长江水下三角洲高分辨沉积记录及其对气候环境事件的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江是世界上第三大河流,受到自然过程和人类过程的双重影响,在其入海口处形成了规模巨大的现代三角洲沉积体系,高沉积速率及连续沉积使其成为进行高分辨沉积记录研究的理想区域。长江三角洲高分辨沉积记录的研究对深入了解河口三角洲沉积过程、三角洲沉积作用对自然过程和人类活动的响应具有重要的意义,并对世界上同类河口的研究具有普适性。
     基于取自长江三角洲前缘的柱状沉积物岩心(18站,岩心长225cm),进行了0.25cm(粒度样品)和0.5cm(其它分析)间隔的高密度取样,利用激光粒度分析仪、X射线荧光光谱仪、紫外分光光度计等仪器分析了粒度特征、元素组成和生物硅含量,结合X光成像技术和γ谱仪的210-Pb、137-Cs放射性活度测定,确定了该柱子的层序构成和形成年代。进而建立了该沉积物柱子的最近60a来的高分辨粒度、生物硅记录曲线,揭示了该记录的十年际、年际、季节性的周期性波动规律和伴随的非周期变化过程,探讨了长江三角洲沉积记录对太阳黑子活动、厄尔尼诺/南方涛动(ENSO)、季节性变化和沉积事件、人类活动的响应。研究表明:
     长江水下三角洲前缘18站沉积岩心较均一,连续性好。以粉砂质粘土为主,夹有粉砂薄层,发育水平层理,未见侵蚀间断面。该岩心沉积速率快,平均沉积速率为3.69cm/a,不同时段沉积速率略有差别,1986之前沉积速率为3.91cm/a,1986至今平均沉积速率有所减小,为3.21cm/a。
     建立了长江三角洲前缘最近60a来的高分辨沉积物粒度、生物硅含量曲线。平均沉积物粒径11.71μm,生物硅含量为0.831%。粒度记录、生物硅记录都显示了良好的周期性波动规律,存在11a,3-5a,1a等明显的周期。同时,它们的高分辨记录还伴随着非周期波动。此外,元素地球化学组成也显示了相类似的波动特征。
     周期性沉积记录与气候波动密切相关。1)沉积记录的11年周期对太阳黑子活动有良好的响应,显示了太阳活动对沉积作用的影响;与1月份北太平洋年代际涛动(PDO)的变化趋势相反,PDO的周期性变化对沉积作用的影响还需进一步验证。2)3~5年的周期对应于厄尔尼诺/南方涛动(ENSO)的周期,在整个周期的开始,厄尔尼诺刚发生时,沉积物粒度由较大值开始减小,之后拉尼娜的发生使其继续减小,到了周期的末期开始增大,呈现“U”型的周期性变化;生物硅含量则与粒度变化相反,由较低值开始增大,之后拉尼娜的发生使其继续增大,到整个周期的末期又逐渐减小。3)高分辨沉积层序的季节性沉积特征缘于长江输水输沙的季节性波动和东海水动力的季节性变化。研究发现夏秋季沉积物颗粒偏细、分选差,生物硅含量高;而冬春季沉积物颗粒偏粗、分选更差、各参数波动范围大,生物硅含量低。地球化学元素除了P、S、Cl的含量在两者之间基本相等,Si、Na、Ca、Ba、Sr、Zr的含量在冬春季节的沉积层中偏高外,其余元素在夏秋季沉积层中含量较高,主要受粒度变化控制。
     非周期变化则与事件过程和人类活动相关。1)该站沉积记录对较大的沉积事件有良好的响应。在大的洪水发生的年份,沉积物粒度有所减小,生物硅含量有所增加。在大的风暴潮发生的年份,平均粒径和生物硅含量变化不一,在平均粒径增大的年份,生物硅含量出现谷值;在平均粒径没有增大的年份,生物硅的含量出现峰值,这与风暴潮是否对底质沉积物造成扰动有关。2)人类活动对长江输水输沙及营养盐的输入造成重大影响。研究区沉积记录的变化在1986年之前主要受控于长江水沙的变化,1986年之后人类活动的影响更为显著,导致重金属和生物硅的含量呈现逐年增加的趋势。
Yangtze River is the third largest river of the world. A large-scale modern delta is developing in its mouth, which is resulted from the impact of natural and human processes. The high deposition rate and the continuous deposition in the sedimentary squence make this area be a ideal region for the research of high-resolution sedimentary record. And the research has a great significance to understanding the response to natural processes and human activities by deposition and sedimentation of the delta. And it is a universal study for this kind estuaries in the world .
