长江水下三角洲浅层沉积层序以及季节性沉积响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用X射线成像技术、紫外分光技术、X射线衍射矿物物相分析技术、ICP—AES(MS)元素分析技术,对横跨长江水下三角洲不同亚环境的浅层沉积层序进行了研究,并系统解剖了长江三角洲前缘的无扰动浅层沉积物柱样高分辨率粒度、生物硅、矿物组成、常量元素、微量元素以及稀土元素记录,揭示了三角洲前缘沉积与长江入海水沙、海洋环境的响应关系,分析了夏秋、冬春两个时段的沉积特征。这是该区首次尝试进行年际和季节性时间尺度的高分辨沉积记录研究,证实可以实现精确的季节性和年代级的高分辨记录。研究表明:
     长江水下三角洲沉积物总体上以粉砂质黏土为主,近岸粒度细,向外,粒度逐渐变粗。浅层层序中以发育块状构造、水平层理、生物扰动等构造为特征,并且具有空间上的分带性,从三角洲前缘到前三角洲及过渡带再到正常浅海,生物扰动指数呈低-高-低变化。
     长江三角洲前缘浅层沉积层序与长江入海泥沙、三角洲环境的季节性波动有着良好的响应关系。夏秋季时输沙多,海洋能量相对较弱,初级生产力高,形成的沉积物偏细、生物硅含量高;而冬春时期,河流输沙少,海洋能量相对较强,初级生产力低,形成的沉积物偏粗、生物硅含量低。这正是进行季节性沉积层序识别的依据所在。
     夏秋季沉积层主要矿物为石英、长石、云母与黏土矿物,次要矿物为方解石和白云石,具有明显的长江型物源性质。元素组成上表现为:常量元素中Al2O3> TFe>CaO> K2O>MgO>Na2O>Ti2O3,占所有元素组成的34%,其中Al2O3含量为16.02%,CaO和Na2O含量分别为4.31%和1.17%。所分析的六种微量重金属元素含量Zn>Cr>Cu>Pb>As>Cd,平均含量总值为291.85×10-6。稀土元素总量平均为219×10-6,轻稀土元素含量是重稀土元素含量的4.34倍。较之冬春季沉积层,夏秋季沉积层中Al2O3和重金属元素含量偏高、CaO与Na2O含量偏低。
     冬春季沉积层主要矿物仍然为石英、长石、云母与黏土矿物,次要矿物为方解石和白云石,也具有明显长江型物源性质。其元素组成表现为:常量元素中Al2O3> TFe>CaO> K2O>MgO>Na2O>Ti2O3,亦占所有元素组成的34%,其中Al2O3含量为15.34%,CaO和Na2O含量分别为4.63%和1.43%。Zn、Cr、Cu、Pb、As、Cd的平均含量之和为265.42×10-6。稀土元素总量平均216×10-6,轻重稀土元素含量之比约为4.4。较之夏秋季沉积层,冬春沉积层元素组成表现为Al2O3低、CaO与Na2O高,重金属元素含量低。
     另外,沉积层序厚度与长江入海泥沙通量有很好的正相关关系。在研究时段1992~2005年间,年沉积厚度为1.1~3.6cm。最大沉积厚度发生于1998年,为3.6cm,对应的长江年输沙量4.01亿t;最小沉积厚度发生于2004年,为1.1cm,对应的长江年输沙量仅1.47亿t。
With the use of X-photograph method、ultraviolet Spectrophotometry、X-ray diffration、ICP-AES(MS) analysis method, surficial sedimentary sequences of different sub-environments in the subaqueous Yangtze River Delta are studied. And undisturbed surficial sediment sample records are then analyzed, including high resolution records of grain size、BSi content、mineral and elements composition, which show a good response of delta front sedimentation to the Changjiang material flux and ocean environment. Based on the above records, characters of sedimentation in both summer-autumn and winter-spring are analyzed respectively. This is the first study about the sediment records on the scale of a year or even seasons in this area.
     The results show that sediments in the subaquous Yangtze River Delta are mainly silt clay. From the coast to the seaside, the grain size is gradually coarser. Surficial sequences are charactered by block structures, horizontal laminations and bioturbation strauctures. And the distribution of the bioturbation structure is largely spatial different in the Subaqueous Yangtze River Delta. From the delta front to prodelta and transitional zone to shelf environment, the bioturbation index is varied as low-high-low.This kind of response is the key point according to which sequences that deposit in different seasons can be identified.
