ZnO微纳结构制备及光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO的优良光电性能以及可采用多种方法制备多种微纳结构的特点,使其在涂层颜料、太阳能电池、压敏和气敏原件、发光二极管和激光器、压电器件、紫外探测器和传感器等诸多领域得到广泛应用,具有广阔前景。此外,ZnO还具有优良的抗辐射能力,使其光电特性在空间辐射环境中具有良好稳定性,适合空间应用。
     近年来,ZnO的制备和应用研究取得不断进展,但为实现ZnO基光电器件的进一步发展和在实际上的广泛应用,仍需对ZnO微纳结构的可控合成、设计并制备性能优异且稳定可靠的光电器件等方面进行深入研究。本文致力于ZnO基微纳核壳结构颗粒和ZnO纳米薄膜的可控合成和性能研究,并基于不同微纳结构ZnO材料的性能特点,分别研究了ZnO基微纳核壳结构颗粒作为热控涂层颜料以及ZnO纳米薄膜作为倒置型聚合物太阳能电池(PSCs)阴极缓冲层和电子收集层的应用相关问题。主要研究内容如下:
     设计并采用固相反应法制备了具有微纳核壳结构的新型ZnO基复合颜料,研究了制备工艺参数对复合颜料结构和成分的影响,探讨了复合颜料的结构和成分与其光学性能和辐照光学稳定性之间的关系。研究发现ZnO基微纳核壳结构复合颜料不但具有优良的初始光学性能,并在模拟空间质子、电子单独及综合辐照作用下具有优于ZnO原料的辐照光学稳定性。X射线衍射谱、光谱反射率和太阳吸收比的测试和计算结果显示,当ZnO基微纳核壳结构复合颜料中Zn_2SiO_4壳层的相对含量约为67%时,复合颜料在质子辐照下太阳吸收比的变化(△αs)相比于ZnO原料降低了约36%,具有最佳的辐照光学稳定性。
     研究了ZnO基微纳核壳结构复合颗粒的表面Zn_2SiO_4壳层对复合颜料在模拟空间带电粒子辐照下光学稳定性的影响机制。研究发现Zn_2SiO_4壳层可有效吸收入射粒子的能量,降低带电粒子辐照对ZnO基体的辐照损伤,提高复合颜料的辐照光学稳定性。此外,Zn_2SiO_4壳层自身优良的辐照光学稳定性也在一定程度上有利于复合颜料辐照光学稳定性的提高。
     采用溶胶-凝胶法,通过调节溶胶浓度和热处理工艺制备了具有可控微观表面形貌、厚度和透光率的ZnO纳米薄膜。研究了以ZnO纳米薄膜作为阴极缓冲层的倒置型PSCs的制备和性能,系统研究了ZnO纳米薄膜的表面微观形貌、厚度和透光率对倒置型PSCs性能的影响规律和作用机理。研究发现,在一定厚度范围内,ZnO纳米薄膜的表面微观形貌可直接影响ZnO与P3HT:PCBM活性层的接触质量,是影响电池性能的关键因素,而ZnO纳米薄膜的厚度和透光率对电池性能影响较小。基于表面致密、光滑且无孔洞的ZnO纳米薄膜的倒置型PSCs的能量转换效率为~3.3%,相比于以表面粗糙且有孔洞的ZnO纳米薄膜的倒置型PSCs的能量转换效率(2.5%)提高了约32%。
     基于化学溶液法设计了一种新的ZnO纳米墙薄膜制备工艺,在低温下制备了垂直于ITO基底的ZnO纳米墙薄膜。研究发现,通过适当提高反应溶液浓度、降低反应温度和溶液初始pH值可制备致密的ZnO棒薄膜。该致密ZnO棒薄膜可在KOH水溶液中发生沿ZnO棒c轴的选择性刻蚀,形成纳米墙结构。初步研究了基于ZnO纳米墙薄膜的倒置型PSCs的制备和性能,研究表明ZnO纳米墙薄膜可有效用作倒置型PSCs的电子收集层,具有进一步研究和发展的潜力。
ZnO shows excellent properties and a various of micro/nano-structured ZnOcan be readily achieved by many methods, which make it a promising material forwidespread application in pigments of coating, solar cells, pressure-sensitive andgas-sensitive elements, light-emitting diodes and lasering, piezoelectric device,ultraviolet detector and sensors and so on. In addition, ZnO holds high resistance toradiation damage making it suitable to space application.
