温度场辐射测量及其标定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1900年Planck定律创建以来,利用热辐射进行温度测量就成为人们研究的热点问题。辐射测温以Planek定律为基础通过测量物体表面的发射辐射来反演温度。目前,辐射测量传感器已经由单元传感器发展到传感器阵列,这也推动了辐射温度测量由传统的点温测量发展到了温度场测量。要实现温度场的辐射测量,除了传感器阵列技术外还需辅以光学成像技术,光学成像技术的引入使辐射场测量呈现出成像效应,成像效应会影响到温度场的测量及其定标。基于透镜成像的辐射测量在一定条件下属于有限立体角测量,此时具有非漫发射特征物体表面的温度该如何进行测量?本文主要围绕温度场的辐射测量及其定标进行了相关的研究。
     首先,基于辐射测量的数学描述研究了小孔和透镜成像条件下的单色和波段测量,发现若以到达传感器的辐射能流为准,则可采用传感器的传统分析方法来分析;若以被测目标发射的辐射强度为准,则与传感器的传统分析方法相差一个常数因子,对于针孔成像辐射测量和透镜成像辐射测量而言,这个常数因子是不相同的。
     其次,对辐射场测量中的成像效应进行了研究。由辐射测量的基本公式以及成像下目标微元与传感阵列像素的对应关系出发,分别建立了关于辐射的非成像和成像测量式。根据成像面的存在不会改变辐射传输的事实,比较非成像测量式和成像测量式后,得到了成像效应的数学表述。把成像效应与针孔和透镜两种成像技术结合后的分析指出:成像效应的主因是成像光轴角,辅因是测量天顶角;辅因作用的大小取决于测量天顶角与发射天顶角的差异度。
     再次,对有限立体角条件下非漫发射体表面温度的多波长测量进行了研究。本文推导了有限立体角辐射测量条件下的单色测温方程,发现多光谱辐射测温能够实现温度和光谱发射率同时求解通常需满足特定的辐射测量条件:进行微元立体角辐射测量或仅针对漫发射体的有限立体角辐射测量。引入多项式发射率模型,经过数学转化,可以摆脱以上测量限制,得到具有测量普适性的单色测温方程,但却不一定能同时测量光谱发射率。
     同时,对有限立体角条件下非漫发射体表面温度的谱色法测量进行了研究。本文结合线性发射率模型从辐射测温方程封闭求解的角度解释了谱色测温通常需采用微元立体角测量或针对漫发射体的有限立体角辐射测量的原因,并推导出了有限立体角辐射测量条件下非漫发射体表面温度测量方程,该方程具有测量普适性。以此方程为基础,推导了具有测量普适性的谱色测温方程组,发现不同的辐射测量条件下发射率标尺的取值范围相同,但物理意义发生了明显变化。
     最后,提出了温度场测量时消除成像效应的方法。辐射测温的关键是如何解决发射率未知的问题,这可以通过发射率构建法来解决,从而产生了多通道辐射测温(多波长测温和多波段测温)方法。进行多通道测温时,采用测量信号的归一化处理后,可以消除成像效应对温度场测量的影响,仅需对仪器的光谱响应进行标定,无需进行绝对辐射定标。推导了基于标准传感器光谱响应替代法定标的数学描述,分析表明:发散光源照明条件下基于标准传感器的替代法不能用于数码相机绝对光谱响应定标,但可以进行相对光谱响定标。接着基于以上分析应用本实验室设计的ZLX-DR光谱响应定标系统对数码相机进行了光谱响应定标实验。同时本文还提出了一种不同于测量数据归一化的测温方法来消除成像效应的影响,该方法将包含成像效应的非光谱参数归入到有限项级数形式的光谱发射率中,这既不会影响多通道测温方程组的封闭性,又不会影响温度求解,此时的测量温方程也仅需标定仪器的光谱响应。
Since Planck's law was established in1900, radiation thermometry has always been the key research issue. Based on Planck's law, the surface temperature of an object can be determined by the measurement of emitted radiation. Radiation measurement sensor has been developed from a single sensor to a sensor array, and it also promotes the development of radiation thermometry from the traditional measurement at a point to the field measurement. Besides of the array sensor technology, the optical imaging technology which can result in the imaging effect is necessary for temperature field radiation measurement. And the imaging effect has influences on temperature field radiation measurement and its calibration. In some sense, the radiation measurement by lens imaging can be carried out within a finite solid-angle. Can the temperature of the object with non-diffuse emission be determined by radiation measurement within the finite solid-angle? In this paper, the problems of temperature field radiation measurement and its calibration have been investigated.