     Based on a sediment core (18 stations, core length 225cm) collected from the Yangtze River delta front, with high– resolution subsampling by sampling intervals of 0.25cm (for grain size samples) and 0.5cm (other samples), the characteristics of grain size, elemental composition and biogenic silica content were analysed with laser particle size analyzer, X-ray fluorescence spectrometer and ultraviolet spectrophotometer. Combined with X-photograph method andγspectrometer of 210-Pb, 137-Cs radioactivity meaurement, the sequence structure and age of the core were determined. After that, the high-resolution records of grain size, biogenic silica were established. They shew periodic changs of decade, annual and seasonallity and non-periodic changes. The relationship of sedimentary records and clamite changes, sedimneatry environment changes and human activities was discussed. The following conclutions were obtained:
     The lithology of 18 station on subaqueous Yangtze River delta front is homogeneous, the sequence is continous. The sediments are mainly silty clay, mixed with many silt interlayers, the stratification is horizontal, and have no erosion trace. The deposition rate of the core is fast, with average deposition rate of 3.69cm /a. It is differences between different times, the deposition rate is 3.91cm /a before 1986, and after1986a, it id reduced to 3.21cm /a.
     The high-resolution grain size and biogenic silica records curves of latest 60 years in Yangtze River Delta front is established. The average sediment size is 11.71μm, and the biogenic silica average content is 0.831%. Both of grain size and biogenic silica records show good cyclical fluctuations, having the cycles of 11a, 3-5a, 1a, especially. At the same time, the high-resolution record was also accompanied by non-periodic fluctuations. The elements geochemical composition also shows similar fluctuation characteristics.
     The cyclical fluctuations of sedimentary record are related to climate changes closely. 1) The 11-year cycle of sedimentary record is consistent well with the sunspot activity, demonstrating the impact on the deposition of solar activity; but has a opposite trend with the North Pacific decadal oscillation (PDO) in January, so the impact of PDO to sedimentation needs further authentication. 2) 3 ~ 5-year cycle is corresponds with the El Nino / Southern Oscillation (ENSO). The grain size has a "U"-shaped cyclical change, in the beginning of a cycle, just at the time of El Nino, sediment grain size decreases from a larger value, and continue to reduce followed by the occurrence of La Nina, but increases in the end of the cycle; the change of biogenic silica content is against to grian size. 3) The seasonal characteristics of high-resolution sedimentary sequence due to seasonal fluctuations of flow and sediment flux in the Yangtze River and the East China Sea hydrodynamic. In summer and autumn, the sediment is of find grain size, bad sorting and high BSi contents; in winter and spring, it is of coarse grain size, worse sorting, large fluctuation and low BSi contents. The contents of P, S, Cl are basically equal between the two kinds of sediment, Si, Na, Ca, Ba, Sr, Zr have higher level in the sediment layer of winter and spring, and the other geochemical elements contents are higher in the summer and autumn deposition layer, which is mainly due to changes of particle size.
     Non-periodic changes related to sedimentary events and human activities. 1) The sedimentary records have a good response of the deposition events on this station. In flood years, sediment particle size has been reduced, biogenic silica content increased. In storm years, the average grain size and biogenic silica content varied regularly. When the average particle size increases, the BSi content decreases. Constrary, when the average grain size did not increase, BSi content has a peak value. These flactuations were mainly caused by whether the sediment is disturbed by storm or not. 2) The human activities have a significant impact on the Yangtze River water sediment discharge and the delivery of nutrients. There is a little change in the Yangtze River runoff in recent years, but a sharp reduction in the flux of sediment. In the latest 50a, nutrient contents of N, P have been increasing, but DSi decreasing. The changes of BSi content and grain size in the study area are mainly controlled by the water and sediment discharge in the Yangtze River before 1986, and the impact of human activity is more prominent after 1986. As results, Bsi and heavy metals contents are increasing from 1986 year by year.
