硫磺菌和灰盖鬼伞发酵产物中活性成分的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以微生物发酵学、植物化学和现代化学分离理论为基础,在对两种高等真菌硫磺菌和灰盖鬼伞发酵液及菌丝体提取物进行抑菌杀虫活性检测的前提下,对活性较好的灰盖鬼伞菌丝体及发酵液乙酸乙酯萃取物的化学成分进行了分离纯化和鉴定,并对纯化合物进行了抑菌活性测定。研究结果如下:
     采用药敏纸片法测定了硫磺菌发酵液乙酸乙酯和正丁醇萃取物的抑菌活性。试验结果表明,不同浓度的硫磺菌发酵液乙酸乙酯萃取物对7种供试细菌、8种植物病原菌和黑根霉均有明显的抑菌活性。除对大肠杆菌、金黄色葡萄球菌、黑根霉和棉花黄萎病菌外,均表现为浓度越高抑菌活性越强的趋势;而不同浓度的正丁醇萃取物对3种细菌、3种霉菌和5种植物病原菌也具有较明显的抑菌作用,除对黑曲霉和苹果褐腐病菌外,随着浓度的增大抑菌活性也明显增强。而不同浓度的处理对马铃薯芽孢杆菌的抑菌活性相当。
     采用药敏纸片法和抑制菌丝生长速率法测定了灰盖鬼伞菌丝体和发酵液的乙酸乙酯萃取物和正丁醇萃取物的抑菌活性。试验结果表明,不同浓度的菌丝体乙酸乙酯萃取物对9种细菌和9种植物病原菌均有较明显的抑菌活性。除对灵杆菌和葡萄炭疽病菌外,均随着浓度的增加抑菌活性增强,而对葡萄炭疽病菌则表现为“低抑高促”的现象;不同浓度的菌丝体正丁醇萃取物对8种细菌均有一定的抑制作用,但作用没有乙酸乙酯萃取物强,而对10种病原菌的抑制作用却较之后者要好;不同浓度的发酵液乙酸乙酯和正丁醇萃取物对10种病原菌均具有较明显的活性。
     采用叶碟法测定了硫磺菌和灰盖鬼伞发酵产物对3龄粘虫的拒食和毒杀活性。结果发现在10mg/mL的供试浓度下,硫磺菌和灰盖鬼伞菌丝体和发酵液甲醇提取物以及乙酸乙酯和正丁醇萃取物的拒食活性相当,且都不明显。而灰盖鬼伞发酵产物的毒杀活性较之硫磺菌发酵产物的要强得多,其菌丝体和发酵液乙酸乙酯萃取物活性较好,第3d其校正死亡率都超过50%,到第4d校正死亡率都达到70%以上。
     本文分别对灰盖鬼伞菌丝体和发酵液的乙酸乙酯萃取物采用常压硅胶柱层析和反相硅胶柱层析分离、Sephadex LH-20葡聚糖凝胶柱纯化,最终分到W-1、W-2、W-3、W-4、W-5、W-6、W-7共7个化合物,其中W-4因易被氧化未能做波谱鉴定, W-1、W-2、W-3、W-7经理化性质和有机波谱鉴定(MS、1H NMR、13C NMR和DEPT),以及经与标准化合物对照,确定出其结构分别为麦角甾-4,6,8(14),22-四烯-3-酮[ergosta-4,6,8(14),22-tetraen-3-one]、麦角甾-5, 22-二烯- 3β-醇[(22E,24R)-ergosta-6, 22- dien- 3β- ol]、过氧化麦角甾醇[5α,8α-epidioxy-(22E,24R)-ergosta-6,22-dien-3β-ol]和一大环内酯类化合物[ (E)- 2- hexl-2,3,4,4a,7,8,9,10-octahydro-9,10,12a-trihydroxypyrano-[3,2-b] oxecin-6(12aH)-one],其中W-2、W-3和W-7首次在灰盖鬼伞发酵产物中发现。
     另外,对经过常压硅胶柱层析分离后的灰盖鬼伞菌丝体J1和J2部分、发酵液的F1部分进行了GC-MS分析。分析结果表明灰盖鬼伞菌丝体中含有6种脂肪酸,以不饱和脂肪酸的含量最高,占总脂肪酸的93.35%,其次为棕榈酸(占13.84%),硬脂酸(占2.81%);发酵液中含有5种脂肪酸,也是不饱和脂肪酸的含量最高,占总脂肪酸的64.99%,其次为棕榈酸(占25.30%)和硬脂酸(占9.67%)。
     在浓度为5mg/mL时,已鉴定出结构的4个单体化合物对5种细菌均有不同程度的抑制作用。其中,W-2和W-7对金黄色葡萄球菌、枯草芽孢杆菌、变形杆菌、灵杆菌和大肠杆菌的抑菌活性较好,而W-1和W-3仅对金黄色葡萄球菌具有一定的抑制作用,对其它4种细菌的活性都不显著。
This thesis, guided by microbial zymology, phytochemistry and theory of chemical separation, deals with the antimicrobial and insecticidal activity of extracts from fermented liquor and mycelia of two higher fungi Laetiporus sulphureus and Coprinus cinereus in the elementary stage, then deals with the isolation, purification and determination of chemical components of Ethyl acetate extracts from fermented liquor and mycelia of Coprinus cinereus which showed better bioactivity than Laetiporus sulphureus did.The following are the results of the study.