     The delta front surficial sequence gives a good response to the seasonal variations of Changjiang sediment flux and delta environment. In summer and autumn, large sediment flux, weak ocean energy and high primary production result to finer sediment and high content of BSi in the sequence. While in winter and spring, when the sediment flux decreased, the ocean energy becomes stronger and the primary production gets to low, there will be croaser sediment and low content of BSi which deposit to the sequence.
     Mineral composition of the Sediment in summer and autumn is very near to those come from Yangtze River, in which major minerals are quartz, feldspar and clay minerals while calcite and dolomite appear as minor minerals. In the sediment, Al2O3> TFe>CaO> K2O>MgO>Na2O>Ti2O3,they constitute 34% of all. The content of Al2O3 in the sediment is16.02%, while the contents of CaO and Na2O about 4.31% and 1.17% respectively. Total content of the six heavy metal elements which are studied is 291.85×10-6, in which Zn>Cr>Cu>Pb>As>Cd. Total Ree is about 219×10-6, in which light Ree weight as 4.34 times as heavy ones. Compared with winter and spring, sediment in summer and autumn is high in Al2O3 and heavy metals, low in CaO and Na2O.
     Mineral composition of the Sediment in winter and spring is also near to those come from Yangtze River, and in which major minerals are quartz, feldspar and clay minerals while calcite and dolomite appear as minor minerals too. Similar to summer and autumn ones, in the winter and spring sediment, Al2O3> TFe>CaO> K2O>MgO>Na2O>Ti2O3,and they constitute about 34% of all. However, the content of Al2O3 in the sediment is15.34%, and the contents of CaO and Na2O are 4.63% and 1.34% respectively. Total content of Zn, Cr, Cu, Pb, As and Cd tend to be 265.42×10-6, Total Ree has no difference which weight about 219×10-6, and the content of light Ree is about 3.4 times higher than heavy ones. Compared with summer and autumn, sediment in winter and spring shows low contents of Al2O3 and heavy metals, but high CaO and Na2O.
     There is a good positive correlativity between the thickness of sediment sequence and the sediment flux of Changjiang. During1992~2005, which period that is researched, the annual deposite thickness ranges from 1.1cm to 3.6 cm. And the maximum thickness—3.6cm is deposited in 1998 when the sediment flux of Changjiang is 401 milion tons, while the minimum—1.1cm happens in 2004 when the sediment flux is only about 147 million tons.
引文
1. Allison M A, Kineke G C, Gordon E S, Goňi M A. Development and reworking of a seasonal flood deposit on the inner continental shelf off the Atchafalaya River. Continental Shelf Research, 2000, 20: 2267-2294
    2. Beardsley, R.C., Limeburner, R., andYu. H., et al. Diseharge of the Changjiang (Yangtze River) into the East China Sea. ContinentalShelfReseareh.1985, 1-2: 57-76
    3. Bentleya S J, Nittrouer C A. Emplacement, modification, and preservation of event strata on a flood-dominated continental shelf: Eel shelf, Northern California. Continental Shelf Research, 2003, 23: 1465-1493
    4. Boldrin A, Langone L, Miserocchi S, Turchetto M, Acri F. Po River plume on the Adriatic continental shelf: Dispersion and sedimentation of dissolved and suspended matter during different river discharge rates. Marine Geology, 2005, 222-223: 135-158
    5. Borgeld J C, Clarke J E H, Goff J A, et al. Acoustic backscatter of the 1995 flood deposit on the Eel shelf. Marine. Geology, 1999, 154: 197-210
    6. Brindey, G. W., G. Brown. Crystal structures of clay minerals and their X-ray identification. Mineral. Soc., 1980, 5: 305-361
    7. Chen Z, Song B, Wang Z, Cai Y. Late Quaternary evolution of the sub-aqueous Yangtze Delta, China: sedimentation, stratigraphy, palynology, and deformation. Marine Geology. 2000, 162: 423-441
    8. Chen Z, Saito Y, Hori K, Zhao Y, Kitamura A. Early Holocene mud-ridge formation in the Yangtze offshore, China: a tidal-controlled estuarine pattern and sea-level implications. Marine Geology, 2003, 198: 245-257
    9. DeMaster D J, Mckee B A, Nittrouer C A, et al. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research, 1985, 4: 143-158
    10. Drake D E. Temporal and spatial variability of the sediment grain-size distribution on the Eel Shelf: the flood layer of 1995. Marine Geology, 1999, 154: 169–182
    11. Eisma, D., Z. Ji, S. Chen, et al. Clay mineral composition of recent sediments along theChina coast, Netherlands institute Voof Onderzoek der Zee (Report). 1995: 1-13
    12. Folk R L, Ward W C. Brazos River bar: a study in the Significance of grain size parameters. Journal of Sedimentary petrology, 1957, 27: 3-26
    13. Huh C A, Su C C. Sedimentation dynamics in the East China Sea elucidated from 210 Pb, 137Cs, and 239, 240Pu. Marine Geology, 1999, 160: 183-196
    14. Kuehl S A, DeMaster D J, Nittrouer C A. Nature of sediment accumulation on the Amazon continental shelf. Continental Shelf Research, 1986, 6: 209-225
    15. Kuehl S A, Pacioni T D, Rine J M. Seabed dynamics of the inner Amazon continental shelf: temporal and spatial variability of surface strata. Marine Geology. 1995, 125: 283-302
    16. Leinen M, Cwienk D, Ross G R, et al. Distribution of biogenic silica and quartz in recent deep sea sediment. Geology, 1986, 14: 199-203.