     In recent year, although constant progresses have been achieved, controlledsynthesis of micro/nano-structured ZnO materials and the design and fabrication ofphoto-electric devices with excellent performance and high device stability are stillchallenging for further development and industrial application of ZnO materials. Inthis regard, this work is mainly focused on the controlled synthesis of the ZnObased micro/nano-partials with core-shell structure, ZnO nano-structured films withdesired optical properties and morphology. In addition, based on the differentproperties of the above-mentioned ZnO materials are explored to serve as thepigments of thermal control coating and the cathode buffer layer of invertedpolymer solar cells, respectively. The contents of this work are listed as following:
     ZnO based composited pigments with micro/nano and core-shell structure havebeen designed and fabricated. Fabrication and optical properties of the ZnO basedcomposited pigments are investigated, and the optical stability of the compositedpigments under the irradiation of space charge particles is also studied. It has beenfound that the ZnO-based composite pigments hold both high spectral reflectanceand good optical stability under the simulated space irradiation of protons andelectrons. Based on the analysis results of XRD patterns and spectral reflectance, ithas been found that the composite pigment contain67%Zn_2SiO_4shell layer exhibitsthe lowest change in solar absorptance, a37%decrease compared to that of theas-received ZnO pigments, the best optical stability under protons irradiation wasachieved.
     The mechanisms under the excellent optical stability of the composite pigmentirradiated by space charged particles are investigated. It has been demonstrated thatthe Zn_2SiO_4surface layer could effectively reduces the quantity of the irradiationinduced defects in ZnO substrate by absorbing part of the energy of the incidentparticles, and thus further improving the optical stability of the composite pigment.In addition, it has found that the optical stability of Zn_2SiO_4shell layer is better thanthat of as-received ZnO pigments to some extent, which partly enhanced the optical stability of the composite pigments.
     ZnO nano-films with controlled morphology, thickness and transmittance arefabricated by using an improved sol-gel method. The fabrication and devicesperformance of the inverted polymer solar cells with ZnO nano-films as a cathodebuffer layer are also investigated. The influence of the morphology, thickness andtransmittance of ZnO nano-films on the performance of inverted polymer solar cellsare systematically investigated. It has been demonstrated that, in a certain thicknessrange, the device performance is strongly dependent on the ZnO morphology ratherthan thickness and transmittance. The morphology of the ZnO nano-films plays adirect and important role in the contact quality between P3HT: PCBM active layerand ZnO, and thus impact on the fill factor and power conversion efficiency of theinverted devices. Inverted devices with a dense and homogenous ZnO buffer layerderived from0.1M sol exhibit an power conversion efficiency of3.3%which is a32%increase compared to devices with a rough ZnO buffer layer made from1Msol, which exhibited a power conversion efficiency of2.5%.
     A route based on the chemical solution deposition at low temperature isdesigned to fabricate the ZnO nanowall arrays. The films with super dense ZnOrods are prepared by increasing the precursor concentration and decreasing thegrowth temperature and initial temperature of solution. The nanowall formation isascribed to selective dissolution of (001) planes of chemical bath deposited denseZnO rods The ZnO nanowall arrays are firstly explored as an electrons collectinglayer in inverted polymer solar cells. The primary result shows that the aqueousgrowth ZnO NW networks with a potential to serve as a new electrode for thefurther development of inverted polymer solar cells.
引文
[1] D.C. Look, D.C. Reynolds, J.W. Hemsky, R.L. Jones, J.R. Sizelove,Production and annealing of electron irradiation damage in ZnO, AppliedPhysics Letters,1999,75(6):811-813.
    [2]叶志镇. ZnO: Doping and Application.浙江大学出版社,2009.
    [3] L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO–nanostructures, defects,and devices, Materials Today,2007,10(5):40-48.
    [4] Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO Nanostructures forDye-Sensitized Solar Cells, Advanced Materials,2009,21(41):4087-4108.