引文
1. Allison M A, Kineke G C, Gordon E S, Goňi M A. Development and reworking of a seasonal flood deposit on the inner continental shelf off the Atchafalaya River. Continental Shelf Research, 2000, 20: 2267-2294
    2. Beardsley, R.C., Limeburner, R., andYu. H., et al. Discharge of the Changjiang (Yangtze River) into the East China Sea. ContinentalShelfReseareh.1985, 1-2: 57-76
    3. Bentleya S J, Nittrouer C A. Emplacement, modification, and preservation of event strata on a flood-dominated continental shelf: Eel shelf, Northern California. Continental Shelf Research, 2003, 23: 1465-1493
    4. Boldrin A, Langone L, Miserocchi S, Turchetto M, Acri F. Po River plume on the Adriatic continental shelf: Dispersion and sedimentation of dissolved and suspended matter during different river discharge rates. Marine Geology, 2005, 222-223: 135-158
    5. Borgeld J C, Clarke J E H, Goff J A, et al. Acoustic backscatter of the 1995 flood deposit on the Eel shelf. Marine. Geology, 1999, 154: 197-210
    6. Carroll J, Lervhe I, Baraham J D, et al. Model determined sediment ages from 210Pb profiles in un-mixed sediment . Nuclear Geophysics, 1995, 9(6): 553-565.
    7. DeMaster D J, Mckee B A, Nittrouer C A, et al. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research, 1985, 4: 143-158
    8. Folk R L, Ward W C. Brazos River bar: a study in the Significance of grain size parameters. Journal of Sedimentary petrology, 1957, 27: 3-26
    9. Houjie Wang, Zuosheng Yang, Yoshiki Saito,J. Paul Liu,Xiaoxia Sun. Interannual and seasonal variation of the Huanghe (Yellow River)water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Global and Planetary Change 50 (2006) 212-225.
    10. Huh C A, Su C C. Sedimentation dynamics in the East China Sea elucidated from 210 Pb, 137Cs, and 239, 240Pu. Marine Geology, 1999, 160: 183-196
    11. Kuehl S A, DeMaster D J, Nittrouer C A. Nature of sediment accumulation on the Amazon continental shelf. Continental Shelf Research, 1986, 6: 209-225
    12. Kuehl S A, Pacioni T D, Rine J M. Seabed dynamics of the inner Amazon continental shelf: temporal and spatial variability of surface strata. Marine Geology. 1995, 125: 283-302
    13. Leinen M, Cwienk D, Ross G R, et al. Distribution of biogenic silica and quartz in recent deep sea sediment. Geology, 1986, 14: 199-203.
    14. Leithold E L, Hope R S. Deposition and modification of a flood layer on the northern California shelf: lessons from and about the fate of terrestrial particulate organic carbon. Marine Geology, 1999,154: 183–195
    15. Liu J P. Post-Glacial sedimentation in a river-dominated Epocontinental shelf: The Yellow Sea example. (Ph. D. Dissertation of College of William & Mary in Virginia) 2001.
    16. Liu J P, Milliman J D, Gao S, Cheng P. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea. Marine Geology, 2004, 209: 45–67
    17. Lyle M, Murray D W, Finney B P, et al. The record of late pleistocene biogenic sedimentation in the Eastern Tropical Pacific.Ocean Paleoceanography, 2000, 3 (1) : 39-59
    18. Milliman J D, Shen H T, Yang Z S, Meade R H. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Continental shelf research, 1985b, 1-2: 37-45
    19. Nittrouer C A, Kuehl S A, Sternberg R W, et al. An introduction to the geological significance of sediment transport and accumulation on the Amazon continental shelf. Marine Geology, 1995, 125: 177-192
    20. Robbins J A, Edgington D N. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137 . Geochem. Cosmochim. Acta, 1975, 39: 285-304.
    21. SaitoY and Yang Z S. Historical change of the Huanghe (YellowRiver) and its impacton the sediment budget of the East China Sea, Proceedings of international symposium on the global fluxes of carbon and its related substances in the coastal-ocean-atmosphere system. Japan: Hokkido University (Sapporo), 1994:7-12
    22. Schelske, C.L., Stoemer, E.F., Eutrophication, silica depletion, and predicted changes in algal quality in Lake Michigan. Science, 1971.173: p. 423-424.
    23. Shu Gao,Ya Ping Wang. Changes in material fluxes from the Changjiang River and their implications on the adjoining continental shelf ecosystem. Continental Shelf Research. 2008,28: 1490-1500.