     At first, based on the mathematical descriptions of radiation measurements with a pinhole or a lens, radiation measurements for spectrum or spectrum band have been studied and it can been seen that if the radiation energy flux is used as the input quantity of sensors, the traditional analysis method for sensors can be employed, while if the spectrum radiation intensity emitted from the measurement target is used, a constant factor will be introduced, compared with the traditional analysis method for sensors. In addition, the factor for pinhole imaging is different from that for lens imaging.
     Secondly, the imaging effect in temperature field radiation measurement has been studied.In this paper, the mathematical descriptions of the imaging and non-imaging radiation measurement are deduced based on the basic equations of radiation measurement and the correspondence between the infinitesimal planes of the target and the pixels of the sensor array. Because the imaging plane will not change the radiation transfer from the target to the sensor, the mathematical descriptions of the imaging effect can be obtained by comparing the two mathematical descriptions. A concrete analysis of the imaging effect based on pinhole imaging and lens imaging has been carried out. The results show that the primary cause of the imaging effect is the imaging optical axis angle while the subsidiary cause is the imaging zenith angle, and the influence of the subsidiary cause is determined by the difference between the imaging optical axis angle and the imaging zenith angle.
     Thirdly, multi-spectral thermometry for a non-diffuser based on radiation measurement within a finite solid-angle has been investigated. The equation for monochromatic radiation thermometry within a finite solid-angle is deduced, and it is found that if the surface temperature and spectral emissivity can be solved at the same time, the specific radiation measurement conditions for multi-spectral thermometry should be generally met that radiation measurement should be implemented within an infinitesimal solid-angle or within a finite solid-angle only for a perfect diffuser. When the directional spectral emissivity modeled by finite polynomial series is employed and proper mathematical transformation is used, a universal equation for monochromatic radiation thermometry is obtained. So the above restrictions in radiation measurement can be got rid of, but spectral emissivity may not be solved simultaneously.
     Meanwhile, the primary spectrum pyrometry for a non-diffuser based on radiation measurement within a finite solid-angle has been studied. Primary spectrum pyrometry should be generally carried out by radiation measurement within an infinitesimal solid-angle or within a finite solid angle in case of diffuse emission, so that the radiation thermometry equations become a closed system for temperature and other undetermined parameters. The radiation thermometry equation which can be used for temperature measurement of non-diffusive objects within a finite solid-angle has been deduced based on the linear emissivity model and a proper mathematical transformation. This equation is universal in radiation measurement, based on which equations for primary spectrum pyrometry are deduced. These equations are also universal in radiation measurement. The emissivity scaleplates under different measurement conditions are limited to the same range, but have different physical meanings.
     Finally, one method for getting rid of the influence of the imaging effect in temperature field radiation measurement has been proposed in this paper. The key problem in radiation thermometry is that the emissivity of an object is unknown, so multi-channel radiation thermometry including multi-spectral thermometry and multi-band thermometry has been proposed by emissivity constructing. If normalization of measurement data is used in multi-band thermometry, the influence of the imaging effect can be got rid of, and the calibration of spectral responsivity is needed in stead of the absolute radiation calibration. The mathematical descriptions of the calibration by substitution method based on reference sensor have been deduced and it can be seen that when divergent light is used to illuminate, absolute spectral responsivity calibration for the digital camera can not be conducted derectly while the relative spectral responsivity calibration can do by substitution method. Calibration experiments have been completed using the ZLX-DR calibration system based on the above analisis. In stead of normalization of measurement data, a new method has been proposed at the same time that the non-spectral parameter including the influence of the imaging effect is immigrated into the undetermined coefficients of emissivity modeled by finite series, which will not affect the solution of the true surface temperature. And by using this method the calibration of spectral responsivity is needed in stead of the absolute radiation calibration.
引文
崔志尚.1986.常用辐射测温仪器及其检定[M].北京:计量出版社.
    程晓舫,周洲.1997.彩色三基色温度测量原理的研究[J].中国科学(E辑),27(4):342-345.
