长期施肥条件下典型红壤养分、水分的时空变异及水肥耦合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红壤是我国南方的主要土壤类型之一,其面积广大,约占全国土地总面积的22.7%,对我国的粮食生产起着重要作用。由于红壤特殊的性质和不合理的施肥,引起了土壤酸化和氮、磷的污染,导致红壤地区生态环境的恶化。因此,如何科学、合理的开发利用红壤资源,走可持续发展道路,是我国土壤学科的研究热点。
     本文选择了湖南祁阳低山丘陵区典型红壤为供试土壤,定点监测了该区不同时期、不同施肥处理的硝态氮、铵态氮和速效磷等土壤养分和水分的含量,分析了这些速效养分和水分在土壤中的运移机理、时空变异和水肥耦合状况,并利用地统计学对其进行了插值处理,试图为红壤地区科学施肥、合理利用水肥资源、走农业可持续发展道路提供科学依据。本文的主要研究结果如下:
     (1)用水分扩散装置测定了供试红壤4个土壤发生层N03--N的含量及水平运移状况,结果表明:硝态氮水平运移速率随土壤含水量增加而相应增加,呈指数曲线变化;随运移距离增加而迅速减小,呈幂函数曲线变化。硝态氮水平运移速率与运移距离均有很好的相关性。硝态氮水平运移浓度与土壤含水量密切相关,随含水量的增加而减少,并呈幂函数曲线变化。硝态氮水平运移浓度还受到土壤水分扩散率的影响,随土壤水扩散率的升高而下降,并呈对数曲线变化。硝态氮浓度最大值出现在湿润锋(土壤干湿交界面上)。
     (2)在2007年3月到2009年3月期间,对供试红壤四个处理小区各土层中N03--N和NH4+-N含量的时间变化和剖面中垂直变化进行了研究。结果表明:各处理小区土壤表层中N03--N和NH4+-N的含量较高,而底层普遍较低,其中2007年5月份单施氮小区土壤淀积层(32-42cm)N03--N和土壤表层(0-25cm)NH4+-N的含量均达到最高,分别为248.34 mg·kg-1和127:24mg·kg-1,这是由于4、5月份为冬小麦的拔节-开花期,所需养分激增,大量追肥所致。N03--N和NH4+-N的含量在NPK小区和NP小区各土层中呈极显著直线线性正相关关系,而在单施N小区和空白小区的表现不一;各小区土壤中NO3--N和NH4+-N的含量与有机质含量呈正相关的指数曲线变化。
     (3)在2007年3月到2009年3月期间,对供试红壤四个处理小区各土层中速效磷含量的时间变化和剖面中的垂直变化进行了研究。结果表明:各处理小区土壤中速效磷的含量均在表层中较高,而底层普遍较低;每年的3月份、5月份和11月份速效磷含量较高,其他月份相对较低。其中在2007年3月份氮磷配施处理表层土壤的含量最高,达121.87 mg·kg-1。土壤有机质、团粒结构以及pH值均是影响土壤速效磷含量的重要因子,其中有机质和速效磷含量间呈显著正相关(P<0.05),红壤有机质含量较低,所以生产中应增加有机肥的施用量;CK小区各层土壤团聚体与速效磷含量呈指数曲线变化。
     (4)采用经典统计学与地统计学相结合的方法,对湖南地区典型红壤旱地进行网格法布点分层(0-20cm、20-40cm)取样,研究了田间尺度下土壤水分、有机质和氮素的空间变异特征。结果表明:土壤全氮和有机质含量随深度的增加而减小,而硝态氮含量随深度的增加呈增大的趋势。这是由于硝态氮易随着水分向下层迁移。两个土层硝态氮的变异系数(41.96%-62.08%)远高于全氮和有机质的变异系数(5.88%-18.82%);各变量半方差变异函数的CO/(CO+C)均大于0.25而小于0.75,属于中等和弱空间自相关,这表明全氮、硝态氮、有机质和土壤含水量在研究区具有一定的空间结构且有较相近的空间相关距离。土壤全氮、有机质之间以及硝态氮与土壤水分之间均有极显著的相关性(P<0.01,n=96)。
     (5)对供试红壤氮磷钾(NPK)、氮磷(NP)、氮(N)、空白(CK)和有机肥氮磷钾配施(NPKOM)小区中硝态氮、铵态氮、速效磷三种速效养分与土壤水分的耦合作用进行了研究,结果表明:未施有机肥的氮磷钾(NPK)、氮磷(NP)、氮(N)、空白(CK)四个小区土壤中NO3--N、NH4+-N和速效磷与土壤含水量均呈极显著相关关系(n=112,P<0.01);有机肥与氮磷钾配施小区(NPKOM)土壤中NO3--N、NH4+-N和速效磷三种速效养分与土壤水分也呈极显著的负相关性(n=40;P<0.01)。可见,研究区土壤水分和速效养分存在着较好的耦合作用;而增施有机肥可以改善土壤的团粒结构和理化性质,更有利于水肥的耦合作用。
Red soil, as a principal soil type in the south of China with large area distributed in many provinces, plays a significant function in agriculture production. Due to the special property of red soil and unreasonable fertilization, its environment has been deteriorated in this region. Exploiting red soil resource reasonably should be essential measures for agricultural sustainable development, which is also hotspot of soil science in China. In this paper, experiment of field and experimental simulation were taken to study the spatial variability of soil water content, soil nutrient, the transportation of nitrate and coupling of soil water-nutrients in typical red soil in Hunan Province. The results were as follows:
