磁层等离子体注入现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体注入现象是磁暴或磁层亚暴期间不同能量段粒子的通量突然急剧增加,几乎所有的磁层亚暴事件都伴随着等离子体注入过程。粒子注入是磁层亚暴的基本特征之一,也是确定磁层亚暴触发时间的标志之一,研究等离子体注入对深入了解磁层亚暴有着重要的意义。
     论文主要开展了以下三方面的工作:
     1.比较研究单一磁偶极子场作用下,以及Vollland-Stern电场和磁偶极子场共同作用下,粒子沿方位角方向和地球径向漂移的速度特征。通常粒子沿方位角方向的漂移运动主要是由磁场曲率和梯度漂移引起的,但是对于能量低于100keV的粒子,电场所引起的方位角方向的漂移速度不可忽视,通过计算发现能量越低的粒子,粒子的方位角方向漂移速度受电场的影响越大。粒子沿地球径向的漂移速度主要是电场作用的结果。
     从等离子体径向注入角度出发,利用粒子在磁偶极子场和Volland-Stern电场模型中的漂移模式结合单颗卫星观测到的色散注入现象,发展了一种返推等离子体无色散注入区径向距离和注入时间的方法。根据1998年6月14日单颗同轨道卫星LANL-97A观测到的等离子体色散注入现象,返推表明无色散注入边界的径向距离为7.1R_E,无色散注入的时间为04:17:20,返推得到的无色散注入时间与Polar卫星极紫外成像仪观测到的磁层亚暴触发时间相当吻合。
     利用漂移模式结合两颗卫星观测到无色散注入现象研究等离子体注入源区的径向位置。1998年3月11日1991-080和LANL-97A两颗卫星观测到的等离子体无色散注入事件表明注入前50~75keV能量段的粒子集中分布在磁尾8.1R_E,能量段75~105keV的粒子分布在磁尾7.9R_E附近,粒子在电磁场的作用下沿内磁层运动都需要约24分钟。
     2.研究磁尾(-18R_E     磁尾等离子体注入可能存在三种不同的物理机制:(a)电场为正时,晨昏对流电场所引起的电漂移可以解释磁尾粒子的注入过程;(b)电场反向时,这类事件的注入机制可能是粒子沿磁力线沉降导致大量粒子堆积;(c)注入期间β值的计算表明卫星穿越等离子体片边界层进入等离子体片,使得粒子的通量同时增加。
     3.考虑到对流电场与等离子体注入的紧密关系,本文利用赤道轨道卫星TC-1的数据来研究不同地磁活动条件下大尺度电场的特征。结果表明:不同地磁活动强度下电场的Ex分量随着壳指数L值的增大而单调递减,从0.7mV/m降至~0mV/m;K_p<4时电场分量Ex距离地球L>9R_E基本维持在~0mV/m附近,K_p>4时电场分量Ex在磁尾11R_E处近乎为零。晨昏向电场E_y在磁地方时18:00 6~7时,电场E_y开始减小;然而距离地球9~12R_E附近,电场变化不大,基本维持在0.4mV/m。
     比较观测的结果与Volland-Stern模型电场的计算结果发现:电场Ex分量主要是受共转电场的控制;晨昏向电场分量E_y与模型的结果有很大区别。模型电场随壳指数单调递增,而实际观测发现距离地球一定位置晨昏电场开始减小,这个位置大约距离地球6~7R_E,本文对Volland-Stern电场模型做了初步修改,讨论了修改后电场参数的物理意义。
The plasma dispersionless injection is sudden increases of particle ?uxes invarious energy channels during the magnetospheric storm and substorm. Almostall of substorms are accompanied by the plasma injections, which are the mostcommon features of substorms and, more specifically, among the most reliableindicators of substorm onsets. Plasma injections play an important role in un-derstanding the substorm process.
     The following three aspects are studied in the thesis.
     1. Two components of drift velocity have been studied in dipole magneticfield, comparing with the results calculated in a dipole magnetic field and theVolland-Stern electric field. Generally, the azimuth component of velocity arecaused by the magnetic gradient and curvature e?ect. If the particle’s energy islower than 100keV, the velocity along the azimuth direction caused by the electricfield can not be neglected. The lower energy the particle has, the more a?ectioncaused by electric field. The radial component of velocity mainly depends on theelectric field.
