微通道板电性能及其导电机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微通道板电性能是电子倍增和导电性能的合称,是微通道板的核心性能。揭示电子倍增与导电机制,创新制备技术,是实现高性能MCP制备的关键。本论文在MCP制备工艺与电性能的关系、不同工艺下微孔表面成分与形貌的变化过程、玻璃表面二次电子发射性能等方面进行了系统的探索研究。
     研究制备工艺对MCP电性能的影响规律。实验验证长径比(α)、孔径、斜切角和开口面积对电子增益与体电阻的影响趋势,并发现在电子增益最大时最佳工作电压(U)不符合惯用理论关系式,即U≠22α,经验关系式U=22α+(100~200),而孔径一定时其体电阻(R)与长径比关系式为R=15.3+3α。微孔阵列成形经历“慢-快-慢”酸溶速率的过程,当酸蚀90min后形成内壁洁净的微孔阵列,再延长30min可获得高的电子增益和较低的噪声。高温氢还原后可显著提高电子增益,降低体电阻。其中,还原温度和方式对MCP电性能的影响最显著,体电阻随还原温度增高出现“高-低-高”变化趋势,而相同还原工艺参数下采取活化强迫式还原可显著降低体电阻至标准工艺的50%。镀膜工艺显著影响电子增益,在保证分辨率的前提下减少输出面电极材料伸入微孔的深度至标准的56%,其电子增益可提高2.7倍。
     分析比较了微孔内表面“点、线”上主要元素的相对含量和化学结合状态,揭示MCP内壁表面各元素化学结合状态的变化过程,发现高电子增益MCP内壁表面存在近周期性分布的硅氧成分微区。首次利用飞行时间法测定了不同工艺条件下含铅铋的硅酸盐玻璃表面的二次电子发射产额,验证表面二次电子发射与表面成分的关系,为MCP二次电子发射性能研究提供新思路。
     分析比较不同工艺条件下MCP玻璃表面微观形貌的变化过程,构建了MCP导电微结构模型,利用渗流理论量化了体导电值的突变阈值,利用电子隧道导电理论阐明了固定工艺下MCP体电阻随室温和测试板压变化的影响原因,揭示了MCP的电子导电机制。
     本文通过对不同工艺下玻璃表面成分和微观形貌研究,构建MCP微孔内壁表面微结构模型,结合渗流理论和隧道导电理论揭示了MCP的导电机制,为高性能MCP的研究提供理论依据,为制备工艺的优化提供支撑。
The core property of microchannel plate (MCP) is electrical propertiesincluding electron multiplier and electrical conductivity. Therefore, the key point forpreparation of high performance MCP is to clarify the mechanism of electronicmultiplier and conductivity and upgrade preparation technology. In this paper,systymatically researches have been done in the relationship between prepareparameters and electrical properties, variation of components and morphology withdifferent prepare conditions, and secondary electron emission properties.
     Firstly, the effect of parameters varied in prepare process on electrical propertiesof MCP was investigated. The influence tendency of aspect ratio (α), pore size, biasangle and detection efficiency on gain and bulk resistivity was experimentally verified.In the maximum gain, the optimum voltage (U) deviated from the common theoreticalequation, i.e. U≠22α, and the empirical equation was U=22α+(100~200).Therelationship of resisitivity and aspect ratio was R=15.3+3α. The formation ofmicropore array experienced from “fast-slow-fast” etching process. Clean microporearray could be obtained by acid etching MCP for90min. If the acid etching time wasextended for another30min, high gain and low noise were achieved. Obvious increaseof gain and decrease of bulk resistivity were found by treatment of MCP withhydrogen reducing at suitable temperature. Electronic conductivity was largelydependent on reducing temperature and methods. The change tendency of bulkresistivity was “high-low-high” with reducing temperature. If reducing parameterswere kept constant, the bulk resitivity could be reduced to50%of that prepared instandard conditons by forced reducing. Coating depth was an important parametersinfluencing gain. For output surface, if extending depth of electrode into microporewas decreased to56%of standard depth, gain could be improved2.7times.
     Secondly, relative contents and chemical bonding mode of principle componentswere compared and analyzed by locating a point and a line of inner surface. Thechange of chemical bonding mode of various components with electrical properties was clarified. It was found that inner surface of MCP with high gain existedperiodical silica and oxygen micro area. Secondary electron emissions yield (SEEY)of lead-bismuth silicate glasses surface was measured by Time of Flight method (TOF)for the first time. The relationship between SEEY and surface components wasverified.