     (1) Horizontal migration and content of NO3-N in four natural occurring layers of the red soil in the hills of Qiyang, Hunan province were measured by water diffusion device. The transport velocities of nitrate-N was increased with the soil moisture content, presenting typical index relation. While it decreased rapidly with transport distance of nitrate-N, presenting power relation. There is a significant relationship between the horizontal transport velocity of nitrate-N and the distance of the tracer source. Nitrate-N transport concentration decreased with increase of the soil moisture content, presenting power curve. The transport concentration was also influenced by the soil moisture diffusivity, and decreased with increase of the diffusivity, presenting logarithmic curve. Transport concentration of Nitrate-N reach maximum value at the surface of wet spearhead, which is the interface of wet and dry soil.
     (2) Nitrate and ammonium contents varied with months in soil profile, which was studied in different treatments in dry land of the red soil during two years. The results indicated that nitrate and ammonium contents were high in surface soil layer in every treatment and low in bottom layer. Both nitrate and ammonium reached the highest contents of 248.34 mg·kg-1 and 127.24 mg·kg-1 in May 2007 in N treatment plot. Due to winter wheat required more nutrients in jointing-flowering stage in April and May, more fertilization was applied for crops. Significant differences were found between November and May and other months by SPSS 16.0. The nitrate and ammonium had significant relationship with straight line between NPK and NP plots. There were diverse relations in different months in N and blank plots. The nitrate and ammonium contents had a sharp relationship with soil organic matter in every treatment and changed with exponential function.
     (3) Available phosphorus content varied with seasons and soil profile, which were studied in different treatments during two years. The results indicated that available phosphorus content of each treatments were higher in surface soil layer and lower in bottom layer. Available phosphorus reached highest content in surface soil layer of NP plot in March 2007, which was 121.87 mg·kg-1. Organic matter, aggregates structure and pH value were important influencing factors, available phosphorus had a sharp positive relation with soil organic matter. The correlation coefficient was 0.8768. Soil aggregates and available phosphorus had significant relationship in CK plot and changed with exponential function..
     (4) The space variability of soil water content and soil nutrients at the depths of 0-20 cm,20-40cm in the red soil region of Hunan Province was examined by traditional statistics and geoststistics methods. Total N content and organic matter were both reduce while the depths increased, but NO3--N content was increased with the depth increased. Coefficient of variation (41.96%-62.08%) of NO3--N content in study soil profiles far higher than the coefficient of variation total N content and organic matter (5.88%-18.82%). All semi-variable functions of the variance variation CO/(CO+C) ranged from 0.25 to 0.75, it indicated they have middle and weak correlation space and similar distance spatial structure. The total N and organic matter contents had a sharp positive relation, so did NO3--N and soil water content.
