14848-14851
    [90]F. Wegner. Bounds on the density of states in disordered systems. Z. Phys. B, 1981,44(1):9-15
    [91]R. Gade. Anderson localization for sublattice models. Nucl. Phys. B,1993, 398(3):499-515
    [92]M. Fabrizio, C. Castellani. Anderson localization in bipartite lattices. Nucl. Phys. B,2000,583(3):542-583
    [93]C. Mudry, P. W. Brouwer, A. Furusaki. Random magnetic flux problem in a quantum wire. Phys. Rev. B,1999,59(20):13221-13234
    [94]J. J. M. Verbaarschot, I. Zahed. Spectral density of the QCD Dirac operator near zero virtuality. Phys. Rev. Lett.,1993,70(25):3852-3855
    [95]S. N. Evangelou, D. E. Katsanos. Spectral statistics in chiral-orthogonal disordered systems. J. Phys. A,2003,36(12):3237-3254
    [96]A. M. Garcia-Garcia, E. Cuevas. Anderson transition in systems with chiral symmetry. Phys. Rev. B,2006,74(11):113101
    [97]H. Cheraghchi. Scaling properties of one-dimensional off-diagonal disorder. J. Stat. Mech.,2006:P11006
    [98]F. A. B. F. de Moura, M. L. Lyra. Correlation-induced metal-insulator transition in the one-dimensional Anderson model. Physica A,1999,266(1-4):465-470
    [99]H. Cheraghchi, S. M. Fazeli, K. Esfarjani. Localization-delocalization transition in a one-dimensional system with long-range correlated off-diagonal disorder. Phys. Rev. B,2005,72(17):174207
    [100]T. F. Assuncao, M. L. Lyra, F. A. B. F. de Moura, et al. Coherent electronic dynamics and absorption spectra in an one-dimensional model with long-range correlated off-diagonal disorder. Phys. Lett. A,2011,375(6):1048-1052
    [101]A. A. S. A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki Review of Applications of Whispering-Gallery Mode Resonators in Photonics and Nonlinear Optics. IPN Progress Report,2005,42-162:
    [102]V. S. Ilchenko, A. B. Matsko. Optical resonators with whispering-gallery modes-part Ⅱ:Applications. IEEE J. Sel. Top. Quantum Electron.,2006,12(1): 15-32
    [103]A. B. Matsko, V. S. Ilchenko. Optical resonators with whispering-gallery modes-part I:Basics. IEEE J. Sel. Top. Quantum Electron.,2006,12(1):3-14
    [104]仇善良.光学回音壁模微腔模式特性的理论研究与优化设计:[博士学位论文].合肥:中国科学技术大学,2010
    [105]仇善良,李永平.圆腔回音壁模的自洽场描述.物理学报,2009,58(12):8309-8315
    [106]刘丽飒.熔锥耦合型球微腔器件的理论分析及其CO2激光加工制备:[博士学位论文].厦门:厦门大学,2005
    [107]张磊.熔锥耦合型球微腔器件的回廊模实验研究:[博士学位论文].厦门:厦门大学,2007
    [108]林国平,张磊,蔡志平.相位匹配下锥形光纤激发出的回廊模谐振.光子学报,2007,(10):1781-1783
    [109]王吉有.光学微球腔中的若干光学新现象研究:[博士学位论文].天津:南开大学,2001
    [110]吴晓伟.光学微腔量子电动力学实验研究:[博士学位论文].合肥:中国科学技术大学,2010
    [111]A. M. Armani, R. P. Kulkarni, S. E. Fraser, et al. Label-Free, Single-Molecule Detection with Optical Microcavities. Science,2007,317(5839):783-787
    [112]V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, et al. Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities. Phys. Rev. Lett.,2004,92(4): 043903
    [113]T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity. Phys. Rev. Lett., 2004,93(8):083904
    [114]A. J. Campillo, J. D. Eversole, H. B. Lin. Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets. Phys. Rev. Lett.,1991, 67(4):437-440
    [115]T. Aoki, B. Dayan, E. Wilcut, et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature,2006,443(7112):671-674
    [116]L. Collot, et al. Very High-Q Whispering-Gallery Mode Resonances Observed on Fused Silica Microspheres. EPL (Europhysics Letters),1993,23(5):327-334
    [117]S. M. Spillane, T. J. Kippenberg, K. J. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature,2002,415(6872):621-623
    [118]A. D. Boozer, A. Boca, R. Miller, et al. Reversible State Transfer between Light and a Single Trapped Atom. Phys. Rev. Lett.,2007,98(19):193601
