负压空化法强化产朊假丝酵母对污染水体中Cu~(2+)和Hg~(2+)的吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜和汞的离子是污染水体主要的两种重金属离子.本文主要研究了产朊假丝酵母对水中的铜离子和汞离子的生物吸附效果,通过实验确定并建立了Langmuir和Freundlich两个生物吸附模型。确定了影响吸附效率的几个主要的因素,包括含有铜离子或汞离子水溶液的pH值;生物吸附加入酵母的最适浓度;含铜离子或汞离子的水溶液的最适浓度;最佳的吸附时间。结果为最佳吸附条件为Cu~(2+):pH=4.54~5.04,[酵母]:[Cu~(2+)]=60:1;Hg~(2+):pH=2.96~3.48,[酵母]:[Hg~(2+)]=40:1.在确定了这几种主要因素的基础上,对比研究了负压空化方法对吸附的强化作用。
     本文还利用紫外可见光分光光度计、激光共聚焦显微镜等仪器,从分子水平研究讨论了吸附前后酵母细胞内外的铜离子或汞离子的分布情况,吸附前后酵母细胞内部pH值的变化,吸附前后酵母细胞表面的微观变化.得出了生物吸附的过程主要分为两个步骤,首先是一个快过程,然后是一个慢过程;并发现在常压下摇床吸附的酵母Cu~(2+)或Hg~(2+)主要分布在细胞外,细胞内部基本没有.而负压空化吸附的Cu~(2+)或Hg~(2+)在酵母的细胞内外均存在.并且随着吸附的进行,酵母细胞内pH值随吸附时间的增加而有所升高,由酸性变为弱碱性并且.随着吸附率的增大,其对应的细胞内pH值的增量也相应增大。
Cu~(2+) and Hg~(2+) are the impotent two kinds of heavy metals ion in polluted the water. This article mainly studied the biological adsorption effect of Candida Utilis to the Cu~(2+) and Hg~(2+) in water, through the experiment we determined and established two biosorption models---Langmuir and the Freundlich. Has determined several primary factors for the influence adsorption efficiency, Including the water pH of water which includes the Cu~(2+) and Hg~(2+); The most suitable density of Candida Utilis; The most suitable density of water; And the best adsorption time. The research demonstrated: the best adsorption condition is Cu~(2+):pH=4.54~5.04, [Candidauti]:[Cu~(2+)] = 60:1; Hg~(2+):pH=2.96~3.48, [Candidauti]:[Hg~(2+)] = 40:1. After determined these kinds of primary factors, we has contrast studied the strengthen function of the the vacuum cavitations for biosorption.
     This article also used some Instruments such as spectrophotometer and laser focusing microscope, from molecular level discussed the Cu~(2+) Or Hg~(2+) distributed situation around adsorption inside and outside yeast cell, the pH change of inside cell around adsorption, and the microscopic change of Candidauti surface around adsorption. Obtained the biological adsorption process mainly to divide into two steps, first was a quick process, then was a slow process; Under the concurrent present atmospheric pressure, the yeast Cu~(2+) or Hg~(2+) which Adsorption by table mainly distribute in the extra cellular, the cell internal is not basic. But the vacuum cavitations adsorption Cu~(2+) or Hg~(2+) exist inside and outside yeast's cell. And along with adsorption carrying on, in the yeast cell the pH has along with the adsorption time increase elevates, Becomes the weak basicity by the acidity. And along with adsorption rate increasing, The pH of its cell has also increased.