     (5) Nitrate-N, ammonium-N and available phosphorus coupling with soil moisture in NPK, NP, N, CK and NPKOM plots under long-term fertilization of red soil were studied. The results indicated that NO3--N、NH4+-N and available phosphorus had a significant relation with soil moisture in NPK, NP, N, CK plots(n=112, P<0.01).There also existed a significant relationship between soil water and fertilizer in NPKOM plot(n=40; P<0.01). It can be concluded that available nutrient had a great coupling affected with soil moisture. More organic fertilizer can not only improve soil aggregates structure and basic character, but also be propitious to the effect of water and soil coupling.
引文
1. Ananda J, Herath G. Soil erosion in developing countries:a socio-economic appraisal [J]. Journal of Environmental Management,2003 (6):343~353.
    2. Arp P A, Ouimet R, Aluminium spiation in soil solution:equilibrium calculations [J]. Water, Air and Soil Pollution 1986,31:389~366.
    3. Appelt H. Interactions between organic compounds, minerals and ions in volcanic ash derived soils. [J].Soil Sci.1975,39(4):623~627.
    4. Berndtsson R, Bahri A, and Jinno K. Spatial dependence ogeochemical elements in a semiarid agricultural field. Ⅱ. Geostatistical properties[J]. Soil Sc.i Soc. Am. J.,1993,57:1323~1329.
    5. Cambardella C A, Moorman T B, Novak J M, et al Field-scale variability of soil properties in central Iowa soils[J]. Soil Sc.i Soc. Am. J.,1994,58:1501~1511.
    6. Chang, C, Entz. T. J. Nitrate leaching losses under repeated cattle feedlot manure applications in Southern Alberta [J]. Environment Quality,1996,25(1):145~153.
    7. Chien Y J, Lee D Y. Guo H Y. et al.Geostatistical analysis of soil properties of mid-west Tai Wan soil[J]. Soil Science,1997,162(4):151~162.
    8. Hesketh N, Brookes P C. Development of a indicator for risk of phosphorus leaching [J]. J Environ Qual,2000,29:105~110.
    9. HE Y Q, LI Z M. Nutrient cycling and balance in red soil agroecosystem and their management[J]. Pedosphere,2000(10):107~116
    10. Holford I C R. The high and low energy phosphate adsorbing surface in calcareous soils. [J]. Soil Sci,1975,26:407~417.
    11. Humenik. F J, M. D. Smolen et al. Dressing. Pollution from non-point sources:Where we are and where we should go [J]. Environ. Sci. Technol.1987,21:737~742.
    12. Jordan C, McGuckin S O, Smith R V. Increased predicted losses of phosphorus to surface water from soil swith high Olsen P concentration [J]. Soil Use and Management,2000,16:27~35.
    13. Journel A G, Huijbregts C J.Mining Geostatistics. London:Academy press.1978.
    14. Juan P Fuentes, Markus Flury, David R Huggins, David F Bezdicek. et al. Soil water and nitrogen dynamics in dryland cropping systems of Washington State, USA [J]. Soil & Tillage Research,2003,71(1):33~47.
    15. Ju X T, Pan X R, Liu X J. et al. The fate of nitrogen fertilizer in winterwheat growth season under high soil fertility condition[J]. Acta Agriculturae Nucleate Sinica,2002,16(6):397~402.
    16. KNIGHTON R E, ASHMORE P E, FERGUSON R I, et al. Simulation of solute transport using a CTMP[J]. Water Resource Research,1987,23(7):1917~1925.
    17. Liu H B, Li Z H, Zhang Y G. et al. Nitrate caminatinm of goundwater and its affecting factors in rural areas of Beijing plain[J].Acta Pedologica Sinica,2006,43(3):405-413.
    18. Mandal K G, Sinha A C. Nutrient management effects on light interception, photosynthesis, growth, drymatter production and yield of Indian mustard(brassica juncea)[J]. Journal of Agronomy and Crop Science,2004,190(2):119-129.
    19. Maguire R O, Sims J T. Soil testing to predict phosphorus leaching[J]. J. Environ. Qual.,2000, 31(5):1601-1609.
    20. Page A L, Miller R H, Keeney D R. Methodsofsoil analysis,Part 2:Chemical and Microbiological Properties.2nd ed.Wisconsin, USA:ASA and SSSA Inc.1982.