     Based on the radial injection, a method has been developed which allowsremote sensing of the plasma injection time and the radial distance of injectionboundaries by using measured energy dispersion and modeling particle driftswithin the Volland-Stern electric field and dipole magnetic field model. The radialdistance of the injection boundary deduced from a dispersion event observed byLANL-97A satellite on June. 14, 1998 is 7.1R_E,and the injection time agreeswell with the substorm onset time identified by the Polar Ultraviolet Imager.The method has been applied to an event happened at 22.9 UT on March. 11,1998, when both satellites (1991-080 and LANL-97A) observed the dispersionlesscharacter. The results indicate that the radial distance of injection source for50~75keV particles locate at 8.1R_E and 75~105keV particles locate at 7.9R_E atmagnetotail, they move earthward from magnetotail into inner magnetosphere at 22.5UT.
     2. The properties of proton (0eV     Three possible mechanisms for magnetotail plasma injection are discussed:(a)electric drift caused by dawn-dusk convection electric field is one of the mecha-nisms of the particles injected earthward in magnetotail; (b) particles precipitatealong the magnetic field line during the reversal convection electric field; (c) Cal-culatingβvalue shows that satellite moves from plasmapause into plasma sheetalso can produce the ?ux enhancement.
     3. Considering the relationship between convection electric field and plasmainjection, the large scale magnetospheric electric field changes with the geomag-netism activity is discussed by using TC-1 satellite data. The X component ofelectric field decreases monotonically from 0.7 to~0mV/m with the increasingshell index L. For K_p<4, the curls of Ex electric field component maintain about~0mV/m at a distance beyond 9R_E. As to K_p>4, Ex turns into zero at 11R_E.The dawn-dusk component of electric field is almost always duskward over themagnetic local time range from 18:00 to 06:00. E_y enhances for L< 6~7 and be- comes week gradually for L> 6~7. The convection electric field ?uctuates around0.4mV/m between L=9 and L=12.
     Comparing the observations and the results calculated from Volland-Sternelectric field model, Ex component dominates by the corotation electric fieldand the observation convection component does not agree well with the modelresults. The most important is that E_y increases monotonically with the shellvalue L, while the observations has been found that E_y should decrease at acertain distance, which locates at 6~7R_E identified in this work. According tothe di?erences between the observation and model test, we modify the Volland-Stern electric field, and discuss the physics means for the parameters in themodified expression.
引文
[1]曹晋滨,李磊,吴季,太空物理学导论,北京,科学出版社,2001
    [2]大林辰藏著,冯克嘉译,日地空间物理,北京,北京师范大学出版社,1984
    [3]刘振兴,太空物理学,哈尔滨,哈尔滨工业大学出版社,2005
    [4]吕保维,叶永烜,刘振兴,空间物理学进展(第三卷),北京,科学出版社,2001
    [5]滕吉文,固体地球物理学概论,北京,地震出版社,2003
    [6]涂传诒,日地空间物理学,北京,科学出版社,1988
    [7]徐文耀,地磁学,北京,地震出版社,2003
    [8]叶永烜,吕保维,空间物理学进展(第一卷),成都,四川科学技术出版社,1988
    [9]叶永烜,吕保维,空间物理学进展(第二卷),成都,四川科学技术出版社,1992
    [10]《全国空间物理学术会议论文集》编辑组,全国空间物理学术会议文集,北京,科学出版社,1979
    [11]空间科学学会空间物理专业委员会,全国空间物理学术会议文集,北京,科学出版社,1982
    [12] Aggson, T. L., J. P. Heppner, and N. C. Maynard, Observations of largemagnetospheric electric fields during the onset phase of a substorm, J. Geophys.Res., 1983, 88, 3981-3990
    [13] Anderson, B. J., and K. Takahashi, Pitch angle dispersion of ion injections,J. Geophys. Res., 2000, 105(A8), 18709-18727
