利用紫外拉曼光谱研究LTA和FAU分子筛晶化机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子筛材料被广泛的应用在工业催化、吸附、分离、离子交换等工业领域,分子筛还可以作为主-客体组装化学的主体材料进行光、电、磁、药物。因此大量的科研工作致力于新型分子筛的合成。由于这些分子筛的合成大部分都是根据传统合成经验来设计合成实验,人们很难合成具有比较理想的功能分子筛。到目前为止在工业中得到大量应用的分子筛只有LTA, FAU, ZSM-5, BETA等少数几种,而且由于BETA分子筛合成比较昂贵大大限制了它的工业应用。如果能把各种分子筛的合成机理研究清楚,那么可以更好的理解合成中各种因素譬如:温度,碱度,压力, PH值,晶化时间,体系的粘稠度(水硅比等),陈化时间,原料的加料顺序等等对反应的影响。从而指导我们去合成我们所想得到的特定功能的分子筛,或者可以利用更为廉价的途径来合成。
     人们利用各种研究手段来寻找分子筛各种晶化机理的证据。这些手段包括:X射线晶体衍射,固体核磁,原子力显微镜,扫描电镜,透射电镜,质谱等等。此外,振动光谱可以用来获得沸石骨架特征信息。IR和Raman光谱被用来获得沸石晶化初期和过程中的许多分子水平的振动信息。Raman光谱在研究硅铝体系时可以获得大量骨架振动信息。我们用紫外拉曼研究了Y沸石的导向剂,硅铝酸根溶液的组成,LTA,EMT和Y沸石的晶化过程。Y和EMT沸石都是由β-笼通过双六元环连接形成的具有三维大孔道的硅铝分子筛。两者的不同在于EMT的β-笼连接存在两种方式而Y沸石只存在一种。我们选择这两种分子筛来对比研究的目的就是通过两种拓扑结构类似的分子筛来对骨架振动信号的对比性研究。
     我们研究了陈化反应混合物的对合成作用,在晶化的整个过程中体系存在着大量的四元环,我们认为是这些四元环起到了搭建砖块的作用,它们之间相互连接最后形成了Y和EMT沸石的骨架结构。为了聚合使晶化顺利进行,高聚合度的硅物种作为反应物是必须的。用紫外拉曼检测LTA沸石液相时我们发现在其液相中基本没有活性物种的存在,于是我们把凝胶相中的液相抽滤掉再去晶化,依然得到了结晶度很好的A沸石。我们还利用原位紫外拉曼研究了它的固相和液相。结果表明在该体系下LTA沸石可以通过固相合成法来合成。
A large number of zeolite type materials have been prepared with a variety of properties and chemical compositions during the past decades which can be used as ion-exchangers, sorbents, and catalyst. However, because zeolite nucleation and growth is not well understood at a molecular level, most of the discoveries in zeolite synthesis have evolved in an empirical fashion. It has been proposed that nucleation and the subsequent crystal growth of zeolites proceed through the condensation of silicate and aluminate ions in solution, although the mechanisms underlying this process have not been fully elucidated yet. The technological importance of these materials has resulted in extensive studies on the influence of composition, temperature, mixing procedure, agitation, synthesis time, pH and environment on the zeolitization process, therefore, elucidation of the crystallization mechanism of zeolites remains one of the major pursuits in zeolite science. A basic understanding of the crystallization process at a molecular level coupled with this enormous body of existing empirical knowledge will provide opportunities for synthesis of new zeolites.
     Various methods such as X-ray diffraction and scattering, solid–state NMR spectroscopy, atomic force microscopy , electron microscopy and Mass spectroscopy have been used to find evidence of different mechanisms. Many salient features of zeolites dynamics and structure can be deduced from vibrational spectroscopic data, such as infrared and Raman spectroscopic which can provide molecular information on the early stage of zeolite formation . Raman scattering studies of aluminosilicate molecular sieves have yielded a great deal of information on the framework vibrations of these materials and have provided empirical correlations between framework vibrational modes(lattice phonons) and the presence of discrete structural .