引文
[1] 段永红,李曦,杨名远.我国城市污水处理市场化问题探讨.中国农村水利水电,2003,(4):11
    [2] 陈勇生,孙启俊,陈钧.重金属的生物吸附技术研究.环境科学进展,1997,5(6):34-43
    [3] 刘传武.漳卫南运河水污染问题及其对策.海河水利.2002,(2):19-20
    [4] 汪义军,庄一义.癌肿病人血清锰和铜超氧化物岐化酶活力测定.中华医学检验杂志,1998,15(1):8
    [5] 聂永丰.三废工程处理技术手册(固体废弃物卷).北京:中国环境科学出版社,2000
    [6] 赵由才.实用环境工程手册(固体废物污染控制与资源化).北京:化工工业出版社,2002
    [7] 刘剑彤,肖邦定,陈珠金.曝气混凝一体法去除碱性废水中砷的研究.中国环境科学,1997,17(2):13-15
    [8] 王绍文,姜风有.重金属废水治理技术.北京:冶金工业出版社,1993,(1):45-47
    [9] 丁明,曾桓兴.铁氧体工艺处理含重金属污水研究现状及展望.环境科学,1992,13(2):35-39
    [10] 刘淼,董德明.光催化法处理电镀含铬废水的研究.吉林大学学报(自然科学版),1998,33(4):18-20
    [11] 陈红,叶兆杰,方士.不同状态MnO_2对废水中As~(3+)的吸附性能研究.中国环境科学,1998,18(2):10-13
    [12] 费维扬.面向21世纪的溶剂萃取技术.化工进展,2000,(1):111-114
    [13] 杨骏,秦涨峰,陈戎英.活性碳吸附水中铅离子的动态研究.环境科学,1997,16(5):22
    [14] 高效江,戎秋涛.麦饭石对金属的吸附作用研究.环境污染与防治,1997,19(4):8-9
    [15] 杨智宽.用蛇纹石处理含钢废水的研究.环境科学技术,1997,10(2):156
    [16] 周勤俭,李先柏,杨静,朱惠英.大洋多金属结核吸附重金属离子的研究.湿法冶金,1999,69(1):41
    [17] 朱利中.酸性膨润土处理含重金属废水初探.环境污染与防治,1993,15(1):47-49
    [18] 郑礼胜,王士龙,张虹等.用沸石处理含镍废水.材料保护,1998,31(7):143-147
    [19] 辛宝平,庄源溢,李彤等.生物絮凝剂的研究和应用.环境科学进展,1998,6(5):15-17
    [20] 陈天,汪士新.利用壳聚糖为絮凝剂回收工业废水中蛋白质、染料以及重金属离子.江苏环境科学,1996,(1):8-10
    [21] Riccardo A, A. Muzzarelli, Fabio Tanfani. Chelating, film-forming, and coagulating ability of the chitosanglucan complex from Aspergillus niger industrial wastes. Biotechnol. Bioeng, 1980, 22: 885-896
    [22] Modak J. M., Natarajan K. A. Biosorption of copper and zinc using waste Aspergillus niger biomass. Miner. Metall. Process, 1996, 13: 52-57
    [23] M. Tsezos, D. M. Keller. Adsorption of radium-226 by biological origin absorbents. Biotechnol.Bioeng., 1983, 25: 201-215
    [24] M. Galun, P. Keller. Recovery of uranium from. solution using precultured Penicillium biomass. Water, Air and Soil Pollution, 1983, 20: 221-232
    [25] S. Siegel, P. Kellr. Biosorption of lead and chromium by Penicillium preparations. Water, Air and Soil Pollution, 1986, 27: 69-75
    [26] 赵玲,尹平河等.海洋赤潮生物原甲藻对重金属的富集机理.环境科学,2001,22(4):35-38
    [27] 李明春,姜恒.酵母菌对重金属离子吸附的研究.菌物系统,1998,17(4):33
    [28] 彭清涛.植物在环境污染治理中的应用.环境保护,1998,4(2):87-89
    [29] Y. P. Ting, F. Lawson. Uptake of cadmiun and zinc by the alga Chlorella vulgarirs. Individualion species. Biotechnol. Bioeng, 1989, 34
    [30] Y. P. Ting, F. Lawson. Uptake of cadmiun and zinc by the alga Chlorella vulgarirs. Individualion species. Biotechnol, 1991, 37
    [31] 陈坚,任洪强,堵国成等.环境生物技术应用与发展.中国轻工出版社,2001,22(1):5-7
    [32] M. J. Brown, J. N. Lester, Metal removal in activated sludge, the role of bacterial extracellular polymers. Water Research, 1979, 13(21): 78-81