    [5] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress inprocessing and properties of ZnO, Progress in Materials Science,2005,50(3):293-340.
    [6] U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin,S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices,Journal of Applied Physics,2005,98(4):041301-041103.
    [7]杨周.仿生超疏水功能表面的制备及其性能研究.中国科学与技术大学博士学位论文,2012:1-107.
    [8] N.O.V. Plank, M.E. Welland, J.L. MacManus-Driscoll, L. Schmidt-Mende,The backing layer dependence of open circuit voltage in ZnO/polymercomposite solar cells, Thin Solid Films,2008,516(20):7218-7222.
    [9] S. Schumann, R. Da Campo, B. Illy, A.C. Cruickshank, M.A. McLachlan, M.P.Ryan, D.J. Riley, D.W. McComb, T.S. Jones, Inverted organic photovoltaicdevices with high efficiency and stability based on metal oxide chargeextraction layers, Journal of Materials Chemistry,2011,21(7):2381-2386.
    [10] R.D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M. Downes, R.P.Sharma, T. Venkatesan, M.C. Woods, R.T. Lareau, K.A. Jones, A.A. Iliadis,High quality crystalline ZnO buffer layers on sapphire (001) by pulsed laserdeposition for III--V nitrides, Applied Physics Letters,1997,70(20):2735-2737.
    [11] J.B. Lee, H.J. Kim, S.G. Kim, C.S. Hwang, S.-H. Hong, Y.H. Shin, N.H. Lee,Deposition of ZnO thin films by magnetron sputtering for a film bulk acousticresonator, Thin Solid Films,2003,435(1–2):179-185.
    [12] S.C. Su, Y.M. Lu, Z.Z. Zhang, B.H. Li, D.Z. Shen, B. Yao, J.Y. Zhang, D.X.Zhao, X.W. Fan, Structural, optical, and hydrogenation properties of ZnOnanowall networks grown on a Si (111) substrate by plasma-assisted molecularbeam epitaxy, Physica B: Condensed Matter,2008,403(17):2590-2593.
    [13] J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, D. Steeves, B. Kimball, W. Porter,ZnO nanowalls, Applied Physics A,2004,78(4):539-542.
    [14] Z. Yin, N. Chen, R. Dai, L. Liu, X. Zhang, X. Wang, J. Wu, C. Chai, On theformation of well-aligned ZnO nanowall networks by catalyst-free thermalevaporation method, Journal of Crystal Growth,2007,305(1):296-301.
    [15] X. Wang, Y. Ding, Z. Li, J. Song, Z.L. Wang, Single-Crystal Mesoporous ZnOThin Films Composed of Nanowalls, The Journal of Physical Chemistry C,2009,113(5):1791-1794.
    [16] I.A. Kowalik, E. Guziewicz, K. Kopalko, S. Yatsunenko, A.Wójcik-G odowska, M. Godlewski, P. D u ewski, E. usakowska, W.Paszkowicz, Structural and optical properties of low-temperature ZnO filmsgrown by atomic layer deposition with diethylzinc and water precursors,Journal of Crystal Growth,2009,311(4):1096-1101.
    [17] R.-C. Wang, C.-C. Tsai, Efficient synthesis of ZnO nanoparticles, nanowalls,and nanowires by thermal decomposition of zinc acetate at a low temperature,Applied Physics A,2009,94(2):241-245.
    [18] S. Kim, Catalyst-free synthesis of ZnO nanowall networks on Si3N4/Sisubstrates by metalorganic chemical vapor deposition, Appl. Phys. Lett.,2006,88(25):253114.
    [19] S. Kim, Epitaxial growth of ZnO nanowall networks on GaN/sapphiresubstrates, Appl. Phys. Lett.,2007,90(3):033107.
    [20] L. Znaidi, Sol-gel-deposited ZnO thin films: A review, Materials Science andEngineering: B,2010,174(1-3):18-30.
    [21] S. Kamaruddin, K.-Y. Chan, H.-K. Yow, M. Zainizan Sahdan, H. Saim, D.Knipp, Zinc oxide films prepared by sol–gel spin coating technique, AppliedPhysics A: Materials Science&Processing,2011,104(1):263-268.