    程晓舫,王安全,符泰然.2003.表面辐射测温方法的设计原理[J].光谱学与光谱分析,23(2):232-235.
    程晓舫,符泰然,范学良.2004.谱色测温原理[J].中国科学G辑,34(6):639-647.
    车念曾,阎达远.1990.辐射度学和光度学[M].北京:北京理工大学出版社.
    戴景民,褚载祥.1995.多波长辐射测温技术及其应用[J].红外与毫米波学报,14(6):461-466.
    戴景民,孙晓刚,卢小冬等.2002.多光谱辐射测温理论与应用[M].北京:高等教育出版社.
    曹鹏涛,张青川,肖锐等.2009.红外测温法研究Al-Mg合金中的Portevin-Le Chatelier效应[J].物理学报,58(8):5591-5597.
    曹鹏涛,张青川,符师桦等2010. Al- Mg合金中锯齿形屈服现象的热分析[J].物理学报,59(1):458-464.
    方薇,张冬英,钱玮.-2009LCTF调谐的高光谱成像系统辐射定标方法研究[J].光学技术,35(3):359-362.
    符泰然,程晓舫,陆少松,王安全.2004.三波长温度测量方法[J].计量学报,25(2):123-126.
    符泰然.2005.谱色测温法的原理研究及其应用[D1:[博士].合肥:中国科学技术大学.
    符泰然,程晓舫,钟茂华等.2008a.基于波段带宽的谱段测温法的测温范围分析[J].光谱学与光谱分析,28(9):1994-1997.
    符泰然,程晓舫,钟茂华.2008b.谱色测温法相关应用问题的理论预测分析[J].中国科学G辑,38(2):194-205.
    符泰然,程晓舫,钟茂华.2008c.辐射测温区域的界定分析[J].中国工程科学,10(7):73-76.
    符泰然,程晓舫,钟茂华等.2008d.辐射测温中光谱发射率的表征描述[J].光谱学与光谱分析,28(1):1-5.
    符泰然,杨臧健,程晓舫.2008e.CCD光谱成像设备相对光谱响应标定方法及其系统.中国,200810114326.1[P].
    符泰然,杨臧健,程晓舫.2009.基于彩色CCD测量火焰温度场的算法误差分析[J].中国电机工程学报,29(2):81-86.
    国防科工委科技与质量司.2002.光学计量(上册)[M].北京:北京原子能出版社.
    胡秀清,张里阳,郑照军等.2010.FY-3A中分辨率光谱成像仪热红外通道的多探元辐射定标[J].光学精密工程,18(9):1972-1980.
    韩曙东,周怀春,盛锋.2000.基于具有明显测量误差的辐射图象的二维炉膛温度分布重建和快速特征识别研究[J].中国电机工程学报,20(9):67-76.
    葛新石,叶宏译.2007.传热和传质基本原理[M].北京:化学工业出版社.
    华东师范大学数学系.2010.数学分析下册[M].第4版.北京:高等教育出版社,230.
    胡秀清,张里阳,郑照军等.2010.FY-3A中分辨率光谱成像仪热红外通道的多探元辐射定标[J].光学精密工程,18(9):1972-1980.
    金伟其,胡威捷.2006.辐射度光度与色度及其测量[M].北京:北京理工大学出版社.
    劳厄.1978.物理学史[M].北京:商务印书馆,117-118.
    娄春,周怀春.1997.光学厚度对大型炉膛三维温度场重建的影响分析[J].中国电机工程学报,27(32):52-56.
    林志强,郑小兵,张磊.2008.红外探测器光谱响应率定标方法[J].光电工程,35(2):118-112.
    李疏芬,张雪松.1997.红外辐射吸收法测量火焰温度[J].火炸药,20(4):32-34.
    李甲科,徐忠锋,愈晓红等.2006.大学物理基础(下)[M].西安:西北大学出版社,295.
    李宁,杨词根,曹立华等.2011.3-5um红外焦平面阵列的辐射定标[J]-光学精密工程,19(10):2319-2325.
    李汉舟,潘泉,张洪才等.2003.基于数字图像处理的温度检测算法研究[J].中国电机工程学报,23(6):195-199.
    李幼平,禹秉熙,王玉鹏.2006.成像光谱仪辐射定标影响量的测量链与不确定度[J].光学精密工程,14(5):822-828.