     The fermented broth of Laetiporus sulphureus was tested by Neo-Sensitab disk-diffusion method for antimicrobial activity. The results showed that Ethyl acetate extract with different concentration from the fermented broth had noticeable antimicrobial activity against 7 kinds of tested bacteria, Rhizopus nigricans and 8 kinds of plant pathogens,and the higher concentration,the stronger antimicrobial was,excepting against Escherichia coli, Staphylococcus aureus, Rhizopus nigricans and Verticillicum dahliae.while the n-Butanol extract alse exhibited significant activity on 3 kinds of bacteria,3 kinds of moulds and 5 kinds of pathogens.with the increaseing of tested concentration,the antimicrobial activity increased except on Aspergillus niger,Monilia fructigena, but the inhibitory effects kept the same on Bacillus mesentericus.
     The fermented mycelia and broth of Coprinus cinereus were tested f by Neo-Sensitab disk-diffusion method and Mycelia Grow Inhibition method for antimicrobial activity. The results showed that Ethyl acetate extract with different concentration from mycelia had obvious antimicrobial activity against 9 kinds of bacteria, 9 kinds of plant pathogens, and the higher concentration, the stronger antimicrobial was, excepting on Bacterium prodigious and Colletotrichum gloeosporioides.While the n-Butanol extract with different concentration exhibited better activity on 10 kinds of pathogens, weaker activity on 8 kinds of bacteria than the Ethyl acetate extract did. The Ethyl acetate and n-Butanol extracts with different concentration from fermented broth exhibited certain activity against 10 kinds of plant pathogens.
     The antifeeding and insecticidal activities of different polar solvent extracts from fermented mycelia and broth were tested by Leaf Disc method. Results showed that the fermentation extracts of Laetiporus sulphureus and Coprinus cinereus showed the same antifeeding activities against the third instar larvae of Mythimna separata, and both the antifeeding rate displayed weak. The Ethyl acetate extracts from the fermenthing broth and mycelia of Coprinus cinereus displayed better toxic activities than that of Laetiporus sulphureus did, the morality rate of which in 3d surpassed 50% and 4d surpassed 70% on Mythimna separata.