    [22] S. O'Brien, L.H.K. Koh, G.M. Crean, ZnO thin films prepared by a single stepsol–gel process, Thin Solid Films,2008,516(7):1391-1395.
    [23] M. Karyaoui, A. Ben Jaballah, R. Mechiak, R. Chtourou, Iop, The porousnature of ZnO thin films deposited by sol-gel Spin-Coating technique, in:Materiaux2010, Iop Publishing Ltd, Bristol,2012.
    [24] Y. Li, L. Xu, X. Li, X. Shen, A. Wang, Effect of aging time of ZnO sol on thestructural and optical properties of ZnO thin films prepared by sol–gel method,Applied Surface Science,2010,256(14):4543-4547.
    [25] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowiredye-sensitized solar cells, Nat Mater,2005,4(6):455-459.
    [26] J. Joo, B.Y. Chow, M. Prakash, E.S. Boyden, J.M. Jacobson, Face-selectiveelectrostatic control of hydrothermal zinc oxide nanowire synthesis, Nat Mater,2011,10(8):596-601.
    [27] S.-F. Wang, T.-Y. Tseng, Y.-R. Wang, C.-Y. Wang, H.-C. Lu, W.-L. Shih,Effects of Preparation Conditions on the Growth of ZnO Nanorod ArraysUsing Aqueous Solution Method, International Journal of Applied CeramicTechnology,2008,5(5):419-429.
    [28] S. Yamabi, H. Imai, Growth conditions for wurtzite zinc oxide films inaqueous solutions, Journal of Materials Chemistry,2002,12(12):3773-3778.
    [29] Z.L. Wang, ZnO nanowire and nanobelt platform for nanotechnology,Materials Science and Engineering: R: Reports,2009,64(3–4):33-71.
    [30] H.-M. Cheng, W.-H. Chiu, C.-H. Lee, S.-Y. Tsai, W.-F. Hsieh, Formation ofBranched ZnO Nanowires from Solvothermal Method and Dye-SensitizedSolar Cells Applications, The Journal of Physical Chemistry C,2008,112(42):16359-16364.
    [31] P. Jiang, J.J. Zhou, H.F. Fang, C.Y. Wang, Z.L. Wang, S.S. Xie, HierarchicalShelled ZnO Structures Made of Bunched Nanowire Arrays, Adv Funct Mater,2007,17(8):1303-1310.
    [32] J. Elias, R. Tena-Zaera, G.-Y. Wang, C. Le vy-Cle ment, Conversion of ZnONanowires into Nanotubes with Tailored Dimensions, Chemistry of Materials,2008,20(21):6633-6637.
    [33] D. Chu, Y. Masuda, T. Ohji, K. Kato, Formation and PhotocatalyticApplication of ZnO Nanotubes Using Aqueous Solution, Langmuir,2009,26(4):2811-2815.
    [34] D. Pradhan, K.T. Leung, Controlled Growth of Two-Dimensional andOne-Dimensional ZnO Nanostructures on Indium Tin Oxide Coated Glass byDirect Electrodeposition, Langmuir,2008,24(17):9707-9716.
    [35] S. Xu, Z. Wang, One-dimensional ZnO nanostructures: Solution growth andfunctional properties, Nano Research,2011,4(11):1013-1098.
    [36] P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C. Lao, Z.L. Wang, Conversion ofZinc Oxide Nanobelts into Superlattice-Structured Nanohelices, Science,2005,309(5741):1700-1704.
    [37] M.C. Newton, P.A. Warburton, ZnO tetrapod nanocrystals, Materials Today,2007,10(5):50-54.
    [38] Q. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G. Cao, Polydisperse Aggregatesof ZnO Nanocrystallites: A Method for Energy-Conversion-EfficiencyEnhancement in Dye-Sensitized Solar Cells, Adv Funct Mater,2008,18(11):1654-1660.