    李健军,郑小兵,卢云君等.2009.硅陷阱探测器在350-1064 nm波段绝对光谱响应度定标[J].物理学报,8(9):6273-6278.
    李照洲,郑小兵,吴浩宇等.2004.高精度光谱辐射标准探测器的温度特性研究[J].光学学报,24(3):401-407.
    刘开生,王贵军.2006.积分中值定理的推广[J].天水师范学院学报,26(2):23-24.
    任建伟,万志,李宪圣等.2007.空间光学遥感器的辐射传递特性与校正方法[J].光学精密工程,15(8):1186-1190.
    孙晓刚,戴景民,丛大成等.1998.多光谱辐射测温的理论研究——发射率模型的自动判别[J].红外与毫米波学报,17(3):221-225.
    孙晓刚,戴景民,褚载祥.2001.利用人工神经网络进行多光谱温度测量的研究[J].计量学报,22(1):29-34.
    孙元,彭小奇,严军.2011.基于彩色CCD的高温场辐射测温方法[J].仪器仪表学报,32(11):2579-2584.
    宋念龙,李琦,张新雨等.2010.基于红外传感器阵列的智能温度传感器研究[J].遥感技术学报,23(12):1713-1717.
    申先甲,张锡鑫,祁有龙.1985.物理学史简编[M].济南:山东教育出版社.658-659.
    王安全.2002.彩色测温方法的原理研究[D]:[博士].合肥:中国科学技术大学.
    王安全,程晓舫,王铷.2002.彩色温度测量方法中的温度多解问题[J].中国科学技术大学学报,32(4):498-504.
    王锐,宋克非.2009.高精度紫外探测器辐射定标系统[J].光学精密工程,17(3):469-474.
    王锐,王淑荣,李福田等.2010.真空紫外探测器辐射定标研究[J].光学学报,30(4):1036-1030.
    王淑荣,邢进,李福田.2006.利用积分球光源定标空间紫外遥感光谱辐射计[J].光学精密工程,14(2):185-190.
    王淑荣,宋克非,李福田.2007.星载太阳紫外光谱监视器的地面辐射定标[J].光学学报,27(12):2256-2261.
    吴波,符泰然,程晓舫等.2006.彩色数码相机光强响应特性的标定实验[J].光电工程,33(6):101-105.
    卫成业,王飞,马增益等.2000.运用彩色CCD测量火焰温度场的校正算法[J].中国电机工程学报,20(1):70-76.
    辛成运,程晓舫,张忠政.2012.基于光谱响应定标的辐射测温方法[J].光谱学与光谱分析,32(10):2735-2738.
    辛成运,程晓舫,张忠政.2013a.基于有限立体角测量的多光谱测温[J].光谱学与光谱分析,33(2):316-319.
    辛成运,程晓舫,张忠政.2013b.基于有限立体角测量的谱色测温法[J].物理学报,62(3):030702.
    邢进,李福田,顾行发.2006.星载紫外遥感辐射计积分球定标新方法的研究[J]..遥感学报,10(5):644-650.
    修吉宏,黄浦,李军等.2012.大面阵彩色CCD航测相机的辐射定标[J].光学精密工程,20(6):1365-1373.
    夏道行,严绍宗.1987.实变函数与应用泛函分析基础[M].上海:上海科学技术出版社,352-353.
    杨臧健.2009.谱色测温系统的设计研究[D]:[博士].合肥:中国科学技术大学.
    杨世铭,陶文铨.2006.传热学[M].第4版.北京:高等教育出版社.
    杨华元,崔敦杰,任建伟等.1998.基于探测器的成象光谱仪绝对辐射定标方法[J].计量学报,19(2):123-129.
    杨小虎,王淑荣,黄煜等.2011.基于标准探测器研究标准灯光谱辐照度和漫反射板双向反射分布函数随波长的变化[J].光学学报,31(6):0612008-1-0612008-7.
    原遵东.2012.辐射测温的广义有效亮度温度[J].仪器仪表学报,33(4):721-726.
    张玉存,齐艳德,付献斌.2011.基于近红外光谱的高精度测温系统[J].光谱学与光谱分析,31(12):3236-3240.
    张昆,常丹华,陈瑞强等.2010.CCD辐射测温的数值解析及误差校正[J].遥感技术学报,23(2):225-228.