     Raman spectra of zeolites are often obscured by a broad fluorescence background, so obtaining zeolite Raman spectra displaying a good signal-to-noise ratio presents a considerable challenge. The intensity of this background, which has been related to the zeolite acid strength, can be minimized with careful sample handling; however, each successive postsynthetic treatment leads to an increased background signa1.
     Contrast with the Visible Raman the UV Raman gives a considerable good signal-to-noise ratio especially at the 200~500cm-1 region, also can reduce the broad fluorescence background which is wonderful for the insitu observation and the liquid phase study.
     UV Raman was employed to reveal the crystalline process mechanism of zeolites of LTA, Y and EMT. Both are aluminosilicate molecular sieves that consist of arrangements ofβ-cages(sodalite cages) linked through the six-membered rings by hexagonal prisms. The only difference is that theβ-cages of EMT(hexagonal) linked through two ways while zeolite Y(cubic) only one way. The two structures were chosen because of their similar topology frameworks which facilitates the comparison of the signals from framework vibrations.
     The role of aging of the reactant mixture was studied. During the nucleation period, the solid amorphous phase consists of predominantly four-membered aluminosilicate rings, which act as building blocks for the formation of zeolite Y and EMT. It is essential to have polymeric, highly condensed silicate units as a reactant if crystallization is to take place.
引文
[1] 徐如人,庞文琴等 《分子筛与多孔材料化学》,北京:科学出版社,2004年三月第一版.
    [2] Ch. Baerlocher, W. M. Meier, D. H. Olson, Atlas of Zeolite Framework Types, Elsevier, 2001
    [3] http://www.iza-structure.org/databases.
    [4] Dutta, P. K.; Shieh, D. C. J. Phys. Chem. 1986, 90, 2331.
    [5] Dutta, P. K.; Shieh, D. C.; Puri, M. J. Phys. Chem. 1987, 91, 2332.
    [6] Dutta, P. K.; Puri, M. J. Phys. Chem. 1987, 91, 4329.
    [7] Jen Twu,Prabir K. Dutta. J. Phys. Chem. 1991, 95, 5267.
    [8] Dutta, P. K.; Del Barco, B. J. Chem. Soc., Chem. Commun. 1985,1297.
    [9]Yining Huang, Zhimei Jiang, Wilhelm Schwieger. Chem. Mater. 1999, 11, 1210.
    [10]Dutta, P. K.; Del Barco, B. J. Phys. Chem. 1985, 89, 1861.
    [11] Dutta, P. K.; Shieh, D. C.; Pur i , M. Zeolites. 1988, 8, 306.
    [12] Dutta, P. K.; Del Barco, B. J. Phys. Chem. 1988, 92, 354.
    [13] Dutta, P. K.; Twu, J. J. Phys. Chem. 1991, 95, 2498.
    [14] Dutta, P. K.; Rao, K. M.; Park, Y. P. J. Phys. Chem. 1991, 95, 6554.
    [15] Dutta, P. K.; Zaykoski, R. Zeolites. 1988.8, 179.
    [16] P. Norby. J. Am. Chem. Soc. 1997, 119, 5215.
    [17] Harikrishnan Ramanan, Efrosini Kokkoli, and Michael Tsapatsis. Angew. Chem. Int. Ed. 2004, 43,4558.
    [18] Jimin Shi and Michael W. Anderson. Chem. Mater.1996, 8, 369-375
    [19] Toru Wakihara, Akira Sugiyama, Tatsuya Okubo. Microporous and Mesoporous Materials. 2004, 70, 7.
    [20]Valentin P. Valtchev, Krassimir N. Bozhilov. J. Am. Chem. Soc. 2005, 127, 16171
    [21]Yi Yu,Guang Xiong,Can Li, Feng-Shou Xiao. Microporous and MesoporousMaterials. 2001, 46, 23.