     Finally, microscopic morphologies of MCP glass surface were analyzed, andelectrical conductivity model of MCP was to be built. Percolation theory was used toquantify mutation threshold of electrical conductivity. Electron tunneling theory wasused to clarify physical mechanism on electronic conduction of MCP. In combinationwith the chemical reaction mechanism of conductive substance and surface structuremodel, the electron conductivity mechanism was systematically revealed.
     In this paper, models to describe ideal inner wall surface structure of MCP arebuilt by investigating composition and morphology of MCP. In combination withmorphological models and percolation theory and electron tunneling theory, electronconduction mechanism of microchannel plate is revealed. The researches provide atheoretical basis for the development of high-performance micro-channel plate.
引文
[1]向世明.现代光电子成像技术概论[M].北京:北京理工大学出版社,2010:56-57.
    [2] G.W.Fraser, M.A.Barstow, M.J. Whiteley, et al. Enhanced soft-ray detection efficiencies forimaging microchannel plate detectors [J]. Nature,1982,300:509-511.
    [3] A.Martindale, J.S.Lapington, G.W. Fraser. Photon counting small microchannel plates [J].Nuclear Instruments and Methods in Physics Research A,2007,573:111-114.
    [4] O.H.W.Siegmund. High-performance microchannel plate detectors for UV/visible astronomy[J]. Nuclear Instruments and Methods in Physics Research A,2004,525:12-16.
    [5] V.V. Anashin, P.M. Beschastnov, V.B. Golubev, et al. Photomultipliers with microchannelplates[J]. Nuclear Instruments and Methods in Physics Research A,1995,357:103-109.
    [6] Nianhua Lu, Yigang Yang, Jingwen Lv, et al. Neutron detector design based on ALD coatedMCP [J]. Physics Procedia,2012,26:61-69.
    [7] G.W. Fraser, J.E.Pearson, J.E.Lees, et al. Advance in microchannel plates detectors [J]. SPIE,1988:98-102.
    [8] B.N. Laprade, M.W. Dykstra, F.Langevin. Development of an ultrasmall-pore micro-channelplate for space sciences application [J]. SPIE,1996,2808:72-85.
    [9] J.R. Horton, G.W. Tasker, J.J. Fijol. Characteristics and applications of advanced technologyMicrochannel plates [J]. SPIE,1990,1306:169-178.
    [10] E. Wainer, S. Heights, S.H. Rose, et al. Channel multiplier ofaluminum oxide producedanodically: US3626233[P].1968-09-20.
    [11] J. Randon, P.P.Mardilovich, A.N. Govyadinov, et al. Computer simulation of inorganicmembrane morphology part3. Anodicalumina films and membranes [J]. Journal ofColloid and Interface Science,1995,169:335-341.
    [12] A.N. Govyadinov, I.L. Grigorishin, P.P.Mardilovich. New materials for vacuumelectronics and microtechnology-anodicalumina [J]. ITG-Fachbericht,1995,132:161-166.
    [13] K. Delendik, I. Emeliantchik, A. Litomin, et al. Aluminum oxide microchannel plates [J].Nuclear Physics B,2003,125:394-399.
    [14] G. Drobychev, A. Barysevich, K. Delendik, et al. Development of micro-channel plateson a basis of aluminum oxide [J]. Nuclear Instruments and Methods in Physics ResearchA,2006,567(1):290-293.
    [15] A.V. Raspereza, A.N. Govyadinov, A.S. Kurilin, et al. Submicrochannel plate multipliers[J]. Applied Surface Science,1997,111:295-301.
    [16] Remy Hemri Francois Polaert. Method forming Microchannel plates having curvedmicrochannels: US3883335[P].1975-05-13.
    [17] T. W. Sinor, et al. New frontiers in21st century micro-channel plate (MCP) technology:bulk conductive MCP based image intensifiers [J]. Proceedings of SPIE,2000,4128:5-13.
    [18] Jay J.L.Yi. Bulk conducting glass compositions and fibers [P]. US Patent: US6103648,1998-05-28.
    [19] Jay J.L. Yi, Kin Man Yu. Surface studies of semiconducting glass using ion beam [J]. Journalof Non-Crystalline Solids,2000,263&264:416-421.
    [20]张洋.微通道板玻璃无铅化及还原工艺对性能的影响[[D].中国建筑材料科学研究总院,2013:2-5.
    [21]黄永刚,黄英,张洋,等.硅微通道板的研究进展[J].应用光学,2011,32(5):960-966.