    张洪润,张亚凡.2005.传感技术与实验[M].北京:清华大学出版社,83-86.
    张洪润,张亚凡,邓洪敏.2008.传感技术原理及应用[M].北京:清华大学出版社.
    张玉存,齐艳德,付献斌.2011.基于近红外光谱的高精度测温系统[J].光谱学与光谱分析,31(12):3236-3240.
    翟洋,沈华,朱日宏等.2010.多光谱辐射瞬态高温测温计的研制[J].光谱学与光谱分析,30(11):3161-3165.
    朱德忠.1990.热物理测量技术[M].北京:清华大学出版社,236-252.
    朱麟章.1991.高温测量原理与应用[M].北京:科学出版社.
    周怀春,娄新生,邓元凯.1997.基于辐射图象处理的炉膛燃烧三维温度分布检测原理及分析[J].中国电机工程学报,17(1):1-4.
    周磊,郑小兵.2006.高精度分光光度计测量光谱透过率[J].光电工程,33:32-38.
    赵玉环,闫丰,周跃等.2008.紫外ICCD的辐射定标[J].光学精密工程,16(9):1573-1576.
    Asatryan R S, Epremian R A, Gevorkyan H G et al.2003. Universal infrared spectral radiometer [J]. International Journal of Infrared and Millimeter Waves,24(6):1035-1046.
    Aplin K L, McPheat R A.2008. An infrared filter radiometer for atmospheric cluster-ion detection [J]. Review of Scientific Instruments,79(10):106107.
    Babelot J F, Magill J, Ohse R W, et al.1982. Micro-second and sub-microsecond multi-wavelength pyrometry for pulsed heating technique diagnostics[J]. Temperature:Its Measurement and Control in Science and Industry,5:439-446.
    Babelot J F, Hoch M.1989. Investigation of the spectral emissivity data of some metals and nonmetals in the wavelength range 400-15000 nm, and of their total emissivity [J]. High Temp. High Press,21:79-84.
    Barducci A, Benvenuti M, Bonora L et al.2006. Hyperspectral remote sensing for light pollution monitoring[J]. Annals of Geophysics,49(1):305-310.
    Cezairliyan A.1971. Design and operational characteristics of high speed(millisecond) system for the measurement of thermophysical properties at high temperatures[J]. Journal of Research of the National Bureau of Standards,75C:7-18.
    Coates P B.1981. Multi-Wavelength Pyrometry [J]. Metrologia,17(3):103-109.
    Chen Y.1992. A method for measuring emissivities and true temperatures from multiple spectral reflexion in pyrometry[J]. High Temperatures-High Pressures,24:75-85.
    Cheng X F, Fu T R, Fan X L.2005. The principle of primary spectrum pyrometry[J]. Science in China Series G-Physics Mechanics & Astronomy,48(2):142-149.
    Drury M D, Perry K P, Land T.1951. Pyrometers for surface temperature measurement[J]. Journal of Iron and Steel Institute,169:245-250.
    Duvaut T, Georgeault D, Beaudoin J L.1995. Multiwavelength infrared pyrometry:optimization and computer simulations[J]. Infrared Physics & Technology,36:1089-1103.
    Dubrov A V, Dubrov V D, Zavalov Y N.2011. Application of optical pyrometry for on-line monitoring in laser-cutting technologies[J]. Applied Physics B-Lasers and Optics,105(3): 537-543.
    Foley G M.1978. Modification of emissivity response of two-color pyrometers [J]. High Temperatures-High Pressures,10(4):391-398.
    Fu T R, Cheng X F, Fan X L et al.2004. The analysis of optimization criteria for multi-band pyrometry[J]. Metrologia,41(4):305-313.
    Fu T R, Cheng X F, Zhong M H et al.2006a. The theoretical prediction analyses of the measurement range for multi-band pyrometry[J]. Measurement Science & Technology,17(10): 2751-2756.
    Fu T R, Cheng X F, Zhong M H et al.2006b. The temperature field partition for primary spectrum pyrometry[J]. Spectroscopy and Spectral Analysis,26(12):2166-2168.
    Fu T R, Cheng X F, Zhong M H et al.2006c. Correlativity analysis based on radiation spectrum of correlated color temperature and thermodynamic temperature of a radiating source[J]. Spectroscopy and Spectral Analysis,26(11):1984-1987.