    [22] Li, C., Xiong, G., Xin, Q., Liu, J., Ying, P., Feng, Z., Li, J., Yang, W.,Wang, Y., Wang, G., Liu, X., Lin, M., Wang, X., and Min, E. Angew.Chem. Int. Ed. 1999, 38, 2220.
    [23] Yi Yu,Guang Xiong,Can Li, Feng-Shou Xiao. Journal of Catalysis. 2000, 194, 487.
    [24] Guang Xiong, Yi Yu, Zhao-chi Feng, Qin Xin, Feng-Shou Xiao,Can Li. Microporous and Mesoporous Materials. 2001, 42, 317.
    [25] D. W. Breck, E. M. Flanigen, Molecular Sieves. 1968, 49.
    [26] B. D. McNicol, Adv. Chem. Ser. 1973, 121, 152.
    [27] B. D. McNicol, J. Phys. Chem. 1972, 76, 3388.
    [28] Xu Wengyang, Li Jianquan, Li Wenyuan. Zeolites, 1989, 9, 468.
    [29] G .T. Kerr. J. Phys. Chem. 1966, 70, 1047.
    [30] J. Ciric, J. Colloid Interf. Sci., 1968, 28, 315.
    [31] S. P. Zhdanov Adv. Chem. Series 101 Washington D. C. 1971,20.
    [32] Z. Gabelica, Appl. Catal. 1980, 1, 201. [33《]沸石分子筛的结构与合成》徐如人、庞文琴、屠昆岗编吉林大学出版社 1987.
    [1] Xu RuRen, Zhang Jiamin, Pang Wenqin, Li Shougui. Chem.J.Chinese.Uinv. 1984,Vol.1.
    [2]徐如人,庞文琴等 《分子筛与多孔材料化学》,北京:科学出版社,2004年三月第一版。
    [3] 徐如人,庞文琴等 《沸石分子筛的结构与合成》,长春:吉林大学出版社,1987.
    [4] Smaihi M, Kallus S, Ramsay J D F. Stud. Surf. Sci. Catal. 2001, 135, 189.
    [5] S.Mintova,N.Olson,V.Valtchev, T.Bein. Science, 1999, 283, 958.
    [6]. Jen Twu ,Prabir K.Dutta. Zeolites,1991, 11,672. [7 S.Mintova,N.Olson, T.Bein. Angew .Chem. Int. Ed. 1999, 38, 21.
    [8] T.Chatelain,J.Patarin,M.Soulard,and J.L.Guth, Zeolites.1995, 15, 90.
    [9] 徐如人,庞文琴主编《无机合成与制备化学》(北京)高等教育出版社,2001.
    [10] Occelli M L.,Robson H E,In Synthesis of Microporous. Mlecular Sieves, 1992, Vol 1.
    [11] Ueda S, Kageyama N, Koizumi M. Proc. of the 6th Intl. Zeolite Comf. Olson D., Bidio A. (Eds.) Butterworths, 1984, 905.
    [12] Pope C G. Microp. Mesop. Mater. 1998, 21, 333.
    [13] Li Shougui, Li Xikai, Xu RuRen. Chem.J.Chinese. Uinv.1989.Vol.5.
    [14] Prabir K. Dutta and Dah-Cung Shieh. Appl.Spectrosc.1985,16, 312.
    [1] Hailian Li and O.M. Yaghi. J. Am. Chem. Soc. 1998, 120, 10569.
    [2] Jean-Louis Paillaud, Bogdan Harbuzaru, Joel Patarin, Nicolas Bats. Science. 2004, 304, 990.
    [3] M.D. Shannon, J.L. Casci, P.A. Cox, and S.J. Andrews. Nature. 1991, 353, 417
    [4] Xianhui Bu, Pingyun Feng, Galen D, and Stucky. Science. 1997, 278, 2080.