    17. Leithold E L, Hope R S. Deposition and modification of a flood layer on the northern California shelf: lessons from and about the fate of terrestrial particulate organic carbon. Marine Geology, 1999,154: 183–195
    18. Liu Z X, Berne S, Saito Y, Lericolais G, Marsset T. Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea. Journal of Asian Earth Sciences, 2000, 18(4): 441-452
    19. Liu J P. Post-Glacial sedimentation in a river-dominated Epocontinental shelf: The Yellow Sea example. (Ph. D. Dissertation of College of William & Mary in Virginia) 2001.
    20. Liu J P, Milliman J D, Gao S, Cheng P. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea. Marine Geology, 2004, 209: 45–67
    21. Lyle M, Murray D W, Finney B P, et al. The record of late pleistocene biogenic sedimentation in the Eastern Tropical Pacific.Ocean Paleoceanography, 2000, 3 (1) : 39-59
    22. Milliman J D, et al. Modern Huanghe derived muds on the outer shelf of the East China Sea : Identification and potential transport mechanisms. Continental Shelf Research, 1985a, 4: 175~188
    23. Milliman J D, Shen H T, Yang Z S, Meade R H. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Continental shelf research, 1985b, 1-2: 37-45
    24. Mortlock R A, Froelich P N. A simple method for the rapid determi nation of biogenic opalin pelagic marine sediments. Deep sea Research, 1989, 36 (9): 1415-1426
    25. Nittrouer C A, Kuehl S A, Sternberg R W, et al. An introduction to the geological significance of sediment transport and accumulation on the Amazon continental shelf. Marine Geology, 1995, 125: 177-192
    26. Nittrouer C A. STRATAFORM: overview of its design and synthesis of its results. Marine Geology, 1999, 154: 3-12
    27. Palinkas C M, Nittrouer C A, Wheatcroft R A, Langone L. The use of 7Be to identify event and seasonal sedimentation near the Po River delta, Adriatic Sea. Marine Geology, 2005, 222-223: 95-112
    28. S. M. Liu, X. W. Ye, J. Zhang, Y. F. Zhao. Problems with biogenic silica measurement in marginal seas. Marine Geology, 2002, 192: 383-392
    29. SaitoY and Yang Z S. Historical change of the Huanghe (YellowRiver) and its impacton the sediment budget of the East China Sea, Proceedings of international symposium on the global fluxes of carbon and its related substances in the coastal-ocean-atmosphere system. Japan: Hokkido University (Sapporo), 1994:7-12
    30. Sommerfield C K, Nittrouer C A, Alexander C R. 7Be as a tracer of flood sedimentation on the northern California continental margin. Continental Shelf research, 1999, 19: 335-361
    31. Sommerfield C K and Nittrouer C A. Modern accumulation rates and a sediment budget for the Eel shelf: a flood-dominated depositional environment. Marine Geology, 1999, 154: 227-241