    [39] Z. Liang, Q. Zhang, O. Wiranwetchayan, J. Xi, Z. Yang, K. Park, C. Li, G. Cao,Effects of the Morphology of a ZnO Buffer Layer on the PhotovoltaicPerformance of Inverted Polymer Solar Cells, Adv Funct Mater,2012,22(10):2194-2201.
    [40] J.A. Johnson, C.A. Cerbus, A.I. Haines, M.T. Kenny, Review of ImprovedThermal Control Coating Development for NASA' s SEE Program,43rdAIAA Aerospace Sciences Meeting and Exhibit,2005:1-13.
    [41] H. Xiao, C. Li, D. Yang, S. He, Optical degradation of silicone in ZnO/siliconewhite paint irradiated by <200keV protons, Nuclear Instruments and Methodsin Physics Research Section B: Beam Interactions with Materials and Atoms,2008,266(15):3375-3380.
    [42] M.M. Mikhailov, V.V. Sharafutdinova, Variation of optical properties oftemperature control coating of space vehicles subject to solar wind protons,Russian Physics Journal,1998,42(6):581-586.
    [43] H. Xiao, C. Li, D. Yang, S. He, Y. Tao, A study on damage effects of <200keV protons on ZnO/silicone white paint, Journal of Materials Research,2006,21(12):3022-3028.
    [44] L. Li, T. Zhai, Y. Bando, D. Golberg, Recent progress of one-dimensional ZnOnanostructured solar cells, Nano Energy,2012,1(1):91-106.
    [45] M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Invertedbulk-heterojunction organic photovoltaic device using a solution-derived ZnOunderlayer, Applied Physics Letters,2006,89(14):143517-143513.
    [46] A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, Aninverted organic solar cell employing a sol-gel derived ZnO electron selectivelayer and thermal evaporated MoO[sub3] hole selective layer, AppliedPhysics Letters,2008,93(22):221107-221103.
    [47] J. Huang, Z. Yin, Q. Zheng, Applications of ZnO in organic and hybrid solarcells, Energy&Environmental Science,2011,4(10):3861-3877.
    [48] D. Pradhan, et al., Efficient field emission from vertically grown planar ZnOnanowalls on an ITO–glass substrate, Nanotechnology,2008,19(3):035603.
    [49] M.Q. Israr, Chemically fashioned ZnO nanowalls and their potentialapplication for potentiometric cholesterol biosensor, Appl. Phys. Lett.,2011,98(25):253705.
    [50]江经善.热控涂层.宇航材料工艺,1993,6:1-7.
    [51] A.C. Tribble, R. Lukins, E. Watts, V.A. Borisov, S.A. Demidov, V.A.Denisenko, A.A. Gorodetskij, V.K. Grishin, S.F. Nauma, V.K. Sergeev, UnitedStates and Russian thermal control coating results in low Earth orbit, Journalof Spacecraft and Rockets,1996,33(1):160-166.
    [52]李春东.薄膜二次表面镜空间辐照效应评价及预测.哈尔滨工业大学博士学位论文,2002:1-183.
    [53] M.M. Mikhailov., A.N. Sokolovskii., Photostability of coatings based on TiO2(Rutile) doped with potassium peroxoborate, Journal of spacecraft and rockets,2006,43(2):451-455.
    [54] M. M.M., Effect of electron irradiation on the77K band gap of rutile,Inorganic Materials,2004,40(10):1054-1057.
    [55] M.M. Mikhailov, V.V. Sharafutdinova, Accumulation of intrinsic point defectsin powdered zinc oxide and reflective coatings based on it under the action ofelectromagnetic radiation imitating the solar spectrum, Russian PhysicsJournal,1999,42(5):496-501.
    [56] M. Mccargo, S.A. Greenberg, N.J. Douglas, A study of environmental effectsupon particulate radiation-induced absorption bands in spacecraft thermalcontrol coating pigments, AIAA4th Thermophysics conference,1969,(1-11).
    [57] J.F.Cordaro, C. Stein, Molecular engineering of pigments fordegradation-resistant thermal control coatings, AIAA Materials SpecialistConference,1992:85-87.
    [58]曾一兵,张廉正,胡连成.俄罗斯空间有机热控涂层发展的现状及动向.宇航材料工艺,1999,6:57-59.