    [5] Pingyun Feng, Xianhui Bu, Galen D, and Stucky. Nature.1997, 388, 735.
    [6] Avelino Corma, Maria J. Diaz-Cabanas , Joaquin Martinez-Triguero, Fernando Rey and Tordi Rius. Nature.2002, 418, 514.
    [7] Avelino Corma, Maria J. Diaz-Cabanas, Jose Luis Jorda, Cristinez and Manuel Moliner. Nature.2006, 443, 842.
    [8] Creighton, J. A.; Deckman, H. W.; Newsam, J. M. J. Phys. Chem. 1991, 95, 2099.
    [9] Deckman, H. W.; Creighton, J. A.; Buckley, R. G.; Newsam, J. M. M.R.S. Symp. Ser. 1991, No. 233, 295.
    [10] Buckley, R. G.; Deckman, H. W.; Newsam, J. M.; MacHenry, J. A.; Persans, P. D.; Witzke, H. M.R.S. Symp. Ser. 1988, No. 111, 141.
    [11]Buckley, R. G.; Deckman, H. W.; Witzke, H.; McHenry, J. A. J. Phys. Chem. 1990, 94, 8384.
    [12] Prabir K. Dutta and Dah-Cung Shieh. Appl.Spectrosc.1985, 16, 312
    [13] Dutta, P. K.; Shieh, D. C. J. Phys. Chem. 1986, 90, 2331.
    [14] Dutta, P. K.; Shieh, D. C.; Puri, M. J. Phys. Chem. 1987, 91, 2332.
    [15] Dutta, P. K.; Puri, M. J. Phys. Chem. 1987, 91, 4329.
    [16] Jen Twu,Prabir K. Dutta J. Phys. Chem. 1991, 95, 5267.
    [17] Dutta, P. K.; Del Barco, B. J. Chem. Soc., Chem. Commun. 1985,1297.
    [18]Dutta, P. K.; Del Barco, B. J. Phys. Chem. 1985, 89, 1861.
    [19] Dutta, P. K.; Shieh, D. C.; Pur i , M. Zeolites. 1988,8, 306.
    [20] Dutta, P. K.; Del Barco, B. J. Phys. Chem. 1988, 92, 354.
    [21] Dutta, P. K.; Twu, J. J. Phys. Chem. 1991, 95, 2498.
    [22] Dutta, P. K.; Rao, K. M.; Park, Y. P. J. Phys. Chem. 1991,95,6554.
    [23] Dutta, P. K.; Zaykoski, R. Zeolites. 1988.,8, 179.
    [24] Jen Twu, J.; Dutta, P. K.; Kresge, C. T. Zeolires. 1991, 11, 672.
    [25] Place, R. D.; Dutta, P. K. Anal. Chem. 1991, 63, 348.
    [26] Michael W. Anderson. Current Opinion in Solid State and Materials Science. 2001, 5, 407
    [27] P. Norby. J. Am. Chem. Soc. 1997, 119, 5215.
    [28] Harikrishnan Ramanan, Efrosini Kokkoli, and Michael Tsapatsis. Angew. Chem. Int. Ed. 2004, 43,4558.
    [29] Jimin Shi and Michael W. Anderson. Chem. Mater. 1996, 8, 369-375
    [30] Toru Wakihara, Akira Sugiyama, Tatsuya Okubo. Microporous and Mesoporous Materials. 2004, 70, 7.
    [31]Valentin P. Valtchev, Krassimir N. Bozhilov. J. Am. Chem. Soc. 2005, 127, 16171
    [32] Svetlana Mintova, Norman H. Olson, Valentin Valtchev, Thomas Bein. Science. 1999,283,958.
    [33] Svetlana Mintova, Norman H. Olson, Thomas Bein. Angew. Chem. Int. Ed. 1999, 38,3201.