    [119]T. Wilk, S. C. Webster, A. Kuhn, et al. Single-Atom Single-Photon Quantum Interface. Science,2007,317(5837):488-490
    [120]A. Yariv, Y. Xu, R. K. Lee, et al. Coupled-resonator optical waveguide:a proposal and analysis. Opt. Lett.,1999,24(11):711-713
    [121]N. Avaritsiotis, T. Kamalakis, T. Sphicopoulos. A Semi-Analytical Model for Numerical Study of a Photonic Crystal Coupled Resonator Optical Waveguide With Disorder. J. Lightwave Technol.,2009,27(14):2892-2899
    [122]M. L. Cooper, G. Gupta, M. A. Schneider, et al. Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides. Opt. Express,2010, 18(25):26505-26516
    [123]S. Hughes, L. Ramunno, J. F. Young, et al. Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides:Role of Fabrication Disorder and Photon Group Velocity. Phys. Rev. Lett.,2005,94(3):033903
    [124]S. Mazoyer, P. Lalanne, J. C. Rodier, et al. Statistical fluctuations of transmission in slow light photonic-crystal waveguides. Opt. Express,2010, 18(14):14654-14663
    [125]J. B. Khurgin. Slow light in various media:a tutorial. Adv. Opt. Photon.,2010, 2(3):287-318
    [126]J. G. Pedersen, S. Xiao, N. A. Mortensen. Limits of slow light in photonic crystals. Phys. Rev. B,2008,78(15):153101
    [127]S. Mookherjea, J. S. Park, S.-H. Yang, et al. Localization in silicon nanophotonic slow-light waveguides. Nat. Photon.,2008,2(2):90-93
    [128]S. Mookherjea, A. Oh. What is the Velocity of Slow Light in Weakly Disordered Optical Slow-Wave Structures?. Conference on Lasers and Electro-Optics/Quantum Electronics, paper CThG3.
    [129]D. A. B. Miller. Fundamental Limit to Linear One-Dimensional Slow Light Structures. Phys. Rev. Lett.,2007,99(20):203903
    [130]A. Melloni, F. Morichetti, M. Martinelli. Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures. Opt. Quant. Electron.,2003, 35(4):365-379
    [131]Y. Hara, T. Mukaiyama, K. Takeda, et al. Heavy Photon States in Photonic Chains of Resonantly Coupled Cavities with Supermonodispersive Microspheres. Phys. Rev. Lett.,2005,94(20):203905
    [132]V. N. Astratov, J. P. Franchak, S. P. Ashili. Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder. Appl. Phys. Lett.,2004,85(23):5508-5510
    [133]B. Wang, S. Mazoyer, J. P. Hugonin, et al. Backscattering in monomode periodic waveguides. Phys. Rev. B,2008,78(24):245108
    [134]A. A. Chabanov, M. Stoytchev, A. Z. Genack. Statistical signatures of photon localization. Nature,2000,404(6780):850-853
    [135]S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett.,1987,58(23):2486-2489
    [136]L. Sapienza, H. Thyrrestrup, S. Stobbe, et al. Cavity Quantum Electrodynamics with Anderson-Localized Modes. Science,2010,327(5971):1352-1355
    [137]P. Pradhan, N. Kumar. Localization of light in coherently amplifying random media. Phys. Rev. B,1994,50(13):9644-9647
    [138]V. Freilikher, M. Pustilnik, I. Yurkevich. Effect of Absorption on the Wave Transport in the Strong Localization Regime. Phys. Rev. Lett.,1994,73: 810-813
    [139]J. Heinrichs. Transmission, reflection and localization in a random medium with absorption or gain. J. Phys.:Condens. Matter,2006,18(20):4781-4792
    [140]J. C. J. Paasschens, T. S. Misirpashaev, C. W. J. Beenakker. Localization of light: Dual symmetry between absorption and amplification. Phys. Rev. B,1996,54: 11887-11890
    [141]V. Freilikher, M. Pustilnik. Phase randomness in a one-dimensional disordered absorbing medium. Phys. Rev. B,1997,55(2):R653-R655