    21. Richter R, Roelcke M. The N-cycle as determined by intensive agriculture—example from central Europe and China[J]. Nutrient Cycling Agroecosys,2000,57:33~46.
    22. Sharpley AN, Daniel T C, Sims J T. Determing environmentally sound soil phosphorus levelfJ]. J. Environ. Qual.,1996,51(2):160~166.
    23. Sims J T, Ewards A C, Schoumans O F, Simard R R. Integrating soil phosphorus testing into environmentally based agricultural management practices[J]. J. Environ. Qual.,2000,29(1): 60~71.
    24. Sun B, Zhou S L, Zhao Q G, et al. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China [J]. Geoderma,2003 (115):85~99.
    25. Tang S M, Qi Z P, et al. The connection of soilwater content and nitrogen mineralization[J]. Chinese Journal of Tropical Agriculture,1997, (4):54~60.
    26. Van Breemen N, Driscoll C T, Mulder J. Acidic deposition and internal proton in acidification of soils and water [J]. Nature,1984,307(5952):599~604.
    27. Walker J P, Willgoose G R, Kalma J D. One-dimensional soil moisture profile retrieval by assimilation of near-surface measurements:a simplified soil moisture model and field application. Journal of Hydrometeorology,2001,2:356~373.
    28. Withers P J, Edwards A C, Foy R H. Phosphorus cycling in UK agriculture and implications for phosphorus loss from soil[J].Soil Use Man,2001,17:139~149.
    29. Yang J C, Huang J H, Pan Q M, et al. Soil phosphorus dynamics as influenced by land use changes in humid tropical, southwest China [J]. Pedosphere,2005,15(1):24~32.
    30. Yost R S, Uehara G, Fox R L. Geostatistical analysis of soil chemical properties of large land areas:Ⅱ. Kriging[J].Soil Sci. Soc. Am. J.,1982,46:1033~1037.
    31. Zhang T L, Zhao Q.G., Zhai Y S, Chen B F and Sun B. Sustainable land use in the hilly red soil region of South-eastern China. Pedosphere 1995,5:1~10.
    32.白由路,金继运,杨俐苹等.基于GIS的土壤养分分区管理模型研究[J].中国农业科学,2001,34(1):46~50.
    33.鲍士旦主编.土壤农化分析[M].中国农业出版社.第三版1999.
    34.毕经伟,张佳宝,陈效民,朱安宁等.应用Hydrus-1D模型模拟农田土壤水渗漏及硝态氮淋失特征[J].农村生态环境,2004,20(2):28~32.
    35.陈家宙.红壤农田水量平衡和水分转换及作物的生产力[D],华中农业大学,2001.
    36.陈铭,谭见安,孙富臣等.湘南红壤对NO3-和SO42-的吸附机理研究[J].环境科学,1993,12(4):252~257.
    37.陈效民,邓建才,张佳宝等.黄淮海平原主要土类中硝态氮水平运移规律[J].环境科学,2002,23(5):96~99.
    38.陈效民.太湖地区主要水稻土中硝态氮水平运移规律的研究[J].水土保持学报,2001,15(1):95~97.
    39.程东升.森林微生物生态学.[M].东北林业大学出版社,1993,86-163.
    40.曹志洪.科学施肥与我国粮食安全保障[J].土壤,1998,(2):57~63.
    41.曹巧红,龚元石.降水影响冬小麦灌溉农田水分渗漏和氮淋失模拟分析[J].中国农业大学学报.2003,8(1):37-42.
    42.曹巧红,龚元石.应用Hydrus-1D模型模拟分析冬小麦农田水分氮素运移特征[J].植物营养与肥料学报,2003,9(2):139~145
    43.蔡崇法,陈家宙,王长荣等.鄂南红壤丘陵区种植结构调整对土壤养分的影响[J].土壤与环境,2001,30(3):47~50.
    44.崔玉亭.化肥与生态环境保护[M].北京:化学工业出版社,2000,5-10.
    45.邓建才,陈效民,蒋新等.典型地区饱和土壤中硝态氮垂直运移及拟合[J].环境科学,2005,26,(2):200~205.