    24. Smith J N, Ellis K M. Transport mechanism for Pb-210, Cs-137 and Pu fallout radionuclides through fluvial marine systems. Geochimica Cosmochim Acta, 1984, 46: 941-954.
    25. S. M. Liu, X. W. Ye, J. Zhang, Y. F. Zhao. Problems with biogenic silica measurement in marginal seas. Marine Geology, 2002, 192: 383-392
    26. Sommerfield C K and Nittrouer C A. Modern accumulation rates and a sediment budget for the Eel shelf: a flood-dominated depositional environment. Marine Geology, 1999, 154: 227-241
    27. Su C C and Huh C A. 210Pb, 137Cs and 239,240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides. Marine Geology, 2002, 183: 163-178
    28. Tréguer P, Nelson D M, Van Bennekom A J, et al .The silica balance in the world ocean: A Reestimate. Science, 1995, 268: 375-379.
    29. Wheatcrof R A, Sommerfield C K, Drake D E, et al. 1997. Rapid and widespread dispersal of flood sediment on the northern Calfornia margin. Geology, 25: 163-166
    30. Wheatcroft R A, Borgeld J C. Oceanic flood deposits on the northern California shelf: large-scale distribution and small-scale physical properties. Continental Shelf Research, 2000, 20:2163-2190
    31. Yang S Y, Li C X. Characteristic Elemental Compositions of the Yangtze River and Yellow River Surface Sediments and Their Geological Background. Chinese Journal of Geochemistry, 1999, 18(3):258-265
    32. Yang S Y, Jung S J, Limb D I, Li C X. A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Science Reviews, 2003:63: 93-120
    33. Yang Z S, Wang H J, Saito Y, et al. Dam impacts on the Changjiang (Yangtze River) sediment discharge to the sea: the past 55 years and after the Three Gorges dam. Water Resources Research, 2006, 42: 1-10
    34. Nozaki Y, Zhang J, Takeda A. 210Pb biological productivity and boundary and 210Pb in the Equatorial Pacific and Bering Sea: The effects of biological productivity and boundary scavenging . Deep-Sea Research, 1997, 44: 2203-2220.
    35.长江水利委员会. 2006年长江泥沙公报.武汉:水利部长江水利委员会,2007
    36.陈丽蓉,栾作峰,郑铁民,等.渤海沉积物中的矿物组合特征.海与湖沼,1980,11(1): 46-64
    37.陈丽蓉,徐善民,申顺喜.东海沉积物的矿物组合及其分布特征的研究.黄东海地质.北京:科学出版社,1982. 82-97
    38.陈丽蓉.东海地质.北京:科学出版社,1987. 33-57
    39.陈丽蓉.渤海、黄海、东海沉积物中矿物组合的研究.海洋科学,1989,2:1-8.
    40.程和琴,李茂田.河流入海溶解硅通量的变化及其影响--以长江为例.长江流域资源与环境,2001,10(6):558-563.
    41.陈满荣,王少平.上海城市风暴潮灾害及其预测.灾害学,2000,15(3):26-29.
    42.戴仕宝,杨世伦,郜昂,等.近50年来中国主要河流入海泥沙变化.泥沙研究,2007,2:49-58.
    43.董爱国.长江口及其临近海域沉积物重金属元素地球化学特征及其对人类活动的响应.中国海洋大学硕士论文,2008.
    44.段明铿,王盘兴,林开平.我国夏季东部区域降水异常年代际、年际变化分析.南京气象学院报,2005, 28(1): 93-100.
    45.范德江,徐琳,齐红艳.长江水下三角洲浅表沉积层中的生物扰动构造.海洋与湖沼,2008,6(39):577-584.
    46.范德江,杨作升,王文正.长江、黄河沉积物中碳酸盐组成及差异.自然科学进展, 2002a,12(1):60-64
    47.范德江,杨作升,孙效功,张东奇,郭志刚.东海陆架北部长江、黄河沉积物影响范围的定量估算.青岛海洋大学学报,2002b,32(5): 748-756
    48.何起祥.中国海洋沉积地质学.北京:海洋出版社, 2006. 266-267
    49.贺松林,王盼成.长江大通站水沙过程的基本特征II .输沙过程分析.华东师范大学学报(自然科学版), 2004, ( 6 ): 21-86.