    [22]张洋,黄永刚,刘辉,等.阳极氧化铝微通道板研究的进展[J].红外技术,2012,34(7):427-432.
    [23]黄钧良.微通道板技术进展(一)[J].红外技术,1995,17(1):37-41.
    [24]黄钧良.微通道板技术进展(二)[J].红外技术,1995,17(2):33-37.
    [25] A.M. Then, et al. Formation and behavior of surface layers on electron emission glasses [J].Journal of Non-Crystalline Solids,1990,120:178-187.
    [26] J.D. Carpenter, G.W. Fraser, N.P. Bannister, et al. An analysis of microchannel platecomposition and its effect on extreme ultraviolet quantum efficiency [J]. Nuclear Instrumentsand Methods in Physics Research A,2007,573:232-235.
    [27]韦亚一.氢还原铅硅酸盐玻璃表面结构的研究[J].电子科学学刊,1992,14(6):661-665.
    [28]邹异松.电真空成像器件及理论分析[M].北京:国防工业出版社,1989.11:71-77.
    [29]向世明,倪国强.光电子成像器件原理[M].国防工业出版社,北京,1999.4:179-181.
    [30]高秀敏,蔡春平.微通道板玻璃的二次电子发射系数[J].应用光学,1998,19(4):9-17.
    [31] Edward H. Eberhardt. Gain model for microchannel plates [J]. Applied Optics,1979,18(9):1418-1423.
    [32]常增虎.微通道板增益模型的首次碰撞问题[J].光子学报,1995,24(4):318-322.
    [33]韦亚一. MCP中单通道电子倍增参数的MONTE CARLO模拟计算[J].电子科学学刊,1992,14(1):76-80.
    [34]韦亚一,陶兆民,黄力明.次级电子激发过程的MONTE CARLO模拟计算[J].真空科学与技术,1994,14(5):366-370.
    [35]白廷柱,金伟其.光电成像原理与技术[M].北京理工大学出版社,2006:208-209.
    [36] O.Siegmund, J.Vallerga, A.Tremsin, et al. Microchannel plates: Recent advances inperformance [J]. SPIE,2007,6686:66860W-1-66860W-11.
    [37] O.H.W. Siegmund, M.A. Gummin, T. Sasseen, et al. Microchannel plates for the UVCS andSUMER instruments on the SOHO satellite [J]. SPIE,1995,2518:344-355.
    [38]李伟,赵宝升,赵菲菲,等.双近贴式X射线像增强器成像不均匀性的分析与校正[J].光子学报,2009,38(6):1353-1357.
    [39]于天河,康为民,李延彬.紫外成像告警系统信噪比的研究[J].光学技术,2006,32:497-498.
    [40]李升才,金伟其,张长泉.微光成像系统三维噪声测量及其分析[J].北京理工大学学报,2005,25(5):439-442.
    [1] N.R. Rajopadhye, S.V. Bhoraskar. Electron emission properties of Pb and Bi containingglasses [J]. Journal of Non-Crystalline Solids,1988,105:179-184.
    [2] T. W. Sinor, E.J. Bender, T. Chau, et al. New frontiers in21st century micro-channel plate(MCP) technology: Bulk conductive MCP based image intensifiers [J]. SPIE,2000,4128:5-13.
    [3] R.J. Soave, A.M.Then, S.M.Shank, et al. Fabrication of microchannel plate from perforatedsilicon. US5544772[P],1996-08-13.
    [4] K. Delendik, I. Emeliantchik, A. Litomin, et al. Aluminum oxide microchannel plates [J].Nuclear Physics B,2003,125:394-399.
    [5] B.C Michael,B.N. Laprade. Performance of long-life curved channel microchannel plats [J].SPIE,1989,1072:10-137.
    [6] B.N. Laprade, S.T. Reinhart. Recent advances in small pore microchannel plate technology[J].1989,1072:119-129.
    [7] S.J. Jokela, I.V. Veryovkin, A.V. Zinovev, et al. Secendary electron yield of emissivematerials for large-area microchannel plate detectors: surface composition and film thicknessdependencies [J]. Physics Procedia,2012,37:740-747.
    [8]焦保定.一组微通道板用玻璃材料的研制[C].微光技术文集:第1卷.北京:国家科委夜视技术专家组《夜视技术文集》编辑部,1982:82-86.
    [9] G.E. Hill. Proc.6thsymp. on photo-electronic image device London (1974), Publ. in AEEP,New York: Academic Press1976,40A:153-165.