    [33] Simon V. Avery, John M. Tobin. Mechanism of adsorption of hard and soft metal ions to Saccharomyces cerevisiae and influence of hard and soft anions. Appl. Environ. Mlcrobiol., 1993, 59(9): 8-12
    [34] L. J. Michel, L. E. Macasbie. Cadmium accumulation by immobilized cells of a Citrobacrersp using various phosphate donors. Biotechnology and bioengineering, 1986, 28: 36
    [35] B. Volesky, H. May. Cadmium biosorption by Saccharomyces cerevisiae. Biotechnology and bioengineering, 1993, 41: 258-262
    [36] Y. Sag, T. Kutsal. Copper and nickel adsorption by Rhizopus ar rhizus in batch stirred reactors in series, Chinese journal of chemical engineering, 1995, (58): 348-357
    [37] 汤岳琴,林军,王建华.生物吸附研究进展.四川环境,2001,20(2):37-39
    [38] ZHANG Xiaodong, Li Zhiyi, WU Jun. Enhancement of chemical reactions by hydrodynamic cavitation. Journal of Chemical Industry and Engineering(china). 2005, 56(2): 262~265
    [39] 李志博,胡国清.空蚀与空化现象与液压系统新进展.机床与液压,2000,(6):6-9
    [40] 李根生,沈晓明,施立德,陈现华.空化空蚀机理及其影响因素.石油大学学报,1997,21(1):97-101
    [41] 黄继汤,陈嘉范,丁彤.田立言表面张力对单空泡运动特性的影响.水利学报,1996,(12):17
    [42] LI Zhiyi, Zhang Xiaodong, Liu Xue wu. Hydrodynamiccavitation and its enhancement effects on chemical process. 2004, 32(4): 27~29
    [43] 蒋桂华,刘春明,王晓菊等.络天青吸光光度法测定微量铜.理化检验-化学分册.1999,35(3):134-137
    [44] 食品中总汞的测定方法.GB/T 5009.17-1996
    [45] 杨骏,秦涨峰,陈戎英.活性碳吸附水中铅离子的动态研究.环境科学,1997,16(5):354-356
    [46] 高效江,戎秋涛.麦饭石对金属的吸附作用研究.环境污染与防治,1997,19(4):25-28
    [47] Ashhenazy R, Gottlizb L, Yannai S. Characterization of acetone-washed yeast biomass functional groups involved lead bio sorption. Biotechnology and bioengineering, 1996, 55(1): 1-101
    [48] Skountzou P, Soupioni M, Bekatorou A. Lead(Ⅱ) uptake during baker's yeast production by aerobic fermentation of molasses. Process Biochemistry, 2003, 38: 1479-1482
    [49] Padmavathy V, Vasudevan P, Dhingra S C. Biosorption of nickel(Ⅱ) ions on Baker's yeast. Process Biochemistry, 2003, 38: 1389-1395
    [50] Padmavathy V, Vasudevan Padma, Dhingra S C. Thermal and spectroscopic studies on sorption of nickel(Ⅱ) ion on protonated baker's yeast. Chemosphere, 2003, 52: 1807-1817
    [51] Yolanda Madrid, Carmen Chmara. Biological substrates for metal preconcentration and speciation. Trends in analytical chemistry, 1997, 16(1): 36-44
    [52] 李峰,张西平,黄昆等.产朊假丝酵母细胞壁对铜离子吸附机理研究.微生物学杂志,2000,20(1):11-14
    [53] 李峰,张西平,黄昆等.产朊假丝酵母细胞和细胞壁对铜离子吸附能力观察.常德高等专科学校学报,1999,11(2):62-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700