    32. Su C C and Huh C A. 210Pb, 137Cs and 239,240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides. Marine Geology, 2002, 183: 163-178
    33. Taylor A M, Goldring R. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 1993, 150 : 141-148
    34. Wheatcrof R A, Sommerfield C K, Drake D E, et al. 1997. Rapid and widespread dispersal of flood sediment on the northern Calfornia margin. Geology, 25: 163-166
    35. Wheatcroft R A, Borgeld J C. Oceanic flood deposits on the northern California shelf: large-scale distribution and small-scale physical properties. Continental Shelf Research, 2000, 20:2163-2190
    36. Yang S Y, Li C X. Characteristic Elemental Compositions of the Yangtze River and YellowRiver Surface Sediments and Their Geological Background. Chinese Journal of Geochemistry, 1999, 18(3):258-265
    37. Yang S Y, Jung S J, Limb D I, Li C X. A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Science Reviews, 2003:63: 93-120
    38. Yang Z S, Wang H J, Saito Y, et al. Dam impacts on the Changjiang (Yangtze River) sediment discharge to the sea: the past 55 years and after the Three Gorges dam. Water Resources Research, 2006, 42: 1-10
    39.毕春娟,陈振楼,许世远,等.长江口滨岸潮滩重金属源汇通量估算.地球化学,2006,35(2):187-193
    40.长江水利委员会. 2006年长江泥沙公报.武汉:水利部长江水利委员会,2007
    41.陈丽蓉,栾作峰,郑铁民,等.渤海沉积物中的矿物组合特征.海与湖沼,1980,11(1): 46-64
    42.陈丽蓉,徐善民,申顺喜.东海沉积物的矿物组合及其分布特征的研究.黄东海地质.北京:科学出版社,1982. 82-97
    43.陈丽蓉.东海地质.北京:科学出版社,1987. 33-57
    44.陈丽蓉.渤海、黄海、东海沉积物中矿物组合的研究.海洋科学,1989,2:1-8
    45.陈正新,黄海燕,李绍全,等.黄海SYDP103孔黏土矿物组成及古气候意义.海洋科学,2007,31(5):32-38
    46.戴仕宝,杨世伦,郜昂,等.近50年来中国主要河流入海泥沙变化.泥沙研究,2007,2:49-58
    47.范德江,杨作升,毛登,郭志刚.长江与黄河沉积物中粘土矿物及地化成分的组成.海洋地质与第四纪地质,2001,21(4):7-12
    48.范德江,杨作升,王文正.长江、黄河沉积物中碳酸盐组成及差异.自然科学进展, 2002a,12(1):60-64
    49.范德江,杨作升,孙效功,张东奇,郭志刚.东海陆架北部长江、黄河沉积物影响范围的定量估算.青岛海洋大学学报,2002b,32(5): 748-756
    50.郭志刚,杨作升,陈致林,等.东海陆架泥质区沉积有机质的物源分析.地球化学, 2001,30(5): 416-424
    51.郭志刚,杨作升,范德江,潘燕俊.长江口泥质区的季节性沉积响应.地理学报, 2003,58(4): 591-597
    52.何起祥.中国海洋沉积地质学.北京:海洋出版社, 2006. 266-267
    53.胡敦欣,杨作升.东海海洋通量关键过程.北京:海洋出版社,2001.
    54.黄海军,李凡,张秀荣.长江黄河水沙特征初步对比分析.海洋科学集刊,2004,46: 79-90
    55.黄慧珍,唐宝根,杨文达,等.中国三角洲沉积地质学丛书——长江三角洲沉积地质学.北京:地质出版社,1997.
    56.金翔龙.东海海洋地质.北京:海洋出版社,1992.
    57.李广雪,杨子庚,刘勇.中国东部海域海底沉积环境成因研究.北京:科学出版社, 2005.
    58.李国刚.中国近海表层沉积物中粘土矿物的组成、分布及其地质意义.海洋学报, 1990,12(4): 470-479
    59.李国刚,秦蕴珊.中国近海细粒级沉积物中的方解石分布、成因及其地质意义.海洋学报, 1991,13(3):381-348
    60.李鹏,杨世伦,戴仕宝,等.近10年来长江口水下三角洲的冲淤变化——兼论三峡工程蓄水的影响.地理学报,2007,62(7):707-716
    61.李铁刚,李绍全,苍树溪等. YSDPl02钻孔有孔虫动物群与南黄海东南部古水文重建.海洋与湖沼,2000,31(6): 588-595
    62.李扬.中国近海海域微型硅藻的生态学特征和分类学研究.厦门大学博士学位论文,2006. 66-68
    63.刘健,李绍全,王圣洁,等.末次冰消期以来黄海海平面变化与黄海暖流的形成.海洋地质与第四纪地质,1999,19(1): 13-24
    64.刘锡清.中国边缘海的沉积物分区.海洋地质与第四纪地质,1996,16(3): 1-11
    65.刘振夏,Berne S.东海陆架的古河道和古三角洲.海洋地质与第四纪地质,2000, 20(1): 9-14
    66.毛汉礼,甘子钧,蓝淑芳.长江冲淡水及其混合问题的初步探讨.海洋与湖沼,1963, 5(2):183-206
    67.宁修仁,刘子琳,史君贤.渤、黄、东海初级生产力和潜在渔业生产量的评估.海洋学报,1995,17(3):72-84.