    50.胡昌新,金云。上海风暴潮灾害的准周期性及其预测.城市道桥与防洪, 2007,4:27-29.
    51.胡方西,胡辉,谷国传,等.长江口锋面研究.上海:华东师范大学出版社,2002. 88-95.
    52.胡敦欣,杨作升.东海海洋通量关键过程.北京:海洋出版社,2001.
    53.黄海军,李凡,张秀荣.长江黄河水沙特征初步对比分析.海洋科学集刊,2004,46: 79-90.
    54.黄慧珍,唐宝根,杨文达,等.中国三角洲沉积地质学丛书——长江三角洲沉积地质学.北京:地质出版社,1997.
    55.姜乃力.厄尔尼诺/南方涛动(ENSO)对我国气候的影响.沈阳教育学院学报,1999,1(2):115-118.
    56.金翔龙.东海海洋地质.北京:海洋出版社,1992.
    57.李广雪,杨子庚,刘勇.中国东部海域海底沉积环境成因研究.北京:科学出版社, 2005.
    58.李铁刚,李绍全,苍树溪等. YSDPl02钻孔有孔虫动物群与南黄海东南部古水文重建.海洋与湖沼,2000,31(6): 588-595.
    59.李扬.中国近海海域微型硅藻的生态学特征和分类学研究.厦门大学博士学位论文,2006. 66-68.
    60.李茂田,程和琴.近50年来长江入海溶解硅通量变化及其影响.中国环境科学, 2001,21(3):193-197.
    61.刘健,李绍全,王圣洁,等.末次冰消期以来黄海海平面变化与黄海暖流的形成.海洋地质与第四纪地质,1999,19(1): 13-24.
    62.刘锡清.中国边缘海的沉积物分区.海洋地质与第四纪地质,1996,16(3): 1-11
    63.刘振夏,Berne S.东海陆架的古河道和古三角洲.海洋地质与第四纪地质,2000, 20(1): 9-14.
    64.骆高远.我国对厄尔尼诺、拉尼娜研究综述.地理科学,2000, 20(3): 264-269.
    65.毛汉礼,甘子钧,蓝淑芳.长江冲淡水及其混合问题的初步探讨.海洋与湖沼,1963, 5(2):183-206.
    66.宁修仁,刘子琳,史君贤.渤、黄、东海初级生产力和潜在渔业生产量的评估.海洋学报,1995,17(3):72-84.
    67.齐红艳.长江水下三角洲浅层沉积层序以及季节性沉积响应.中国海洋大学硕士论文.
    68.秦蕴珊,郑铁民.东海大陆架沉积物分布特征的初步探讨.《黄、东海地质》,中国科学院海洋研究所海洋地质研究室编.北京:科学出版社,1982. 31-51.
    69.秦蕴珊,赵一阳,陈丽蓉,赵松龄.东海地质.北京:科学出版社,1987,1-91.
    70.曲维政,黄菲,赵进平,等.北太平洋年代际涛动与太阳活动的联系.海洋与湖沼,2008,39(6):552-560.
    71.沈焕庭,张超,茅志昌.长江入海河口区水沙通量变化规律.海洋与湖沼,2000,31(3): 288-294.
    72.沈焕庭.长江河口物质通量.北京:海洋出版社,2001. 60-80.
    73.沈志良,陆家平,刘兴俊,等.长江口区营养盐的分布特征及三峡工程对其影响.海洋科学集刊,1992,33: 107-129.
    74.苏育嵩,李凤岐,王凤钦.渤、黄、东海水型分布与水系划分.海洋学报,1996,18(6): 1-7.
    75.隋洪波.长江口区波浪分布及其双峰谱型波浪的统计特征.中国海洋大学硕士论文,2003.
    76.孙效功,方明,黄伟.黄东海陆架区悬浮体输送的时空变化规律.海洋与湖沼,2000,31(6): 581-587.
    77.唐晓辉,王凡.长江口邻近海域夏冬季水文特征分析.海洋科学集刊,2004,46: 42-66.
    78.屠建波,王保栋.长江口营养元素生物地球化学研究.海洋环境科学,2004,23(4):10-13.
    79.万国江,林文祝,黄荣贵,等.红枫湖沉积物137Cs垂直剖面的计年特征及侵蚀示踪.科学通报,1990, 35 (19): 1487-1490.