    46.丁国安,徐晓斌,房秀梅等.中国酸雨现状及发展趋势[J].科学通报,1997,42:169~173.
    47.方堃,陈效民,张佳宝等.红壤地区典型农田土壤饱和导水率及其影响因素研究[J].灌溉排水学报,2008,27(4),67~69.
    48.方辉,王翠红,辛晓云等.平朔安太堡矿区复垦地土壤微生物与土壤性质关系的研究[J].
    安全与环境学报,2007,7(6):74-76.
    49.高国治,景元书,张斌等.低丘红壤坡耕地的水分状况变化及其调控[J],土壤.2005,37(6):663~668,琚中和.红壤水分特性的初步研究[J].土壤通报,1980,(3):8-13.
    50.高玉蓉,许红卫,周斌.稻田土壤养分的空间变异性研究[J].土壤通报,2005,36(6):822~825.
    51.郭朝晖,廖柏寒,黄昌勇.酸雨中SO42-、NO3-、Ca2+、NH4+对红壤中重金属的影响[J].中国环境科学2002,22(1):6-10
    52.郭庆荣,钟继洪,张秉刚等.南亚热带丘陵赤红壤水库容状况及水分问题研究[J].农业系统科学与综合研究,2004,20(4):254~257
    53.郭旭东,傅伯杰,陈利顶等.河北省遵化平原土壤养分的时空变异研究—变异函数与Kriging插值分析[J].地理学报,2000,55(5):555~566.
    54.郭焱,熊泽海,胡荣桂.亚热带红壤丘岗区土壤水分动态的定位研究[J].土壤,1996,28(1):42~45.
    55.华孟,王坚.土壤物理学[M].北京:北京农业大学出版社,1993.280-290.
    56.黄昌勇.土壤学.[M].北京:中国农业出版社,2000,192~198.
    57.湖南省土肥站编.土壤监测与管理.长沙:湖南科学技术出版社,1996.146-155,162-172.
    58.何文寿,何进勤,解楠等.宁夏不同地区农田土壤磷素养分的空间变异特征[J].土壤通报,2006,37(3):460~464.
    59.何文寿.宁夏不同农业生态区土壤养分时空变化特征[J].干旱地区农业研究,2004,22(2):25~30.
    60.何文寿.宁夏农田土壤耕层养分含量的时空变化特征[J].土壤通报,2004,35(6):709~714.
    61.雷志栋,杨诗秀,谢传森.土壤水动力学[M].北京:清华大学出版社,1988.233-234.
    62.梁兰英.紫外分光光度法测定土壤中的硝态氮[J].甘肃环境研究与监测,2001,14(2):80~81.
    63.李保国,龚元石,左强等.农田土壤水的动态模型及应用[M].北京:科学出版社,2000.
    64.李保国,胡克林,陈德立.农田土壤表层饱和导水率的条件模拟[J].水利学报,2002,(2):36~40.
    65.李成亮,何圆球.低丘红壤旱地水分问题及其解决途径研究进展[J].土壤通报.2002,33(4):306~309.
    66.李法云,郑良,宋丽等.辽西半干旱区水肥耦合作用对土坡水分动态变化的影响[J].辽宁
    大学学报,2003,30(1):7-12.
    67.李江涛,张斌,彭新华,赖涛.施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响[J].土壤学报,2004,41(6):912~917
    68.李世娟,周殿玺,李建民.限水灌溉下不同氮肥用量对小麦产量及氮素分配利用的影响[J].华北农学报,2001,16(3):86~91
    69.李韵珠,李保国.土壤溶质运移[M].北京:科学出版社,1998.302-304.
    70.李忠武,张棋,曾光明等.基于GIS的红壤丘陵区脆弱生态系统土壤侵蚀研究——以长沙市为例[J].资源科学,2006(5):201~206.
    71.刘付程,史学正,潘贤章等.太湖流域典型地区土壤磷素含量的空间变异特征[J].地理科学,2003,23(1):77~81.
    72.刘连贵.酸雨和SO2复合污染对几种农作物的影响[J].环境科学,1996,17(2):16~20.