    [14] Angelopoulos, V., The role of impulsive particle acceleration in magnetotailcirculation, In: Proceedings of the Third International Conference on Substorms(ICS-3), ESA SP-389, 1996, 17-22
    [15] Arnoldy, R. L., and K. W. Chan, Particle substorms observed at the geo-stationary orbit, J. Geophys. Res., 1969, 74, 5019-5028
    [16] Arnoldy, R.L., Moore, T.E., Akasofu, S.-I., Plasma injection events at syn-chronous orbit related to positive Dst, J. Geophys. Res., 1982, 87, 77-84
    [17] Arnoldy, R. L. and Moore, T. E., The longitudinal structure of substorminjections at synchronous orbit, J. Geophys. Res., 1983, 88, 6213-6220
    [18] Baker, D. N., P. R. Higbie, E. W. Hones Jr., High-resolution energetic parti-cle measurements at 6.6RE: 3. Low-energy electron anisotropies and short-termsubstorm predictions, J. Geophys. Res., 1978, 83, 4863-4868
    [19] Baker, D. N., R. D. Belian, P. R. Higbie, et al., High-energy magnetosphericprotons and their dependence on geomagnetic and interplanetary conditions, J.Geophys. Res., 1979, 84, 7138-7154
    [20] Baker, D. N., Fritz, T. A., Wilken, B., et al., Observations and modellingof energetic particles at synchronous orbit on 29 July 1977, J. Geophys. Res.,1982, 87, 5917–5932
    [21] Baumjohann, W., G. Haerendel, and F. Melzner, Magnetospheric convectionobserved between 0600 and 2100 LT: Variations with Kp, J. Geophys. Res.,1985, 90, 393-398
    [22] Baumjohann, W., and G. Haerendel, Magnetospheric convection observedbetween 0600 and 2100 LT: Solar wind and IMF dependence, J. Geophys. Res.,1985, 90, 6370-6378
    [23] Baumjohann, W., G. Paschmann, T. Nagai, et al., Superposed epoch anal-ysis of the substorm plasma sheet, J. Geophys. Res., 1991, 96, 11605-11608
    [24] Baumjohann, W., and R. A. Treumann, Basic space plasma physics, London,Imperial College Press, 1997
    [25] Belian, R. D., D. N. Baker, P. R. Higbie, et al., High-resolution energeticparticle measurements at 6.6 RE, 2: high-energy proton drift echoes, J. Geophys.Res., 1978, 83, 4857-4862
    [26] Belian, R. D., D. N. Baker, E. W. Hones et al., High-energy proton driftechoes: Multiple peak structure, J. Geophys. Res., 1984, 89, 9101-9106
    [27] Belian, R.D., Gisler, G.R., Cayton, T., et al., High Z energetic particles atgeosynchronous orbit during the great solar proton event of October, 1989, J.Geophys. Res., 1992, 97, 16897-16906
    [28] Birn, J., M. F. Thomsen, J. E. Borovsky, et al., Characteristic plasma prop-erties during dispersionless substorm injections at geosynchronous orbit, J.Geophys. Res., 1997a, 102, 2309-2324
    [29] Birn, J., M. F. Thomsen, J. E. Borovsky, et al., Substorm ion injections:Geosynchronous observations and test particle orbits in three-dimensional dy-namic MHD fields, J. Geophys. Res., 1997b, 102, 2325-2341
    [30] Birn, J., M. F. Thomsen, J. E. Borovsky, et al., Substorm electron injec-tions:Geosynchronous observations and test particle simulations, J. Geophys.Res., 1998, 103(A5), 9235-9248
    [31] Blake, J.B., Kolasinski, W.A., Fillius, R.W., et al., Injection of electrons andprotons with energies of tens of MeV into L<3 on March 24, 1991, Geophys.Res. Lett., 1992, 19, 821-824
    [32] Brewer, H. R., M. Schultz, and A. Eviatar, Origin of drift-periodic echoesin outer-zone electron ?ux, J. Geophys. Res., 1969, 74, 159-167
    [33] Carpenter, D. L., Relations between the dawn minimun in the eqatorialradius of the plasmapause and Dst, Kp, and local K at Byrd station, J. Geophys.Res., 1967, 72, 2969-2971
    [34] Chaill, L. J., and Patel, V. L., The boundary of the geomagnetic field, planet.Space. Sci., 1967, 15, 997-1033