     Seven compounds were isolated from the Ethyl acetate extracts of mycelia and fermented broth of Coprinus cinereus by means of silica gel and reverse phase(RP-18) silica-gel colum chromatography,and were further purified by Sephedex LH-20.Among them four compounds were identified.Compound W-1’s structure was identified by direct comparison with authentic sample as ergosta-4,6,8(14),22-tetraen-3-one.the other compounds’structures were elucidated on the analysis of their spectral data(MS,1H-NMR,13C-NMR and DEPT) and compared with the references.They were ergosta-5,22-dien-3β-ol(W-2), 5α,8α-epidioxy-(22E,24R)-ergosta-6,22-dien-3β-ol(W-3) and a new macrolactin ( (E)- 2- hexl -2,3,4,4a,7,8,9,10-octahydro-9,10,12a-trihydroxypyrano-[3,2-b]oxecin-6(12aH)-one ) (W-7), in which compounds W-2, W-3 and W-7 were isolated from Coprinus cinereus firstly.
     Fraction J1, J2 and F1 which were isolated from the Ethyl acetate extracts, were analyzed by GC-MS, The result showed that six fatty acids were defined from mycelia, in which contained unsaturated fatty acids (93.35%), palmitic acid (13.84%), stearic acid (2.81%).five fatty acids were defined from fermented broth, in which contained unsaturated fatty acids (64.99%), palmitic acid (25.30%) and stearic acid (9.67%).
     Four identified compounds had some inhibition activity against five kinds of bacteria, in which compounds W-2 and W-7 behaved obvious inhibition effect on tested bacteria, but compounds W-1 and W-3 had no effect excepting on Staphylococcus aureus.
引文
[1] 卯晓岚. 中国食用菌和药用大型真菌[J]. 食用菌, 2000, 20(3): 290~297
    [2] 徐锦堂. 中国药用真菌学[M]. 北京: 北京医科大学, 中国协和医科大学联合出版社, 1997
    [3] 刘正南, 郑淑芳. 中国药用真菌的现状和种质资源[J]. 中国食用菌, 1996, 15(5): 20
    [4] 兰进, 徐锦堂, 贺秀霞. 我国子囊菌亚门药用真菌资源及利用[J]. 中药材, 1996, 19(1): 11
    [5] 兰进, 徐锦堂, 王秋颖, 等. 多孔菌科药用真菌资源[J]. 中草药, 1999(增刊): 14
    [6] 高锦明. 高等真菌代谢产物[M]. 杨凌:西北农林科技大学出版社, 2003, 12
    [7] 张志光, 熊清, 张天晓, 等. 鹅膏菌毒素的研究及其进展[J]. 生命科学探索, 长沙: 湖南教育出版社, 1992 , 25~24
    [8] 孟国良, 李凤玲. 毒菌毒素及其应用价值[J]. 中草药, 1998, 29(增刊): 158
    [9] 宋炳生, 杨玉成. 香菇多糖抗肿瘤活性的研究概况[J]. 中草药, 1998, 29(7): 492
    [10] 单友亮, 庄志铨, 李博华, 等. 云芝多糖研究进展[J]. 中草药, 1998, 29(5): 349
    [11] 王芳生. 赤芝子实体中灵芝酸类成分的研究[J]. 药学学报, 1997, (6): 447
    [12] 成丽, 李俊义, 俞华珊, 等. 皂角菌多糖的研究[J]. 中药材, 1998, 21(2): 85
    [13] 陈毓亨, 程克棣, 搂年来. 国外紫杉醇资源研究进展[J]. 国外医学药药分册, 1994, 21(1): 37
    [14] 洪霞, 卯晓岚. 食用药用菌实验技术及发酵生产[M]. 北京: 中国农业科技出版社, 1992
    [15] 黄茂先. 对我国药用真菌研究发展的浅见[J]. 中国食用菌, 1991, 10(2): 3
    [16] 黄年来. 中国食用菌产业的现状和展望[J]. 中国食用菌, 1998, 17(5): 5
    [17] 朱绍雄, 李顺祥, 李广义, 等. 安络小皮伞镇痛有效成分的研究[J]. 中草药, 1988, 19(8): 2
    [18] 方朝晖, 杨升杰. 真菌降脂素对糖尿病模型大鼠血脂质、胰岛素、C肽及血流变性的影响[J]. 中医药研究, 1997, 13(1): 42
    [19] 徐静奎. 药用真菌研究开发新进展[J]. 中国医药情报, 2002, 8(6): 31~33
    [20] 刘吉开. 高等真菌化学[M]. 北京: 中国科学技术出版社, 2004, 6
    [21] 高锦明, 黄悦, 董泽军等. 该等真菌二萜类成分及其生物活性[J]. 中草药, 1999, 30(10): 787~791
    [22] 高锦明, 张鞍灵. 黄磷多孔菌的化学成分研究[J]. 中国中药杂志, 2003, 28(10): 943~946
    [23] 高锦明, 董泽军, 刘吉开. 蓝黄红菇的化学成分[J]. 云南植物研究, 2000, 22(1): 85~89
    [24] 高锦明, 董泽军, 杨雪, 等. 紫丁香蘑的化学成分[J]. 中草药,2002,33(5):398~401.