    [10] G.W. Fraser. The ion detection efficiency of microchannel plates [J]. International Journal ofMass Spectrometry,2002,215:13-30.
    [11] A.M. Then, C.G. Pantano. Formation and behavior of surface layers on electron emissionglasses [J]. Journal of Non-Crystalline Solids1990,120:178-187.
    [12] O. Gzowski, L. Murawsli, K. Trzebiatowski. The surface conductivity of bismuthcontaminated lead-silicate glasses [J]. Journal of Non-Crystalline solids,1980,41:267-271.
    [13]蔡春平,高秀敏.微通道板玻璃的电阻率[J].应用光学,1997,18(2):17-28.
    [14]高秀敏,蔡春平.微通道板玻璃的二次电子发射系数[J].应用光学,1998,19(4):9-17.
    [1] A.M.Then,C.G.Pantano. Formation and behavior of surface layers on electron emissionglasses [J]. Journal of Non-Crystalline Solids,1990,120:178-187.
    [2] G.E. Hill. Secondary electron emission and compositional studies on channel plates glasssurface [A]//B. L. Morgan. Photo-Electron Image Devices [C]. London:Academic Press Inc.Ltd.,1976,40A:153-165.
    [3] J.M. Simeonova, J.S. Kourtev, Y.B. Dimitriev. Surface compositional studies of heat reducedlead silicate glass [J]. Journal of Non-Crystalline Solids,1983,57:177-187.
    [4] O.M. Kanunnikova, F.Z. Gilmutdinov, A.A. Shakov. Interaction of lead silicate glasses withhydrogen under heating [J]. International Journal of Hydrogen Energy,2002,27:783-791.
    [5] G.W. Fraser. The ion detection efficiency of microchannel plates [J]. International Journal ofMass Spectrometry,2002,215:13-30.
    [6]马如璋,徐祖雄.材料物理现代研究方法[M].北京:冶金工业出版社,1997:204-225.
    [7] C.D.Wagner, W.M.Riggs, L.E.Davis, et al. Handbook of X-ray photoelectron spectroscopy
    [M]. Eden Prairie (USA):Perkin-Elmer Corp,1978.
    [8] C. Schultz-Münzenberg, W. Meisel, P. Gütlich. Changes of lead silicate glasses induced byleaching [J]. Journal of Non-Crystalline Solids,1998,238:83-90.
    [9] K.N. Dalby, H.W. Nesbitt, V.P. Zakaznova-Herzog, et al. Resolution of bridging oxygensignals from O1s spectra of silicate glasses using XPS: Implications for O and Si speciation[J]. Geochimica et Cosmochimica Acta,2007,71:4297-4313.
    [10] D. Sprenger, H. Bach, W. Meisel, et al. XPS study of leached glass surfaces [J]. Journal ofNon-Crystalline Solids,1990,126:111-129.
    [11] J. Serra,P. Gonzalez,S. Liste,et al. FTIR and XPS studies of bioactive silica based glasses[J]. Journal of Non-Crystalline Solids,2003,332(1-3):20-27.
    [12] D.M. Knotter. Etching mechanism of vitreous silicon dioxide in HK-based solutions [J].Journal of America Chemical Society,2000,122:4345-4351.
    [13] G.A.C.M. Spierings, J.V. Dijk. The dissolution of Na2O-MgO-CaO-SiO2glass in aqueous HFsolutions [J]. Journal of Materials Science,1987,22:1869-1874.
    [14]苏英,周永恒,黄武,等.石英玻璃与HF酸反应动力学的研究[J].硅酸盐学报,2004,32(3):287-293.
    [15] P.W. Wang,L.P. Zhang. Structural role of lead in lead silicate glasses derived from XPSspectra [J]. Journal of Non-Crystalline Solids,1996,194:129-134.
    [16] Agnieszka Witkowska,Jarosaw Rybicki. Structure of partially reduced xPbO(1-x)SiO2glasses: combined EXAFS and MD study [J]. Journal of Non-Crystalline Solids,2005,351(5):380-393.
    [17] J.N. Sandoe, P. Blood, D.H. Nocholls. Variable range hopping conductivity in reduced leadglass [J]. Applied Physics Letter,1980,37(3):334-336.
    [18] C.W. Bates. Electron spins resonance studies of reduced and unreduced lead silicate glasses[J]. Solid State Communication,1973,13(8):1057-1060.
    [19]孙忠文,黄永刚,贾金升,等.酸蚀对微通道板电性能的影响[J].应用光学,2008,29(2):161-165.