    80.万国江.137Cs及210Pbex方法湖泊沉积物计年研究新进展.地球科学进展,1995, 10 (2): 188-192.
    81.王盼成,贺松林.长江大通站水沙过程的基本特征I.径流过程分析.华东师范大学学报(自然科学版), 2004, ( 6 ): 72-79.
    82.向荣,杨作升,郭志刚,等.济州岛西南泥质区粒级组成变化的古环境应用.地球科学, 2005,30(5): 582-588.
    83.夏威岚,薛滨.吉林小龙湾沉积速率的210Pb和137CS年代学方法测定.第四纪研究,2004,24(1):124-125.
    84.夏小明,谢钦春,李炎,等.东海沿岸海底沉积物中的137Cs\ 210Pb分布及其沉积环境解释.东海海洋,1999, 17 (11):20-27.
    85.肖尚斌,李安春.东海内陆架泥区沉积物的环境敏感粒度组分.沉积学,2005,23(1):122-129.
    86.肖尚斌,李安春,陈木宏,等.近8ka东亚季风变化的东海内陆架泥质沉积记录.地球科学,2005,30(5): 573-58.
    87.谢钦春,叶银灿.东海陆架坡折地形和沉积作用过程.海洋学报,1984,6(1): 61-71.
    88.许富祥.中国近海及其邻近海域灾害性海浪的时空分布.海洋学报,1996,18(2): 26-31.
    89.杨守业,李从先,赵泉鸿,等.长江口冰后期沉积物的元素组成特征.同济大学学报,2000,28(5):532-536.
    90.杨子赓,林和茂.中国第四纪地层与国际对比:国际地质对比计划第296项(IGCP296)—亚洲太平洋区域第四纪.北京:地质出版社,1996.
    91.杨作升,郭志刚,王兆祥,等.黄、东海及其毗邻海域悬浮体与水团的对应关系及其影响因素.青岛海洋大学学报, 1991,25(3): 55-69.
    92.杨作升,郭志刚,王兆祥,等.黄东海陆架悬浮体向其东部深海区输送的宏观格局.海洋学报, 1992,14(2):81-90.
    93.杨作升,范德江,郭志刚,等. 2002.东海陆架北部泥质沉积区表层沉积物碳酸盐粒级分部与物源分析.沉积学报,20(1): 1-6.
    94.叶属峰,纪焕红,曹恋,黄秀清.长江口海域赤潮成因及其防治对策.海洋科学,2004, 28(5):26-32.
    95.叶仙森,张勇,项有堂等.长江口海域营养盐的分布特征及其成因.海洋通报,2000 , 19 (1) :89-92 .
    96.应铭,李九发,万新宁,等.长江大通站输沙量时间序列分析研究.长江流域资源与环境,2005, 14(1): 83-87.
    97.赵海燕,韩延本,陈黎,等.太阳活动对地球表面温度影响的研究进展[[J].自然灾害学报,2003,14(4):137-142
    98.赵一阳,鄢明才.黄河、长江、中国浅海沉积物化学元素丰度比较.科学通报, 1992,13: 1202-1204.
    99.赵一阳,鄢明才.中国浅海沉积物地球化学.北京:科学出版社,1994.
    100.张瑞,汪亚平,潘少明.近50年来长江入河口区含沙量和输沙量的变化趋势.海洋通报,2008,27(2):1-9.
    101.张瑞,汪亚平,潘少明.长江大通水文站径流量的时间系列分析.南京大学学报(自然科学),2006, 42(4): 423-434.
    102.张晓慧,张红岩,于中华.青岛气温与太阳黑子活动的关系[J].山东气象,2005, 25(1): 9-11.
    103.张云吉,金秉福,冯雪.近半个多世纪以来渤海冰情对全球气候变化的响应.海洋通报,2007,26(6):96-101.
    104.周俊丽,刘征涛,孟伟,李政,李霏。长江口营养盐浓度变化及分布特征.环境科学研究,2006,19(6):139~144.
    105.周鹏.东海沉积物岩芯中生物硅的测定及其地层学分析[D].厦门大学硕士学位论文,2007,1-96.
    106.邹汉阳,苏贤泽,余兴光,等. 210Pb法测定东海大陆架现代沉积速率.台湾海峡,1982,1(2): 30-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700