    [25] 张国洲, 徐汉虹, 赵善欢, 等. 瑞香狼毒根提取物杀虫活性成分的分离与鉴定[J]. 湖北农学院学报, 2000, 20(1): 19-22
    [26] 刘志茹, 胡云楚, 任凤莲, 等. 芫花杀虫活性组份的浸提、分离与生物测定[J].中南林学院学报, 2000, 20 (4): 15-19
    [27] 李耀发. 砂地柏枝叶中杀虫活性成分初步研究[D] . 陕西杨凌: 西北农林科技大学植保学院, 2003
    [28] 杨征敏, 吴文君, 姬志勤, 等. 苦皮藤果实中农药活性成分的分离和结构鉴定[J].西北农林科技大学学报(自然科学版)2001, 29(6): 61-64
    [29] 曾鑫年, 方剑峰, 张善学, 等. 平卧川牛漆甾酮对小菜蛾生长发育的影响[J]. ENTOMOLOGIA SINICA, 2001, 8(3): 233-239
    [30] 周维善, 庄治平. 甾体化学进展[M]. 北京: 科学出版社, 2002
    [31] 曾任森, 骆世明, 石木标, 等. 彩色豆马勃子实体的化感作用及其化感物质的分离鉴定[J].应用生态学报, 1999, 10(2): 206-208
    [32] 韦琦, 曾任森, 孔垂华, 等. 胜红蓟地上部化感作用物的分离与鉴定[J]. 植物生态学报 1997, 21(4): 360-366
    [33] 梁宗琪. 虫生菌的多样性[J]. 生物多样性, 1996, 4(4): 235~241
    [34] 高炬, 岳德超, 程克棣, 等. 榆耳发酵液中新倍半萜-榆耳三醇[J]. 药学学报, 1992, 27(1): 33~36
    [35] 董锦艳, 张克勤, 赵智娴等. 苝醌类化合物的杀线虫活性[J]. 菌物系统, 2001, 20(4): 515~519
    [36] 陈颖, 朱继红, 雷秀云, 等. 榆耳发酵液抑菌作用的探讨[J]. 中国食用菌, 1990, 4:5
    [37] 陈迪华, 岳德超. 竹菌菌丝体的化学成分[J]. 中草药, 1987, 18(11): 28
    [38] 钱伏刚, 徐光漪, 杜上鑑, 等. 猴菇菌培养物中二个新吡喃酮化合物的分离与鉴定[J]. 药学学报, 1990, 25(7): 522~525
    [39] 卯晓岚. 中国大型真菌[M]. 郑州, 河南科学技术出版社. 2000. 10:2
    [40] 肖林榕, 林莉, 杨瑞英, 等. 菌类本草[M]. 中国医药科技出版社, 194-195
    [41] 陈士瑜, 陈惠. 菇类栽培手册[M]. 科学技术文献出版社, 238-241
    [42] 刘亚君. 鬼伞属真菌杀线虫活性化合物分离和鉴定.云南大学博士学位论文[D]. 2005, 4
    [43] 刘林, 李成云, 杨静, 等. 灰盖鬼伞基因组中微卫星序列的组成[J]. 西南农业学报. 2006, 1
    [44] 邱龙新. 环腺苷酸在灰盖鬼伞子实体发育中的效用研究[J]. 微生物学通报. 2000, 5
    [45] 邱龙新. 灰盖鬼伞子实体发育中的水溶性胞外多糖[J]. 龙岩学院学报, 2005, 6
    [46] 村上重幸, 武丸桓雄, 刘化民. 食用菌四倍体子实体担孢子的细胞学研究[J]. 食用菌, 1989, 2
    [47] 程丽娟, 薛泉宏. 微生物学实验技术[M]. 世界图书出版公司. 2000: 108
    [48] 钱存柔, 黄仪秀. 微生物学实验教程[M]. 北京: 北京大学出版社, 2000, 24~25
    [49] 徐叔云, 卞如濂, 陈修, 等. 药理实验方法学[M]. 北京: 人民卫生出版社, 1981
    [50] 慕立义. 植物化学保护研究方法[M]. 北京: 农业出版社, 1993
    [51] 张兴, 王兴林. 植物化学保护实验指导[M]. 杨凌: 西北农林科技大学, 2000, 3
    [52] 吴文君. 植物化学保护实验技术导论[M].陕西:陕西科学技术出版社, 1988: 43-173
    [53] 刘建华, 程传格, 王晓, 等. 牡丹籽油中脂肪酸的组成分析[J]. 化学分析计量, 2006, 15(6): 30-31
    [54] 谭亚芳, 赖炳森, 颜晓林, 等. 紫苏子油中脂肪酸组成的分析[J]. 中国药学杂志, 1998, 33(7): 400
    [55] 乔立瑞. 两株美登木内生真菌化学成分研究[D]. 西北农林科技大学硕士毕业论文, 2007, 5
    [56] 郑建仙. 功能性食品[M]. 北京: 中国轻工出版社, 1995
    [57] Stadler M, Sterner O. Production of bioactive secondary metabolites in the fruit bodies of macrofungi as a response to injury[J]. Phytochemistry, 1998, 49(4): 1013~1019
    [58] Anchel, M, et al. Proc. Natl. Acad. Sci[M]. USA, 1950, 36, 300
    [59] Daniewski W M, Gumulka M, Przesmycka D, et al. Sesquiterpenes of Lactarius origin,antifeedant structure-activity relationships[J]. Phytochemistry, 1995, 38(5): 1161~1168
    [60] Wu S H, Luo X D, Ma Y B et al.Two novel secoergosterols from the fungus Tylopilus plumbeoyiolaceu[J] J. Nat. Prod., 2000, 63: 534~536