    [59]王旭东,何世禹,杨德庄,等.美国用于空间站辐射器中的热控涂层.宇航材料工艺,2002,1:12-18.
    [60]肖海英.带电粒子辐照ZnO/硅树脂白漆光学退化效应及机理.哈尔滨工业大学博士学位论文,2009:1-162.
    [61]王旭东.电子与质子辐照下氧化锌热控涂层光学性能退化及机理.哈尔滨工业大学博士学位论文,2003.
    [62] H. Xiao, C. Li, M. Sun, D. Yang, M. Di, S. He, An analysis on opticaldegradation of ZnO/silicone white paint under proton exposure, NuclearInstruments and Methods in Physics Research Section B: Beam Interactionswith Materials and Atoms,2008,266(1):86-92.
    [63] H. Xiao, M. Sun, C. Li, D. Yang, B. Han, S. He, Formation and evolution ofoxygen vacancies in ZnO white paint during proton exposure, NuclearInstruments and Methods in Physics Research Section B: Beam Interactionswith Materials and Atoms,2008,266(14):3275-3280.
    [64]郁金南.材料辐照效应.化学工业出版社,2007.
    [65] T. Claire, D. Carole, T. Gilbert, D. Magdeleine, Degradation of the opticalproperties of ZnO-based thermal control coatings in simulated spaceenvironment, Journal of Physics D: Applied Physics,2001,34(1):124.
    [66] X.D. Wang, S.Y. He, D.Z. Yang, A study of electron exposure effects onZnO/K2SiO3thermal control coatings, Materials Chemistry and Physics,2003,78(1):38-42.
    [67] M.M. Mikhailov, V.V. Sharafutdinova, Absorption bands of intrinsic pointdefects in irradiated zinc oxide, Russian Physics Journal,1997,40(9):924-929.
    [68] M.M. Mikhailov, V.V. Neshchimenko, C. Li, S. He, D. Yang, Effect of heattreatment on the reflective spectrum of zinc oxide powders, Journal ofMaterials Research,2009,24(01):19-23.
    [69] M.M. Mikhailov, V.V. Neshchimenko, C. Li, B.-J. Ye, Influence of protonirradiation on the photoluminescence spectra of zinc oxide modified by ZrO2and ZrO2·Y2O3nanopowders, Journal of Luminescence,2010,130(10):1671-1675.
    [70]刘超峰,王振红,胡行方.氧化锌色素在真空紫外辐照下降解机理的研究.中国空间科学技术,1999,4:33-37.
    [71] M.M. Mikhailov, Verevkin A. S., Photostability of reflecting coatings banedon the ZrO2powders doped SrSiO3, J. Spacecrafts and Rockets,2004,41(6):67-71.
    [72] T. Yang, W. Cai, D. Qin, E. Wang, L. Lan, X. Gong, J. Peng, Y. Cao,Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer SolarCells with an Inverted Device Structure, The Journal of Physical Chemistry C,2010,114(14):6849-6853.
    [73] Y. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger, Inverted Polymer SolarCells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnOFilm as an Electron Transport Layer, Advanced Materials,2011,23(14):1679-1683.
    [74] T. Kuwabara, Y. Kawahara, T. Yamaguchi, K. Takahashi, Characterization ofInverted-Type Organic Solar Cells with a ZnO Layer as the ElectronCollection Electrode by ac Impedance Spectroscopy, ACS Applied Materials&Interfaces,2009,1(10):2107-2110.
    [75] N. Sekine, C.-H. Chou, W.L. Kwan, Y. Yang, ZnO nano-ridge structure and itsapplication in inverted polymer solar cell, Organic Electronics,2009,10(8):1473-1477.
    [76] H.O. Seo, S.-Y. Park, W.H. Shim, K.-D. Kim, K.H. Lee, M.Y. Jo, J.H. Kim, E.Lee, D.-W. Kim, Y.D. Kim, D.C. Lim, Ultrathin TiO2Films on ZnOElectron-Collecting Layers of Inverted Organic Solar Cell, The Journal ofPhysical Chemistry C,2011,115(43):21517-21520.