    [35] Chapman, S., and V. C. A. Ferraro, A new theory of magnetic storms,Nature, 1930, 126, 129-130
    [36] Chapman, S., and V. C. A. Ferraro, A new theory of magnetic storms, I,The initial phase, J. Geophys. Res., 1931, 36, 77-97, 171-186
    [37] Chapman, S., and V. C. A. Ferraro, A new theory of magnetic storms, I,The initial phase(continued), J. Geophys. Res., 1932, 37, 147-156, 421-429
    [38] Chen, A. J., Penetraation of low-energy protons deep into the magneto-sphere, J. Geophys. Res., 1970, 75, 2458-2467
    [39] Chen, A. J., Correction, J. Geophys. Res., 1974, 79, 5314
    [40] De Forest, S. E., and C. E. WcIlwain, Plasma cloudy in the magnetosphere,J. Geophys. Res., 1971, 76, 3587-3611
    [41] Delcourt, D. C., J.-A. Sauvaud, and A. Pedersen., Dynamics of single-particle orbits during substorm expansion phase, J. Geophys. Res., 1990, 95,20853-20865
    [42] Ejiri, M., Trajectory traces of charged particles in the innermagnetosphere,J. Geophys. Res., 1978, 83, 4798-4810
    [43] Ejiri, M., R. A. Ho?man, and P. H. Smith, The convection electric fieldmodel for the magnetosphere based on Explorer 45 observations, J. Geophys.Res., 1978, 83, 4811-4815
    [44] Ejiri, M., R. A. Ho?man, and P. H. Smith, Energetic particle penetrationsinto the innermagnetosphere, J. Geophys. Res., 1980, 85, 653-663
    [45] Elphic, R. C., M. F. Thomsen, J. E. Borovsky, et al., The inner edge ofthe electron plasma sheet: Emprical models of boundary location, J. Geophys.Res., 1999, 104, 22679-22693
    [46] Erickson, K. N., R. L. Swansan, R. J. Walker, et al., A study of magne-tospheric dynamicsduring auroral electrojet events by observation of energeticelectron intensity changes at geosynchronous orbit, J. Geophys. Res., 1979, 84,931-942
    [47] Erickson, G. M., R. W. Spiro, and R. A. Wolf, The physics of the Harangdiscontinuity, J. Geophys. Res., 1991, 96, 1633-1645
    [48] Foster, J. C., J. M. Holt, R. C. Musgrove, et al., Ionospheric convectionassociated with discrete levels of particle precipitation, Geophys. Res. Lett.,1986, 13, 656-659
    [49] Friedel, R. H. W., A. Korth, and G. Kremser, Substorm onset observed byCRRES: Determination of energetic particle source region, J. Geophys. Res.,1996, 101, 13137-13154
    [50] Greenspan, M. E., D. J. Williams, B. H. Mauk, et al., Ion and electronenergy dispersion features detected by ISEE-1, J. Geophys. Res., 1985, 90,4079-4089
    [51] Gustafsson, G., R. Bostro¨m, B. Holback, et al., The electric field and waveexperiment for the cluster mission, Space Sci. Rev., 1997, 79, 137-156
    [52] Gold, T., Origin of the radiation near the earth discovered by means ofsatellite, Nature, 1959, 183, 355-358
    [53] Hall, A. M., C. H. Perry, M. Grande, et al., Survey of dispersionless substormion injections observed by CRRES, Adv. Space. Res., 1988, 21, 615-618
    [54] Harel, M., R. A. Wolf, R. W. Spiro, et al., Quantitative simulation of amagnetospheric substorm, 2, comparison with observations, J. Geophys. Res.,1981, 86, 2242-2260
    [55] Heelis, R. A., et al., A model of the high-latitude ionospheric convectionpattern, J. Geophys. Res., 1982, 87, 6339-6345
    [56] Heppner, J. P., and N. C. Maynard, Empirical high-latitude electric fieldmodel, J. Geophys. Res., 1987, 92, 4467-4489
    [57] Huang, C. Y., L. A. Frank, G. Rostoker, et al., Nonadiabatic heating of thecentral plasma sheet at substorm onset, J. Geophys. Res., 1992, 97, 1481-1495
    [58] Hultqvist, B., B. Aparcio, H. Borg, et al., Decrease of keV electron and ion?uxes during the early phase of magnetospheric disturbances, Planet. SpaceSci., 1981, 28, 107-126