    [61] Londershausen M. Approaches to new parasiticides [J].Pestic. Sci., 1996, 48: 269~292
    [62] Mier N, Canete S, Klaebe A, et al. Insecticidal properties of mushroom and toadstool carpophores[J]. Phytochemistry, 1996, 41(5): 1293~1299
    [63] Kubo I, Kim M, Wood W F, et al. Clitocine, a new insecticidal nucleoside from the mushroomClitocybe inversa[J]. Tetrahedron Lett., 1986, 27: 4277
    [64] Humfeld H, Sugihara T F. Mushroom mycelium production by submerged progagation [J]. Food Tech., 1949, 3(5): 353
    [65] Humfeld H, Sugihara T F. The nutirient requirements of Agaricus campestris grown in submerged culture [J]. Mycologia, 1952, 44: 605~621
    [66] Ishikawa N K, Yamaji K, Tahara S, et al. Highly oxidized cuparene-type sesquiterpenes from a mycelial culture of Flammulina velutipes [J]. Phytochemistry, 2000, 54: 777~782
    [67] Eilbert F, Engler-Lohr M, Anke H, et al. Bioactive sesquiterpenes from the basidiomycete Resupinatus leightonii[J]. J. Nat. Prod. 2000, 63: 1286~1287
    [68] Kenmoku H, Sassa T, Kato N. Isolation of erinacine P, a new parental metabolite of cyathane-xylosides, from Hericium erinaceum and its biomimetic conversion into erinacines A and B[J].Tetrahedron Letters, 2000, 41, 4389~4393
    [69] Mazur X, Becker U, Anke T, et al. Two new bioactive diterpenes from Lepista sordida[J]. Phytochemistry, 1996, 43: 405~407
    [70] Bok J W, Lermer L, Chilton J, et al. Antitumor sterols from the mycelia of Cordyceps sinensisv[J]. Phytochemistry, 1999, 51:891~898
    [71] Arnone A, Capelli S, Nasini G., et al. Structure elucidation of diatretol-A new diketopiperazine metabolite from the fungus Clitocybe diatreta[J]. Liebigs Ann. 1996, 1875~187
    [72] Lin Y C, Wu X Y, Feng S, et al. A novel N-cinnamoylcyclopeptide containing an allenic ether from the fungus Xylaria sp. (strain #2508) from the South China Sea[J]. Tetrahedron Lett., 2001,42, 449~451
    [73] Park I -H, Chung S -K, Lee K -B, et al. An antioxidant hispidin from the mycelial cultures of Phellinus linteus[J]. Arch. Pham. Res., 2004, 27(6): 615~618
    [74] Boonphong S, Kittakoop P, Isaka M, et al. Multiplolides A and B, new antifungal 10-membered lactones from Xylaria multiplex[J]. J. Nat. Prod., 2001,64, 965~967
    [75] Nishida F, Mori Y, Rokkaku N, et al. Structure elucidation of glycosidic antibiotics, glykenins, from Basidiomycetes sp. II. Absolute structures of unusual polyhydroxylated C26-fatty acids, aglycones of glykenins[J]. Chem. Pharm. Bull., 1990, 38(9):2381~2389
    [76] Schlegel B, H?rtl A, Dahse Hans-Martin, et al. Hexacyclinol, a new antiproliferative metabolite of Panus rudis HKI 0254[J]. The Journal of Antibiotics 2002, 55(9): 814~817