    Fu T R, Cheng X F, Wu B et al.2006d. The measurement coordinates for multi-band pyrometry [J]. Measurement Science & Technology,17(2):379-383.
    Fu T R, Cheng X F, Zhong M H.2007. The application analyses for primary spectrum pyrometer[J]. Science in China Series G-Physics Mechanics & Astronomy,50(6):753-765.
    Fu T R, Cheng X F, Yang Z J.2008. Theoretical evaluation of measurement uncertainties of two-color pyrometry applied to optical diagnostics [J]. Applied Optics,47(32):6112-6123.
    Fu T R, Zhao H, Zeng J et al.2010a. Improvements to the three-color optical CCD-based pyrometer system[J]. Applied Optics,49(31):5997-6005.
    Fu T R, Yang Z J, Wang L P et al.2010b. Measurement Performance of Optical CCD-Based Pyrometer System[J]. Optics and Laser Technology,42(4):586-593.
    Fu T R, Wang Z, Cheng X F.2010c. Temperature Measurements of Diesel Fuel Combustion With Multicolor Pyrometry [J]. Journal of Heat Transfer-Transactions of the Asme,132(5): 051602-1-051602-7,
    Fu T R, Zhao H, Zeng J et al.2010d. Two-color optical charge-coupled-device-based pyrometer using a two-peak filter[J]. Review of Scientific Instruments,81(12):124903-1-124903-8.
    Fu T R, Tan P, Pang C H et al.2011. Fast fiber-optic multi-wavelength pyrometer[J]. Review of Scientific Instruments,82(6):064902-1-064902-8.
    Goard P R C.1966 Application of hemispherical surface pyrometers to the measurement of the emissivity of platinum(a low emissivity material)[J]. Journal of Scientific Instruments, 43:256-258.
    Ghulam A, Li Z L, Qin Q M et al.2007. A method for canopy water content estimation for highly vegetated surfaces-shortwave infrared perpendicular water stress index[J]. Science in China Series D-Earth Sciences,50(9):1359-1368.
    Gardner J L, Jones T P.1980. Multi-Wavelength Radiation Pyrometry Where Reflectance Is Measured to Estimate Emissivity[J]. Journal of Physics E-Scientific Instruments,13(3): 306-310.
    Gardner J L.1981a. Computer modeling of a multiwavelength pyrometer for measuring true surface temperature[J]. High Temp. High Press.12:699-705. P.B. Coates. Multi-Wavelength Pyrometry. Metrologia.17:103-109.
    Gardner J L, Jones T P, Davies M R.1981b. A six-wavelength pyrometer[J]. High Temperatures-High Pressures,13:459-466.
    Gathers G R.1992. Error Analysis by Numerical Simulation for a Three-Color Pyrometer Assuming a Blackbody Spectrum and a Wavelength-and Temperature-Dependent Emissivity [J]. International Journal of Thermophysics,13(1):187-198.
    Gamier A, Pelon J, Dubuisson P et al.2012. Retrieval of Cloud Properties Using CALIPSO Imaging Infrared Radiometer. Part I:Effective Emissivity and Optical Depth[J]. Journal of Applied Meteorology and Climatology,51(7):1407-1425.
    Hiernaut J P, Beukers R.1986. Submillisecond six-wavelength pyrometer for high temperature measurements in the range 2000 to 5000K[J]. High Tempratures-High Pressures,18:617-625.
    Hunter G B, Allemand C D.1986.Thomas W. Eagar. Prototype device for multiwavelength pyrometry[J]. Optical Engineering,25(11):1222-1231.
    Iuchi T, Kusaka R.1982. Two methods for simultaneous measurement temperature and emirtance by using multiple reflection and specular reflection, and their application to industrial processes[J]. Temperature:Its Measurement and Control in Science and Industry,5(1):491-503.
    Jones R, Krishnapillai M, Cairns K et al.2010. Application of infrared thermo-graphy to study crack growth and fatigue life extension procedures[J]. Fatigue & Fracture of Engineering Materials & Structures,33(12):871-884.
    Khan M A, Allemand C, Eagar T W.1991a. Noncontact temperature measurement.Ⅱ. least squares based techniques[J]. Rev. Sci. Instrum.62(2):403-409.