    73.刘守龙,黄道友,吴金水等.典型红壤丘陵区土壤氮素含量及其分布的演变规律[J].植物营养与肥料学报,2006,12(1):12~17
    74.卢金伟,李占斌.土壤团聚体研究进展[J].水土保持研究,2002,9(1):81~85.
    75.卢纹岱.SPSS for Windows统计分析[M].电子工业出版社.第二版2002.
    76.秦明周.红壤丘陵区农业土地利用对土壤肥力的影响及评价[J].山地报,1999,17(1):71~751.
    77.秦钟立,秦松,刘洪斌等.贵州省植烟区土壤pH值和养分空间变异特征的研究[J].土壤通报,2008,38(6):1046~1051.
    78.荣湘民,蒋健容,朱红梅等.红壤旱地有机与无机肥料配合施用效果[J].湖南农业大学学报(自然科学版),2001,27(6):453~456.
    79.沈荣开,王康,张瑜芳.水肥耦合条件下作物产量、水分利用和根系吸氮的试验研究[J].农业工程学报,2001,17(5):35~38.
    80.史学正,梁音,于东升.“土壤水库”的合理调用与防洪减灾[J].水土保持学报,1999,5(3):6-10
    81.史奕,陈欣,沈善敏.有机胶结形成土壤团聚体的机理及理论模型[J].应用生态学报,2002,13(11):1495~1498.
    82.孙本华,胡正义,吕家珑等.模拟氮沉降对红壤阳离子淋溶的影响研究[J].水土保持学报,2007,21(1):18~21.
    83.申惠娟, 严昌荣, 戴亚平.农田土壤水分预测模型的研究进展及应用.生态科学,2003,
    22(4):366~370.
    84.王伯仁等.长期施肥对红壤磷组分及活性酸的影响[J].土壤肥料科学,2007,23(3):254~259.
    85.王代长,蒋新,贺纪正等.模拟酸雨对阳离子在土体内迁移的影响[J].地球化学,2004,33(1):46~52.
    86.王代长,蒋新,卞永荣.模拟酸雨对不同土层酸度和K淋失规律的影响[M].环境科学,2003,24(2):30~34
    87.王贵寅,张兰松,宋加杰等.有机肥对提高旱地作物利用土壤水分的作用机理研究[J].河北农业科学,2002,6(2):25~28.
    88.王海艺,韩烈保,黄明勇.干旱条件下水肥耦合作用机理和效应[J].林业科学,2006,122(6):124~128.
    89.王蓉芳,黄德明,崔勇.我国不同地区土壤肥力监测报告(198~1997).南方二熟制稻田区土壤肥力变化趋势及原因分析[J].土壤肥料,2002(2):3~8.
    90.王绍强,朱松丽,周成虎.中国土壤土层厚度的空间变异性特征[J].地理研究,2001,20(2):161~169.
    91.王文兴.影响我国降水酸性因素的研究[J].中国环境科学,1993,13(6):401~406.
    92.王玮,王文兴,全浩.我国酸性降水来源探讨[J].中国环境科学,1995,15(2):89~94.
    93.王晓燕,陈洪松,王克林,傅伟,谢小立.红壤坡地土壤水分时间序列分析[J].应用生态学报,2007,(02):297-302.
    94.文宏达,刘玉柱,李晓丽等.水肥耦合与旱地农业持续发展[J].土壤与环境,2002,11(3):315~318.
    95.文亦芾,艾有群.南方红壤磷素化学研究进展和展望[J].云南农业大学学报,20058(4):533~536.
    96.吴军虎,费良军,李怀恩等.灌施连续与间歇入渗硝态氮运移与土壤含水量的关系[J].水土保持学报,2004,18(4):42~46.
    97.吴华山,陈效民,叶民标等.太湖地区主要水稻土的饱和导水率及其影响因素研究[J].灌溉排水学报,2006,25(2):46~49.
    98.吴华山,陈效民,叶民标.太湖地区主要水稻土水力特征及其影响因素[J]..水土保持学报,2005,19(1):181~183
    99.吴劲兵,汪家权,孙世群.酸沉降农业经济损失估算[J].合肥工业大学学报(自然科学版),2002,25(1):100~104
    100.谢绍东,郝吉明,周中平.柳州地区各种红壤土种的酸沉降临界负荷研究[J].环境科学学报,1999,19(6):657~661.