    [77] Berg A, D?rfelt H, Kiet T T, et al. Agrocybolacton, a new bioactive metabolite from Agrocybe sp. HKI 0259[J]. J. Antibiotics, 2002, 55(9): 818~820
    [78] Fleck W F, Schlegel B, Hoffmann P, et al. Isolation of isodrimenediol, a possible intermediate of drimane biosynthesis from Polyporus arcularius[J]. J. Nat. Prod., 1996, 59: 780~781
    [79] Cabrera G M, Roberti M J, Wright J E, et al. Cryptoporic and isocryptoporic acids from the fungal cultures of Polyporus arcularius and P. ciliatus[J]. Phytochemistry, 2002, 61,189~193
    [80] Ishikawa N K, Fukushi Y, Yamaji K, et al. Antimicrobial cuparene-type sesquiterpenes, enokipodins C and D, from a mycelial culture of Flammulina velutipes[J]. J.Nat. Prod., 2001, 64, 932~934
    [81] McMorris T C, Lira R, Gantzel P K, et al. Sesquiterpenes from the basidiomycete Omphalotus illudens.[J]. J. Nat. Prod., 2000, 63, 1557~1559
    [82] McMorris T C, Kashinatham A, Lira R, et al. Sesquiterpenes from Omphalotus illudens[J]. Phytochemistry, 2002, 61,395~39
    [83] Rasser F, Anke T, Sterner O. Secondary metabolites from a Gloeophyllum species[J]. Phytochemistry, 2000, 54, 511~516
    [84] Yun B S, Lee I K, Cho Y, et al. New tricyclic sesquiterpenes from the fermentation broth of Stereum hirsutum[J]. J. Nat. Prod., 2002, 65, 786~788
    [85] Atsumi S, Umezawa K, Iinuma H, et al. Production, isolation and structure determination of a novel beta-glucosidase inhibitor, cyclophellitol, from Phellinus sp[J]. J. Antibiot., 1990, 43(1): 49~53
    [86] Ahn Y J, Park S J, Lee S G., et al. Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp[J]. J. Agric. Food Chem., 2002, 48, 2744~2748
    [87] Sekizawa R, Ikeno S, Nakamura H, et al. Panepophenanthrin, from a mushroom strain, a novel inhibitor of the ubiquitin-activating enzyme[J]. J. Nat. Prod., 2002, 65(10): 1491~1493
    [88] Weber W, Semar M, Anke T, et al. Tyromycin A: a novel inhibitor of leucine and cysteine aminopeptidases from Tyromyces lacteus[J]. Planta Med., 1992, 58(1): 56~59
    [89] Adeboya M O, Edwards R L, Laessoe T, et al. Threo- and erythro- telfairic acid and 2,3-didehydrotelfairic anhydride from the fungus Xylaria telfairii[J]. Liebigs Ann.,1996, 9: 1437~1441
    [90] Hirotani M, Hirotani S, Takayanagi H, et al. Blazeispirol A, an unprecedented skeleton from the cultured mycelia of the fungus Agaricus blazei[J]. Tetrahedron Lett., 1999, 40, 329~332
    [91] Nishida F, Mori Y, Isobe S, et al. Structures of deacetyl glykenins-a, b, and c, glycosidic antibiotics from basidiomycetes sp[J].Tetrahedron Letters, 1988, 29(41): 5287~5290