    [20]高秀敏,蔡春平.微通道板玻璃的二次电子发射系数[J].应用光学,1998,19(4):9-17.
    [1] S.K. Kulov, S.A. Kesaev, I.R. Bugulova, et al. Quality on microchannel plates workingsurface [J]. SPIE,2005,5834:203-206.
    [2] C. W. Bates, J. J. Helmer, N. Wiechert. Induced electron emission spectroscopy of reducedlead silicate glass [J]. Solid State Communication,1972,10:847-851.
    [3] A.M. Then,C.G. Pantano. Formation and behavior of surface layers on electron emissionglasses [J]. Journal of Non-Crystalline Solids,1990,120:178-187.
    [4] Y. Y. Wei. Study of the surface structure of lead silicate glass reduced by hydrogen [J].Journal of Electronics,1992,14(6):661-665.
    [5] J. L. Yi,K. M. Yu. Surface study of semiconducting glass using ion beam [J]. Journal ofNon-Crystalline Solids,2000,263&264:416-421.
    [6] Y.G. Huang, Y. Zhang, H. Liu, et al. XPS study on microporous surface composition ofmicrochannel plates [J]. SPIE,2011,8194:8194Q1-7.
    [7] J.D. Carpenter, G.W. Fraser, N.P. Bannister, R.F. Fairbend. An analysis of microchannelplate composition and its effect on extreme ultraviolet quantum efficiency [J]. NuclearInstruments and Methods in Physics Research A,2007,573:232-235.
    [8] S.K. Kulov, A.M. Karmokov, O.A. Molokanov. Nanoscale inhomogeneities on themicrochannel plate lead silicate glass surface [J]. Bulletin of the Russian Academy ofSciences:Physics,2009,73(11):1549-1551.
    [9]孙忠文,黄永刚,贾金升,等.酸蚀对微通道板电性能的影响[J].应用光学,2008,29(2):161-165.
    [10] C.W. Bates. Electron spins resonance studies of reduced and unreduced lead silicate glasses[J]. Solid State Communication,1973,13(8):1057-1060.
    [11] J. P Rager, J. F. Renaud, D. Montcel, V. Tezenas. Reversibility of parameter changes ofmicrochannel electron multipliers due to outgassing [J]. Review of Scientific Instruments,1974,45(7):827-928.
    [12] J. F.Pearson, G.W.Fraser, M.J.Whiteley. Variation of microchannel plate resistance withtemperature and applied voltage [J]. Nuclear Instruments and Methods in Physics Research A,1987,258:270-274.
    [13]于江.微通道板材料-高铅玻璃氢还原后的表面特性[J].硅酸盐学报,1985,13(3):320-328.
    [14]于江.高铅玻璃还原扩散问题及氢还原后的电导率[J].应用光学,1985(6):25-30.
    [15]刘术林,张继胜.皮料玻璃成分对微通道板电阻的影响[J].应用光学,1996,17(3):19-22.
    [16]蔡春平,高秀敏.微通道板玻璃的电阻率[J].应用光学,1997,18(2):17-27.
    [17]曹春斌,蔡琪,江锡顺,等. Ag-MgF2复合纳米金属陶瓷薄膜的渗透阈研究[J].物理学报,2006,55(6):3147-3151.
    [18]蒲永平,许宁,王博,等. Cu含量对BaTiO3/Cu复相陶瓷材料介电性能的影响[J].2011,26(2):175-179.
    [19]陈昂,戴希,智宇,等.复合功能陶瓷中的晶界渗流模型[J].硅酸盐学报,1995,23(6):685-688.
    [20] J. N. Sandoe,P. Blood,D.H. Nicholls. Variable range hopping conductivity in reduced leadglass [J]. Appl. Phys. Lett.1980,37(3):334-336.
    [21] O.H.M. Siegmund, K. Coburn, R.F. Malina. Investigation of large format microchannel plateZ configuration [J]. IEEE Trans. Nucl. Sci.1985, NS-32:443.
    [22] A.I. Medalia. Electrical conduction in carbon black composites [J]. Rubber Chem. Tech,1986,59(3):432-454.
    [23]周静,孙海滨,郑昕,等.粒子填充型导电复合材料的导电机理[J].陶瓷学报,2009,30(3):282-285.
    [24] T.A.Ezquerra, M. Kulescza, C.S. Cruz, et al. Charge transport exponents [J]. Adv. Mater.1990,2(12):597-600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700