    [59] Jaggi, R. K. and R. A. Wolf, Self-consistent calculation of the motion of asheet of ions in the magnetosphere, J. Geophys. Res., 1973, 78, 2852-2866
    [60] Kaye, S. M., and Kivelson, M. G., Time dependent convection electric fieldsand plasma injection, J. Geophys. Res., 1979, 84, 4183-4188
    [61] Kistler, L. M., F. M. Ipacich, D. C. Hamilton, et al., Energy spectra of themajor ion species in ring current during geomagnetic storms, J. Geophys. Res.,1989, 94, 3579-3599
    [62] Kivelson, M. G., and D. J. Southwood, Approximations for the study ofdrift boundaries in the magnetosphere, J. Geophys. Res., 1975, 80, 3528-3534
    [63] Kivelson, M. G., Kaye, S. M., and Southwood, D. J., The physics of plasmainjection events, in Dynamics of the Magnetosphere, edited by: Akasofu, S.-I.,D. Reidel, Norwell Mass, 1980, 385-405
    [64] Kivelson, M. G., and D. J. Southwood, Charged particle behavior in low-frequency geomagnetic pulsations, 4, Compressional waves, J. Geophys. Res.,1985, 90, 1486-1498
    [65] Konradi, A., Semar, C. L., and Fritz, T. A., Substorm-injected protons andelectrons and the injection boundary model, J. Geophys. Res., 1975, 80, 543-553
    [66] Korth, A., Z. Y. Pu, G. Kremser, A statistical study of substorm onsetconditions at geostationary orbit, in Magnetoshpheric Substorms, Geophys.Monogr. Ser., edit by J. R. Kan et al., AGU, Washington, D. C., 1991, 64, 343
    [67] Lanzerotti, L. J., C. G. Maclennan, and M. F. Robins, Proton drift echoesin the magnetosphere, J. Geophys. Res., 1971, 76, 259-264
    [68] Lee, D.-Y., and K. W. Min, Statistical features of substorm indicators duringgeomagnetic storms, J. Geophys. Res., 2002, 107, 1371-1386
    [69] Lee, D.-Y., and J. A. Hwang, E. S. Lee, et al., How are storm time injectionsdi?erent from nonstorm time injections?, J. Atm. S-T. , 2004, 66, 1715-1725
    [70] Li, X., I. Roth, M. Temerin, et al., Simulation of the prompt energizationand transport of radiation particles during the March 23, 1991 SSC, Geophys.Res. Lett., 1993, 20, 2423-2426
    [71] Li, X., D. N. Baker, M. Temerin, et al., Simulation of dispersionless injectionsand drift echoes of energetic electrons associated with substorms, Geophys. Res.Lett., 1998, 25, 3763-3766
    [72] Li, X., Baker, D.N., Temerin, et al., Multiple discrete-energy ion featuresin the inner magnetosphere: observations and simulations, Geophys. Res. Lett.,2000, 27, 1447-1450
    [73] Li, X., Baker, D. N., Elkington, S. et al., Energetic particle injections in theinner magnetosphere as a response to an interplanetary shock, J. Atmos. S.-P.,2003, 65, 233-244
    [74] Li, X., Sarris, T. E., Baker, D. N., et al., Simulation of energetic particleinjections associated with a substorm on August 27, 2001, Geophys. Res. Lett.,2003, 30, 1004-1008
    [75] Lopez, R. E., D. G. Sibeck, R. W. McEntire, et al., The energetic ion sub-storm injection boundary, J. Geophys. Res., 1990, 95, 109-117
    [76] Lu, G., P. H. Rei?, M. R. Hairston, et al., Distribution of convection poten-tial around the polar cap boundary as a function of the interplanetary magneticfield, J. Geophys. Res., 1989, 94, 13447-13461
    [77] Mauk, B. H., and C. E. McIlwain, Correlation of Kp with the substorm-injected plasma boundary, J. Geophys. Res., 1974, 79, 3193-3196
    [78] Mauk, B. H., and C.-I. Meng, Dynamical Injections as the Source of NearGeostationary Quiet Time Particle Spatial Boundaries, J. Geophys. Res., 1983,88, 10011-10024
    [79] Mauk, B. H., Quantitative modeling of the”convection surge”mechanismof ion acceleration, J. Geophys. Res., 1986, 91, 13423-13431