    [92] Nishida F, Mori Y, Rokkaku N, et al. Strcture elucidation of glycosidic antibiotics, glykenins, from basidiomycetes sp. IV. structure of glykenin III[J]. Chem. Pharm. Bull. 1991, 39(11): 3044~3047
    [93] Park I H, Jeon S Y, Lee H J, et al. A β-secretase (β-ACE1) inhibitor hispidin from the mycelial cultures of Phellinus linteus[J]. Planta Med. 2004, 70(2): 143~146
    [94] Hwang E I, Yun B S, Kim Y K, et al. Phellinsin A, a novel chitin synthases inhibitor produced by Phellinus sp. PL3[J]. J. Antibiot. 2000, 53(9): 903~1100
    [95] Merlini L, Nasini G, Scaglioni L, et al. Structure elucidation of clavilactone D: an inhibitor of protein tyrosine kinases[J]. Phytochemistry, 2000, 53, 1039~1041
    [96] Wichlacz M, Ayer W A, Trifonov L S, et al. cis-fused caryophyllenes from liquid cultures of Hebeloma longicaudum[J]. Phytochemistry , 1999, 51, 873~877
    [97] Wichlacz M., Ayer W A, Trifonov L S, et al. Two 6,7-seco-caryophyllenes and an alloaromadendrane from liquid cultures of Hebeloma longicaudum[J]. Phytochemistry, 1999, 52, 1421~1425
    [98] Kittakoop P, Punya J, Kongsaeree P, et al. Bioactive naphthoquinones from Cordyceps unilateralis[J]. Phytochemistry, 1999, 52, 453~457
    [99] Isaka M., Tanticharoen M, Thebtaranonth Y. Cordyanhydrides A and B. Two unique anhydrides from the insect pathogenic fungus Cordyceps pseudomilitaris BCC 1620[J].Tetrahedron Letters, 2000, 41, 1657~1660
    [100] Appleton R E, Jan J E, Kroeger, P D, Laetiporus sulphureus causing visual hallucinations and ataxia in a child[J]. Can Med Assoc J. 1988, 139(1): 48-49
    [101] List P H, Reith H. Basic constituents of fungi X: Imidazole derivatives in ink cap,Coprinus atramentarius[J]. Z.Physiol. Chem. 1960, 319: 17-21
    [102] Lindberg P, Berman R, Ickberg B. Iaolation and structure of copine, a new physiologically active cyclopropanone ferivative from Coprinus atramentarius and its synthesis via 1-amonocyclop-ropanol[J]. J.Chem.Soc.,Chem. Commun., 1975, 23: 946-947
    [103] Vanhaelen M, Vanhaelen-Fastre R, Hoyois J, et al. Reinvestigation of disulfiram-like biological activity of Coprinus atrmentarius(Bull.ex Fr.)Fr. Extracts[J]. J. Pharm. Sci., 1976, 65(12): 1774-1776
    [104] Hatfied M G, Schaumberg P J, The disulfiram-like effects of Coprinus atramentarius and related mushrooms[J].Mushroom poisoning: Diagn. Treat. 1978, 181-186
    [105] Lee I K,Yu C Y, Koshino H,Yoo I D, et al. Illudins C2 and C3, new illudin C gervatives from Coprinus atramentarius ASI20013[J].J.Antibiot., 1996, 49(8): 821-822