    [77] S. Park, S.J. Tark, J.S. Lee, H. Lim, D. Kim, Effects of intrinsic ZnO bufferlayer based on P3HT/PCBM organic solar cells with Al-doped ZnO electrode,Sol Energ Mat Sol C,2009,93(6-7):1020-1023.
    [78] J.-C. Wang, W.-T. Weng, M.-Y. Tsai, M.-K. Lee, S.-F. Horng, T.-P. Perng, C.-C.Kei, C.-C. Yu, H.-F. Meng, Highly efficient flexible inverted organic solarcells using atomic layer deposited ZnO as electron selective layer, Journal ofMaterials Chemistry,2010,20(5):862-866.
    [79] H. Cheun, C. Fuentes-Hernandez, Y. Zhou, W.J. Potscavage, S.-J. Kim, J.Shim, A. Dindar, B. Kippelen, Electrical and Optical Properties of ZnOProcessed by Atomic Layer Deposition in Inverted Polymer Solar Cells, TheJournal of Physical Chemistry C,2010,114(48):20713-20718.
    [80] C.-Y. Chang, F.-Y. Tsai, Efficient and air-stable plastics-based polymer solarcells enabled by atomic layer deposition, Journal of Materials Chemistry,2011,21(15):5710-5715.
    [81] K.-S. Shin, H.-J. Park, B. Kumar, K.-K. Kim, S.-G. Ihn, S.-W. Kim,Low-temperature growth and characterization of ZnO thin films for flexibleinverted organic solar cells, Journal of Materials Chemistry,2011,21(33):12274-12279.
    [82] S.-G. Ihn, K.-S. Shin, M.-J. Jin, X. Bulliard, S. Yun, Y. Suk Choi, Y. Kim, J.-H.Park, M. Sim, M. Kim, K. Cho, T. Sang Kim, D. Choi, J.-Y. Choi, W. Choi,S.-W. Kim, ITO-free inverted polymer solar cells using a GZO cathodemodified by ZnO, Sol Energ Mat Sol C,2011,95(7):1610-1614.
    [83] S.K. Hau, H.-L. Yip, N.S. Baek, J. Zou, K. O'Malley, A.K.Y. Jen, Air-stableinverted flexible polymer solar cells using zinc oxide nanoparticles as anelectron selective layer, Applied Physics Letters,2008,92(25):253301-253303.
    [84] F.C. Krebs, S.A. Gevorgyan, J. Alstrup, A roll-to-roll process to flexiblepolymer solar cells: model studies, manufacture and operational stabilitystudies, Journal of Materials Chemistry,2009,19(30):5442-5451.
    [85] J.-p. Liu, K.-L. Choy, X.-h. Hou, Charge transport in flexible solar cells basedon conjugated polymer and ZnO nanoparticulate thin films, Journal ofMaterials Chemistry,2011,21(6):1966-1969.
    [86] M. Ohyama, H. Kouzuka, T. Yoko, Sol-gel preparation of ZnO films withextremely preferred orientation along (002) plane from zinc acetate solution,Thin Solid Films,1997,306(1):78-85.
    [87] A.K.K. Kyaw, M.F. Yang, X.W. Sun, Solar Cell as an Energy HarvestingDevice, in: Electrochemical Technologies for Energy Storage andConversion, Wiley-VCH Verlag GmbH&Co. KGaA,2011, pp.463-539.
    [88]张正华,李陵岚,叶楚平,等.有机太阳电池与塑料太阳电池.化学工业出版社,2005:1-325.
    [89] R.F. Service, Outlook Brightens for Plastic Solar Cells, Science,2011,332(6027):293.
    [90] B.C. Thompson, J.M.J. Fréchet, Polymer Fullerene Composite Solar Cells,Angewandte Chemie International Edition,2008,47(1):58-77.
    [91] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang,High-efficiency solution processable polymer photovoltaic cells by selforganization of polymer blends, Nat Mater,2005,4(11):864-868.
    [92] S.K. Hau, H.-L. Yip, A.K.Y. Jen, A Review on the Development of theInverted Polymer Solar Cell Architecture, Polymer Reviews,2010,50(4):474-510.