    [80] Maynard, N. C., and A. J. Chen, Isolated cold plasma regions: Observationsand their relation to possible production mechanisms, J. Geophys. Res., 1975,80, 1009-1013
    [81] Maynard, N. C., T. L. Aggson, and J. P. Heppner, The plasmaspheric electricfield as measured by ISEE-1, J. Geophys. Res., 1983, 88, 3991-4003
    [82] Mead, G. D., and D. H. Fairfield, A quantitative magnetospheric modelderived from spacecraft magnetometer data, J. Geophys. Res., 1975, 80, 523-542
    [83] McIlwain, C. E., Plasma convection in the vicinity of the geosynchronousorbit, in Earth’s Magnetospheric Processes, edited by B. M. McCormac, D.Reidel, Norwell, Mass. 1972, 268-279
    [84] McIlwain, C. E., Substorm injection boundaries, in Magnetospheric Physics,edited by B. M. McCormac, D. Reidel, Norwell, Mass. 1974, 143-154
    [85] McPherron, R. L., C. T. Russell, and M. Aubry, Satellite studies of magne-tospheric substorms on August 15, 1978, 9, Phenomenological model for sub-storms, J. Geophys. Res., 1973, 78, 3131-3149
    [86] Moore, T. E., R. L. Arnoldy, J. Feynman, et al., Propagating substorminjection fronts, J. Geophys. Res., 1981, 86, 6713-6726
    [87] Moore, T. E., and R. L. Arnoldy, Plasma pitch angle distribution near thesubstorm imjection front, J. Geophys. Res., 1982, 87(A1), 265-270
    [88] Mozer, F. S., Electric field mapping in the ionosphere at the equatorial plane,Planet. Space Sci., 1970, 18, 259-263
    [89] Papitashvili, V. O., B. A. Belov, D. S. Faermark, et al., Electric poten-tial patterns in the northern and southern polar regions parameterized by theinterplanetary magnetic field, J. Geophys. Res., 1994, 99, 13251-13262
    [90] Parks, G. K., B. Mauk, C. Gurgiolo, et al., Observations of plasma injection,in Dynamics of the Magnetosphere, edited by S.-I. Akasofu, D. Reidel, Norwell,Mass, 1980, 371-383
    [91] Pu, Z. Y., Kang, K. B., Korth, A., et al., Ballooning instability in thepresence of a plasma ?ow: a synthesis of tail reconnection and current disruptionmodels for the initiation of substorms, J. Geophys. Res., 1999, 104(A5), 10235-10248
    [92] Reeves, G. D., T. A. Fritz, T. E. Cayton, et al., Multi-satellite measurementsof the substorm injection region, Geophys. Res. Lett., 1990, 17, 2015-2018
    [93] Reeves, G. D., R. D. Belian, and T. Fritz, Numerical tracing of energeticparticle drifts, J. Geophys. Res., 1991, 96, 13997-14008
    [94] Reeves, G. D., L. A. Weiss, M. F. Thomsen, et al., Quantitative Experimen-tal Verification of the Magnetic Conjugacy of Geosynchronous Orbit and theAuroral Zone, in Substorms 3, ESA SP-339, 1996a, 187-192
    [95] Reeves, G. D., R. W. H. Friedel, M. G. Henderson, et al., Radial propagationof substorm injections, in Substorms 3, ESA SP-339, 1996b, 579-584
    [96] Reeves, G. D., and M. G. Henderson, The storm-substorm relationship:Ion injections in geosynchronous measurements and composite energetic neutralatom images, J. Geophys. Res., 2001,106, 5833-5844
    [97] Re`me, H., J. M. Bosqued, J. A. Sauvaud, et al., The cluster ion spectrometry(CIS) experiment, Space Sci. Rev., 1997, 79, 303-350
    [98] Rich, F. J., and M. Hairston, Large-scale convection patterns observed byDMSP, J. Geophys. Res., 1994, 99, 3827-3844
    [99] Roederer, J. G., Dynamics of Geomagnetically Trapped Radiation, Springer-Verlag, New York, 1970
    [100] Roux, A., Perraut, S., Robert, P., et al., Plasma sheet instability relatedto the westward traveling surge, J. Geophys. Res., 1991, 96, 17697-17714