    [142]S. K. Joshi, D. Sahoo, A. M. Jayannavar. Modeling of stochastic absorption in a random medium. Phys. Rev. B,2000,62(2):880-885
    [143]D. V. Savin, H.-J. Sommers. Distribution of reflection eigenvalues in many-channel chaotic cavities with absorption. Phys. Rev. E,2004,69(3): 035201
    [144]J. H. Bruning, Y.T.Lo. Multiple Scattering by Spheres. Tech. Rep.69-5 (Antenna Laboratory, U. Illinois, Urbana,1969)
    [145]J. H. Bruning, Y.T.Lo. Multiple Scattering of EM Waves by Spheres, Part Ⅰ. IEEE Trans. Antennas Propag,1971, AP-19:378-390
    [146]J. H. Bruning, Y.T.Lo. Multiple Scattering of EM Waves by Spheres, Part Ⅱ. IEEE Trans. Antennas Propag,1971, AP-19:391-400
    [147]K. A. Fuller. Optical resonances and two-sphere systems. Appl. Opt.,1991, 30(33):4716-4731
    [148]Y.-l. Xu. Electromagnetic scattering by an aggregate of spheres. Appl. Opt., 1995,34(21):4573-4588
    [149]Y.-l. Xu, R. T. Wang. Electromagnetic scattering by an aggregate of spheres: Theoretical and experimental study of the amplitude scattering matrix. Phys. Rev. E,1998,58(3):3931-3948
    [150]Y.-l. Xu, B. S. Gustafson, F. Giovane, et al. Calculation of the heat-source function in photophoresis of aggregated spheres. Phys. Rev. E,1999,60(2): 2347-2365
    [151]Y.-l. Xu. Scattering Mueller matrix of an ensemble of variously shaped small particles. J. Opt. Soc. Am. A,2003,20(11):2093-2105
    [152]Y.-l. Xu. Radiative scattering properties of an ensemble of variously shaped small particles. Phys. Rev. E,2003,67(4):046620
    [153]C. F. Bohren, D. R. Huffman. Absorption and scattering of light by small particles. New York:Wiley,1983.
    [154]G. Mie. Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen. Ann. Phys.,1908,330(3):377-445
    [155]J. A. Stratton. Electromagnetic theory. Wiley-IEEE Press,2007.
    [156]B. Friedman, J. Russek. Addition theorems for spherical waves. Q. Appl. Math., 1954,12:13-23
    [157]A. Stein. Addition theorems for spherical wave functions. Q. Appl. Math.,1961, 19:15-24
    [158]O. R. Cruzan. Translational addition theorems for spherical vector wave functions. Q. Appl. Math.,1962,20:33-40
    [159]D. W. Mackowski. Analysis of radiative scattering for multiple sphere configurations. Proc. R. Soc. London Ser. A 1991,433:599-614
    [160]A. D. Stone, D. C. Allan, J. D. Joannopoulos. Phase randomness in the one-dimensional Anderson model. Phys. Rev. B,1983,27:836-843
    [161]C. J. Lambert, M. F. Thorpe. Phase averaging in one-dimensional random systems. Phys. Rev. B,1982,26:4742-4744
    [162]Z.-Q. Zhang. Light amplification and localization in randomly layered media with gain. Phys. Rev. B,1995,52(11):7960-7964
    [163]X. Jiang, C. M. Soukoulis. Transmission and reflection studies of periodic and random systems with gain. Phys. Rev. B,1999,59(9):6159-6166
    [164]G. Czycholl, B. Kramer, A. MacKinnon. Conductivity and localization of electron states in one dimensional disordered systems:Further numerical results. Z. Phys.B,1981,43(1):5-11
    [165]B. Derrida, E. Gardner. Lyapounov exponent of the one dimensional Anderson model:weak disorder expansions. J. Phys. France,1984,45(8):1283-1295
    [166]F. M. Izrailev, S. Ruffo, L. Tessieri. Classical representation of the one-dimensional Anderson model. J. Phys. A,1998,31(23):5263-5270
    [167]L. I. Deych, A. Yamilov, A. A. Lisyansky. Scaling in one-dimensional localized absorbing systems. Phys. Rev. B,2001,64:024201
    [168]M. Notomi, K. Yamada, A. Shinya, et al. Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs. Phys. Rev. Lett.,2001,87(25):253902

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700