    101.熊亚兰,魏朝富.坡面土壤水分特性的空间变异及其水库贮量[J].水土保持学报,2005,19(01):136~139
    102.熊毅,陈家坊.土壤胶体的性质[M].第3册.北京科学出版社,1990.157-212.
    103.许迪,康绍忠.现代节水农业技术研究进展与发展趋势[J].高技术通讯,2002,(12):105~110.
    104.许中坚,刘广深,刘维屏等。酸雨对旱地红壤磷素释放的影响研究[J].环境科学学报,2004,24(1):134~138.
    105.徐英,周明耀,薛亚锋.水稻叶面积指数和产量的空间变异性及关系研究[J].农业工程学报,2006,22(5):10~14.
    106.严浩.红壤旱地氮素的剖面迁移与影响因子[J].农业环境科学学报,2006,25(1):137~142.
    107.姚贤良.红壤水问题及其管理[J].土壤学报.1996,33(1):13~20
    108.姚贤良.华中丘陵红壤的水分问题.II.旱地红壤的水分状况[J].土壤学报.1998,35(1):16~24.
    109.袁东海,张孟群,高士祥等.几种粘土矿物和粘粒土壤吸附净化磷素的性能和机理[J].环境化学,2005,(1):7-10.
    110.苑小勇,黄元仿,高如泰等.北京市平谷区农用地土壤有机质空间变异特征[J].农业工程学报,2008,24(2):70~75.
    111.于德芬,姚贤良.关于红壤有效水范围的讨论.红壤生态系统研究(第二集)[M].南昌:江西科学出版社,1993.69-275.
    112.俞绍才.中国酸雨发展趋势及控制对策文集[M].北京:中国科学技术出版社,1992.
    113.张春伦,朱兴明,胡思农.缓释尿素肥效及氮素利用率研究[J].土壤肥料,1998,(6):17.
    114.张富仓,张一平.用一步出流法测定土壤的导水参数[J].西北农业大学学报,1993,21(增):129~133.
    115.张福珠,熊先哲,戴同顺.应用N研究土壤-植物系统中氮素淋失动态[J].环境科学,1984,5(1):21~24.
    116.张林波,曹洪法,沈英娃等.苏、浙、皖、闽、湘、鄂、赣7省酸沉降对农业危害一农业损失估算[J].中国环境科学,1997,17(6):489~491.
    117.张桃林.我国红壤的土壤地理学研究方向[J].土壤,1991,(4):218~221.
    118.张桃林主编.中国红壤退化机制与防治[M].北京:中国农业出版社,1999.
    119.张玉铭,毛任钊,胡春胜等.华北太行山前平原农田土壤养分的空间变异性研究[J].应用生态学报,2004,11(15).
    120.张玉革,姜勇,梁文举等.潮棕壤不同利用方式pH和Olsen-P的垂直变化特征[J].水土保持学报,2004,18(4):89~92.
    121.赵立新,荆家海.旱地冬小麦施肥效应研究.干旱地区农业研究,1991,(4):46~51.
    122.赵其国.红壤物质循环及其调控[M].科学出版社,2002,9~10
    123.赵其国,吴志东,张桃林.我国东南红壤丘陵地区农业持续发展和生态环境建设,1.优势、潜力和问题[J].土壤,1998,3:113~120.
    124.赵晓齐,鲁如坤.有机肥对土壤磷素吸附的影响[J].土壤学报,1991,28(1):7-13.
    125.曾希柏,李菊梅,徐明岗等.红壤旱地的肥力现状及施肥和利用方式的影响[J].土壤通报,2006.37(3):434~437.
    126.周鸣铮.土壤速效磷化学提取法的体系及其适用性[J].土壤学进展,1987,15(6):1-11.
    127.周修萍,江静蓉,梁伟等,模拟酸雨对南方五种土壤理化性质的影响[J].环境科学,1988,9(3):6-12.
    128.朱建国.硝态氮污染危害与研究进展[J].土壤学报,1995,32(增刊):62~69.
    129.朱兆良.中国土壤氮素研究.[J].土壤学报,2008,45(5):778~783.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700