    [101] Rowland, D. E., and J. R. Wygant, Dependence of the large-scale, innermagnetospheric electric field on geomagnetic activity, J. Geophys. Res., 1998,103, 14959-14964
    [102] Ruohoniemi, J. M., and R. A. Greenwald, Statistical patterns of high-latitude convection obtained from Goose Bay HF radar observations, J. Geo-phys. Res., 1996, 101, 21743-21764
    [103] Russel, C. T., and McPherron, R. L., The magnetotail and substorms,Space. Sci. Rev., 1973,15, 205-266
    [104] Sarris, T. E., X. Li, N. Tsaggas, et al., Modeling energetic particle injectionsin dynamic pulse fields with varying propagation speeds, J. Geophys. Res., 2002,107(A3), 1033-1042
    [105] Sarris, T. E., and X. Li, Evolution of the dispersionless injection boundaryassociated with substorms, Ann. Geophys., 2005, 23, 877-884
    [106] Sauvaud, J. A., and J. R. Winckler, Dynamics of plasma, energetic parti-cles, and fields near synchronous orbit in the nighttime sector during magneto-spheric substorms, J. Geophys. Res., 1980, 85, 2043-2056
    [107] Sauvaud, J. A., A. Saint-Marc, J. Dandouras, et al., Timing between parti-cleinjections at the geostationary orbit and particle ?ux decreases in the distantgeomagnetic tail during substorms, in Proc. Conf. Achievements if the IMS.,ESA SP-217, 1984, 181-185
    [108] Shen, C., and Liu, Z. X., Energetic Neutual Atom Imaging of the Earth’sRing Current Region, J. Geophys. Res.(in Chinese), 2003, 46, 1-10
    [109] Southwood, D. J., and S. M. Kaye, Drift boundary approximations in sim-ple magnetospheric convection models, J. Geophys. Res., 1979, 84, 5773-5780
    [110] Stern, D. P., The motion of a proton in the equatorial magnetosphere, J.Geophys. Res., 1975, 80, 595-599
    [111] Takahashi, K., B. J. Anderson, S.-I. Ohtani, et al., Drifr-shell splitting ofenergetic ions injected at pseudo-substorm onsets, J. Geophys. Res., 1997,102,22117-22130
    [112] Thomsen, M. F., J. Birn, J. E. Borovsky, et al., Two-satellite observationsof substorm injections at geosynchronous orbit, J. Geophys. Res., 2001,106(A5),8405-8416
    [113] To?oletto, F. R., R. W. Spiro, R. A. Wolf, et al., Self-consistent modelingof inner magnetospheric convection, in Proc. Third International Conference onSubstorms(ICS-3), edited by E. J. Rolfe, and B. Kaldeich, Series, PublicationsDivision, Noordwijk, The Netherlands, ESA SP-389, 1996, 223
    [114] Tsahouri, I., H. Mavromichalaki, and A. Belehaki, Azimuthal expansion ofthe substorm current wedge, in Proceedings of the Third International Confer-ence on Substorms, Eur. Space Agencu Spec. Publ., ESA SP-389, 1996, 359
    [115] Tsyganenko, N. A., and A. V. Usmanov, Determination of the magneto-spheric current system parameters and development of experimental geomag-netic field models based on data from IMP and HEOS satellites, Planet. SpaceSci., 1982, 30, 985-998
    [116] Tsyganenko, N. A., A Magnetospheric magnetic field model with a warpedtail current sheet, Planet. Space Sci., 1989, 37, 5-20
    [117] Tsyganenko, N. A., and D. P. Stern, Modeling the global magnetic field ofthe large-scale Birkeland current systems, J. Geophys. Res., 1996, 101, 27187-27198
    [118] Tsyganenko, N. A., A model of the near magnetosphere with a dawn-duskasymmetry 1. Mathematical structure, J. Geophys. Res., 2002, 107, 1179-1185
    [119] Vampola, A.K., Korth, A., Electron drift echoes in the inner magneto-sphere, Geophys. Res. Lett., 1992, 19, 625-628
    [120] Van, Allen, J. A., The geomagnetically-trapped corpuscular radiation, J.Geophys. Res., 1959, 64, 1683-1689
    [121] Vasyliunas, D. J., A survey of low-energy electrons in the evening sectorof the magnetosphere with OGO 1 and OGO 3, J. Geophys. Res., 1968, 73,2839-2885