    [106] Anisova L N, Bartoshevick Y E, Efremenkova O V, et al. Isolation and identification of an antileukosis substrate from Coprinus radiatus.Antibiot[J]. Med. Bitekhol., 1987, 32(10): 735-738
    [107] Matias R, Juanc O, Azucena G C, et al. Four illudane sesquiterpenes from Coprinopsis episcopalis[J]. Phytochemistry, 2004, 65(4): 381-385
    [108] Simandi J, Franc J. Isolation of tetraethylthiuram disulfide from Coprinus atramentarius[J]. Chem.Listy., 1956, 50: 1862-1863
    [109] Chiu S W, Moore D. Ammonium ions and glutamine inhibit sporulation of Coprinus cinereus basidia assayed in vitro[J]. Cell Biol Int Rep., 1988, 12(7): 519-26
    [110] A.Ziemys J, Kulys. An experimental and theoretical study of Coprinus cinereus peroxidase-catalyzed biodegradation of isoelectronic to dioxin recalcitrants[J]. Journal of Molecular Catalysis B: Enzymatic, 2007, 44(1): 20-26
    [111] Yong-Sun Bahn, Chaoyang Xue, Alexander Idnurm, et al. Senseing the environment: lessons from fungi[J]. Nature Reviews Microbiology,2007, 5(3): 57-69
    [112] Walti, Martin A., Villalba, et al. Targeted gene silencing in the model mushroom Coprinopsis cinerea (Coprinus cinereus) by expression of homologous hairpin RNAs[J]. Eukaryotic Cell, 2006, 5(4): 732-744
    [113] Muraguchi, Hajime, Murayama, et al. Positional cloning of the Coprinus cinereus eln6 gene using transformation-competent BAC clones[J]. Genes & Genetic Systems, 2005, 80 (6): 459
    [114] Bulock J D, Darbyshire J. Lagopodin metabolites and artifacts in cultures of Coprinus [J].Phytochemistry, 1976, 15(12): 2004
    [115] J.L.C.WRIGHT, A.G.MCINNES, S.SHIIMIIU, et al.Identification of C-24 qlkyl epimers of marine sterols by 13C nuclear magnetic resonance spectroscopy. [J]Can.J.Chem.1978, 56:1898-1903.
    [116] Takaishi Y, Uda M, Ohashi T, et al. Glycosides of ergosterol derivatives from Herium erinacens[J]. Phtochemistry, 1991,30(12): 4117
    [117] Gustafson K, Roman M, Fenical W. The macrolactins, a new class of antiviral and cytotoxic macrolides from a deep sea marine bacterim[J]. J. Am. Chem. Soc.,1989, 111: 7519
    [118] Jaruchoktaw eechai C, Sun anborirux K, Tanasupa watt S, et al. New macrolactins from a marine Bacillus sp. Sc026[J]. J. Nat. Prod., 2000, 63: 984
    [119] Kim H, Kim W, Ryoo I, et al.Neuronal cell protection activity of macrolactin.A produced by Actinomadura sp[J]. J. Microbial Biotechnol, 1997, 7: 429
    [120] Nagao T A, dachi K, Sakai M, et al. Novel macrolactins as antibiotic lactones from a marine bacterium[J]. J. Antibiotics, 2001, 54(4): 333

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700