    Khan M A, Allemand C, Eagar T W.1991b. Noncontact Temperature-Measurement.1. Interpolation Based Techniques[J]. Review of Scientific Instruments,62(2):392-402.
    Kaplinsky M B, Li J, McCaffrey N G 1997. Recent advantages in the development of a multiwavelength imaging pyrometer[J]. Opt. Eng.36(11):3176-3187.
    Lappe V.1993. Applying two-color infrared pyrometry[J]. Sensors (Peterborough, NH), 10(8):12-15.
    Lu Y C, Freyman T M, Hernandez G, Kuo K K.1995. Measurement of temperatures and OH concentrations of solid propellant flames using absorption spectroscopy[J]. Combustion Science and Technology,104:193-205.
    Lappe V.1993. Applying two-color infrared pyrometry[J]. Sensors (Peterborough, NH), 10(8):12-15.
    Li W H, Lou C, Sun Y P et al.2011. Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system[J]. Experimental Thermal and Fluid Science,35(2):416-421.
    Lovejoy D R.1959. Photometry of the optical pyrometer and its use below 800℃[J]. Journal of the Optical Society of America,49(3):249-253.
    Middilehurst J, Jones T P.1962. A precision photoelectric optical pyrometer[J]. Temperature:Its Measurement and Control in Science and Industry,3(1):517-520.
    Murray T P.1967. Polaradiometer-a new instrument for temperature measurement J]. Review of Scientific Instruments.38:791-798.
    Matsui T, Arita Y, Watanabe K.2000. Development of two types of high temperature calorimeters[J]. ThermochimicaActa,352-353:285-290.
    Magunov A N.2009. Spectral Pyrometry. Instruments and Experimental Techniques[J], 52(4):451-472.
    Ono A.1982. A hemispherical mirror method for the measurement of the directional spectral emissivity of diffuse opaque surface[C]. Proceedings of the 8th Symposium on Thermophysical Properties,2:133-137.
    Oppelt N, Mauser W.2004. Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using AVIS data[J]. International Journal of Remote Sensing,25(1): 145-159.
    Ruffino G.1971. Comparison of photomultiplier and si as detector in radiation pyrometry [J]. Applied Optics,10:1241-1243.
    Ruffino G.1974. Two-colour pyrometry on nonisothermal fields:A measurement problem in siderurgy[J]. High Temperatures-High Pressures,6(2):223-227.
    Radousky H B, Mitchell A C.1989. A fast UV/visible pyrometer for shock temperature measurement to 20000K[J]. Review of Scientific Instruments,60(12):3707-3710.
    Svet D Y.1976. Determination of the emissivity of a substance from the spectrum of its thermal radiation and optimal methods of optical pyrometry[J]. High Temp. High Press.8:493-498.
    Spitzberg R M.1994. Parameter estimation for gray and nongray targets:theory and data analysis[J]. Opt. Eng.33(7):2418-2429.
    Saunders P.1997. General interpolation equations for the calibration of radiation thermometers[J]. Metrologia,34(3):201-210.
    Tschudi H R, Schubnell M.1999. Measuring temperatures in the presence of external radiation by flash assisted multiwavelength pyrometry[J]. Review of Scientific Instruments,70(6): 2719-2727.
    Witherell P G, Faulharber M E.1970. The silicon solar cell as photometric detector[J]. Applied Optics,9:73-75.
    Weng K H, Wen C D.2011. Effect of oxidation on aluminum alloys temperature prediction using multispectral radiation thermometry[J]. International Journal of Heat and Mass Transfer, 54:4834-4843.
    Yang C L, Dai J M, Hu Y.2003. Optimum identifications of spectral emissivity and temperature for multi-wavelength pyrometry[J]. Chinese Physics Letters,20(10):1685-1688.
    Zhang L, Zhang B, Chen Z C et al.2009. The application of hyperspectral remote sensing to coast environment investigation[J], Acta Oceanologica Sinica,28(2):1-13.
    Zhang X Y, Cheng Q A, Lou C et al.2011. An improved colorimetric method for visualization of 2-D, inhomogeneous temperature distribution in a gas fired industrial furnace by radiation image processing[J]. Proceedings of the Combustion Institute,33:2755-2762.
    Zheng J K, Bai Y L, Wang B et al.2011. Real-Time Measurement of Detonation Transient Temperature[J]. Spectroscopy and Spectral Analysis,31(11):3060-3063.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700