    [122] Volland, H., A semiempirical model of large-scale magnetospheric electricconvection field, J. Geophys. Res., 1973, 78, 171-180
    [123] Volland, H., A model of the magnetospheric electric convection field, J.Geophys. Res., 1978, 83, 2695-2699
    [124] Walker, R. J., and M. G. Kivelson, Energization of electrons at synchronousorbit by substorm-associated electric fields, J. Geophys. Res., 1975, 80, 2074-2082
    [125] Walker, R. J., K. N. Erickson, R. L. Swanson, Substorm-associated particleboundary motion at synchronous orbit, J. Geophys. Res., 1976, 81, 5541-5550
    [126] Walker, R. J., K. N. Erickson, and J. R. Winckler, Pitch angle dispersionof drifting energetic protons at synchronous orbit, J. Geophys. Res., 1978, 83,1595-1600
    [127] Wang, C., L. R. Lyons, M. W. Chen, et al., Modeling the quiet time innerplasma sheet protons, J. Geophys. Res., 2001, 106(A4), 6161-6178
    [128] Weimer, D. R., Models of high-latitude electric potentials derived with aleast error fit of spherical harmonic coe?cients, J. Geophys. Res., 1995, 100,19595-19608
    [129] Weimer, D. R., A ?exible, IMF dependent model of high-latitude electricpotentials having‘space weather’applications, Geophys. Res. Lett., 1996, 23,2549-2552
    [130] Weimer, D. R., An improved model of ionospheric electric potentials in-cluding substorm perturbations and application to the Geospace EnvironmentModeling November 24, 1996, event, J. Geophys. Res., 2001, 106, 407-416
    [131] Wilken, B., Identification Techniques for Nuclear Particles in Space PlasmaResearch and Selected Experimental Results, Rep. Prog. Phys., 1984, 47, 767-853
    [132] Wilken, B., W. I. AXFORD, I. DAGLIS, et al., RAPID The Imaging En-ergetic Particle Spectrometer on Cluster, Space Sci. Rev., 1997, 79, 399-473
    [133] Williams, D. J., J. N. Barfield, and T. A. Fritz, Initial explorer 45 substormobservations and electric field considerations, J. Geophys. Res., 1974, 79, 554-564
    [134] Winckler, J. R., The origin and distribution of energetic electrons in theVan Allen radiation belts, in Particles and Fields in the Magnetosphere, editedby B. M. McCormac, D. Reidel, Norwell, Mass, 1970, 332
    [135] Wolf, R. A., E?ects of ionspheric conductivity on convection ?ow of plasmain the magnetosphere, J. Geophys. Res., 1970, 75, 4677-4698
    [136] Wolf, R. A., M. Harel, R. W. Spiro, et al., Computer simulation of innermagnetospheric dynamics for the magnetic storm of July 29, 1977, J. Geophys.Res., 1982, 87, 5949-5961
    [137] Wygant, J. R., F. Mozer, J. B. Blake, et al., Large amplitude electricand magnetic field signatures in the magnetosphere during injection of 15 Mevelectron drift echoes, Geophys. Res. Lett., 1994, 21, 1739-1742
    [138] Wygant, J., D. Rowland, H. J. Singer, et al., Dependence of the large-scaleinner magnetospheric electric field on geomagnetic activity, J. Geophys. Res.,1998, 103, 14959-14964
    [139] Wygant, J., D. Rowland, H. J. Singer, et al., Experimental evidence onthe role of the large spatial scale electric field in creating the ring current, J.Geophys. Res., 1998, 103, 29527-29544
    [140] Zaharia, S., C. Z. Cheng, and J. R. Johnson, Particle transport and ener-gization associated with substorms, J. Geophys. Res., 2000, 105, 18741-18752
    [141] Zaharia, S., J. Birn, R. H. W. Friedel, et al., Substorm injection modelingwith non-dipolar, time-dependent background feild, J. Geophys. Res., 2004,109, A10211, doi:10.1029/2004JA010464

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700