    68.宁修仁,刘子琳,蔡昱明.我国海洋初级生产力研究二十年.东海海洋,2000,18(3):13-19
    69.秦蕴珊,郑铁民.东海大陆架沉积物分布特征的初步探讨.见《黄、东海地质》,中国科学院海洋研究所海洋地质研究室编.北京:科学出版社,1982. 31-51
    70.秦蕴珊,赵一阳,陈丽蓉,赵松龄.东海地质.北京:科学出版社,1987. 1-91
    71.沈焕庭,张超,茅志昌.长江入海河口区水沙通量变化规律.海洋与湖沼,2000,31(3): 288-294
    72.沈焕庭.长江河口物质通量.北京:海洋出版社,2001. 60-80
    73.苏育嵩,李凤岐,王凤钦.渤、黄、东海水型分布与水系划分.海洋学报,1996,18(6): 1-7
    74.隋洪波.长江口区波浪分布及其双峰谱型波浪的统计特征.中国海洋大学硕士论文,2003
    75.孙白云.黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征.海洋地质与第四纪地质,1990,10(3): 23-34
    76.孙效功,方明,黄伟.黄东海陆架区悬浮体输送的时空变化规律.海洋与湖沼,2000,
    31(6): 581-587
    77.唐晓辉,王凡.长江口邻近海域夏冬季水文特征分析.海洋科学集刊,2004,46: 42-66
    78.王金辉,徐韧,秦玉涛,等.长江口基础生物资源现状及年及变化趋势分析.中国海洋大学学报, 2006,36(5): 821-828
    79.吴世迎.从黄海碳酸盐分布特征探讨黄河在黄海沉积过程中的作用.第三界全国第四纪学术会议论文集.北京:科学出版社,1982. 95-102
    80.向荣,杨作升,郭志刚,等.济州岛西南泥质区粒级组成变化的古环境应用.地球科学, 2005,30(5): 582-588
    81.肖尚斌,李安春,陈木宏,等.近8ka东亚季风变化的东海内陆架泥质沉积记录.地球科学,2005,30(5): 573-58
    82.谢钦春,叶银灿.东海陆架坡折地形和沉积作用过程.海洋学报,1984,6(1): 61-71
    83.许富祥.中国近海及其邻近海域灾害性海浪的时空分布.海洋学报,1996,18(2): 26-31
    84.杨守业,李从先.长江与黄河沉积物元素组成及地质背景.海洋地质与第四纪地质,1999,19(2):19-26
    85.杨守业,李从先,赵泉鸿,等.长江口冰后期沉积物的元素组成特征.同济大学学报,2000,28(5):532-536
    86.杨子赓,林和茂.中国第四纪地层与国际对比:国际地质对比计划第296项(IGCP296)—亚洲太平洋区域第四纪.北京:地质出版社,1996.
    87.杨作升.黄河、长江、珠江沉积物中粘土的矿物组合、化学风化特征及其与物源区气候环境的关系.海洋与湖沼, 1988,19 (4): 578-588
    88.杨作升,郭志刚,王兆祥,等.黄、东海及其毗邻海域悬浮体与水团的对应关系及其影响因素.青岛海洋大学学报, 1991,25(3): 55-69
    89.杨作升,郭志刚,王兆祥,等.黄东海陆架悬浮体向其东部深海区输送的宏观格局.海洋学报, 1992,14(2):81-90
    90.杨作升,范德江,郭志刚,等. 2002.东海陆架北部泥质沉积区表层沉积物碳酸盐粒级分部与物源分析.沉积学报,20(1): 1-6
    91.杨作升,陈晓辉.百年来长江口泥质区高分辨率沉积粒度变化及影响因素探讨.第四纪研究,2007,27(5):690-699
    92.赵一阳,鄢明才.黄河、长江、中国浅海沉积物化学元素丰度比较.科学通报, 1992, 13: 1202-1204
    93.赵一阳,鄢明才.中国浅海沉积物地球化学.北京:科学出版社,1994.
    94.邹汉阳,苏贤泽,余兴光,等. 210Pb法测定东海大陆架现代沉积速率.台湾海峡,1982,1(2): 30-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700