    [34] Stefan A. Rainer Kalamajka, Wolfgang Schrader, and Ferdi Schuth. Angew. Chem. Int. Ed. 2007, 46, 1.
    [35] S. Sugiyama, S. Yamamoto, Matsuoka, T. Honda, H. Nozoye, S. Qiu , J. Yu,O. Terasaki . Surface Science . 1997, 140.
    [36] Robin J. Francis, Stephen J. Price, Stephen O’Brien, Andrew M. Fogg, DermotO’Hare, Thierry Loiseau and Gerard Ferey. Chem. Commun. 1997, 521.
    [37] S. Nicolopoulos, J. M. Gonzalez-Calbet, M. Vallet-Regi, M. A. Camblor, C. Corell, A. Corma, and M. J. Diaz-Cabanas. J. Am. Chem. Soc. 1997, 119, 11000.
    [38]Yi Yu,Guang Xiong,Can Li, Feng-Shou Xiao. Microporous and Mesoporous Materials. 2001, 46, 23.
    [39] Li, C., Xiong, G., Xin, Q., Liu, J., Ying, P., Feng, Z., Li, J., Yang, W.,Wang, Y., Wang, G., Liu, X., Lin, M., Wang, X., and Min, E. Angew.Chem. Int. Ed. 1999,38, 2220.
    [40]Yi Yu,Guang Xiong,Can Li, Feng-Shou Xiao. Journal of Catalysis. 2000, 194, 487.
    [41] Guang Xiong, Yi Yu, Zhao-chi Feng, Qin Xin, Feng-Shou Xiao,Can Li. Microporous and Mesoporous Materials. 2001, 42, 317.
    [42] Andrew J. Holmes, Scott J. Kirkby, Geoffrey A. Ozin, and DavidYoung. J. Phys.Chem. 1994, 98, 4617.
    [43] Peter-Paul Knops-Gerrits,Dirk E. De Vos, Eddy J.P. Feijen, Peter A. Jacobs. Microporous Materials 1997, 8, 3.
    [44]Hardin, A. H.; Klemes, M.; Morrow, B. A. J. Catal. 1980, 62, 316.
    [45] Vergilov, I.; Valtchev, V. Zeolites. 1991, 11, 387.
    [46] Yining Huang, Zhimei Jiang, Wilhelm Schwieger. Chem. Mater. 1999, 11, 1210.
    [47]T. Chatelain, J. Patarin, M. Soulard, and J.L. Guth. Zeolites .1995, 15 , 90.
    [48]Fengtao Fan, Zhaochi Feng, Guanna Li, Keju Sun, Pinliang Ying and Can Li. Chem. Eur. J, pressed.
    [49] J. M. Newsam, Science., 1989, 231, 1093.
    [50] 徐如人,庞文琴等编著,分子筛与多孔材料化学,北京:科学出版社,2004.
    [51] R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London,1982.
    [52] C. R. Marcilly, Top. Catal. 2000, 15, 357.
    [53] J. M. Newsam, Science, 1986, 231, 1093.
    [54] R. Menhake-Bena, H. Kazemian, S. Shahtaheri, M. Ghazi-Khansari, and M. Hosseini, in: Recent Advances in the Science and Technology of Zeolites and Related Materials, Studies in Surface Science and Catalysis, ed. E. van Steen, L. H. Callanan, and M. Claeys, Elsevier, Amsterdam, 2004, vol. 154, p. 1892.
    [55] R. Petrus, and J. Warcho?, Micropor. Mesopor. Mater. 2003, 61, 137.
    [56] M. E. Davis, Nature, 2002, 417, 813.
    [57] H. Wang, and T. J. Pinnavaia, Angew. Chem. Int. Ed. 2006, 45, 7603.
    [58] M. Choi, H. Cho, R. Srivastava, C. Venkatesan, D. Choi, and R. Ryoo, Nat. Mater. 2006, 5, 718.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700