    [93] R. Po, C. Carbonera, A. Bernardi, N. Camaioni, The role of buffer layers inpolymer solar cells, Energy&Environmental Science,2011,4(2):285-310.
    [94] R. Po, M. Maggini, N. Camaioni, Polymer Solar Cells: Recent Approaches andAchievements, J Phys Chem C,2010,114(2):695-706.
    [95] F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, Y.Wang, Recent development of the inverted configuration organic solar cells,Sol Energ Mat Sol C,2011,95(7):1785-1799.
    [96] Y.J. Cheng, S.H. Yang, C.S. Hsu, Synthesis of Conjugated Polymers forOrganic Solar Cell Applications, Chem Rev,2009,109(11):5868-5923.
    [97] P.A. van Hal, M.M. Wienk, J.M. Kroon, W.J.H. Verhees, L.H. Slooff, W.J.H.van Gennip, P. Jonkheijm, R.A.J. Janssen, Photoinduced Electron Transfer andPhotovoltaic Response of a MDMO-PPV:TiO2Bulk-Heterojunction,Advanced Materials,2003,15(2):118-121.
    [98] A. Moliton, J.-M. Nunzi, How to model the behaviour of organic photovoltaiccells, Polymer International,2006,55(6):583-600.
    [99] M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger,C.J. Brabec, Design Rules for Donors in Bulk-Heterojunction Solar CellsTowards10%Energy-Conversion Efficiency, Advanced Materials,2006,18(6):789-794.
    [100]P.P. Boix, J. Ajuria, I. Etxebarria, R. Pacios, G. Garcia-Belmonte, J. Bisquert,Role of ZnO Electron-Selective Layers in Regular and Inverted BulkHeterojunction Solar Cells, The Journal of Physical Chemistry Letters,2011,2(5):407-411.
    [101]J. Sun, Y. Zhu, X. Xu, L. Lan, L. Zhang, P. Cai, J. Chen, J. Peng, Y. Cao, HighEfficiency and High Voc Inverted Polymer Solar Cells Based-on a Low-LyingHOMO Polycarbazole Donor and a Hydrophilic Polycarbazole Interlayer onITO Cathode, The Journal of Physical Chemistry C,2012.
    [102]H.-L. Yip, A.K.Y. Jen, Recent advances in solution-processed interfacialmaterials for efficient and stable polymer solar cells, Energy&EnvironmentalScience,2012,5(3):5994-6011.
    [103]W. Cai, X. Gong, Y. Cao, Polymer solar cells: Recent development andpossible routes for improvement in the performance, Sol Energ Mat Sol C,2010,94(2):114-127.
    [104]V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, M.T. Rispens, Cathodedependence of the open-circuit voltage of polymer:fullerene bulkheterojunction solar cells, Journal of Applied Physics,2003,94(10):6849-6854.
    [105]M. J rgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C.Krebs, Stability of Polymer Solar Cells, Advanced Materials,2012,24(5):580-612.
    [106]M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cellefficiency tables (version39), Progress in Photovoltaics: Research andApplications,2012,20(1):12-20.
    [107]K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D.D.C. Bradley, J.R. Durrant,Degradation of organic solar cells due to air exposure, Sol Energ Mat Sol C,2006,90(20):3520-3530.
    [108]M.P. de Jong, L.J. van Ijzendoorn, M.J.A. de Voigt, Stability of the interfacebetween indium-tin-oxide and poly (3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes, Applied Physics Letters,2000,77(14):2255-2257.
    [109]K.W. Wong, H.L. Yip, Y. Luo, K.Y. Wong, W.M. Lau, K.H. Low, H.F. Chow,Z.Q. Gao, W.L. Yeung, C.C. Chang, Blocking reactions between indium-tinoxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with aself-assembly monolayer, Applied Physics Letters,2002,80(15):2788-2790.
    [110]S.K. Hau, K.M. O'Malley, C. You-Jung, Y. Hin-Lap, M. Hong, A.K.Y. Jen,Optimization of Active Layer and Anode Electrode for High-PerformanceInverted Bulk-Heterojunction Solar Cells, Selected Topics in QuantumElectronics, IEEE Journal of,2010,16(6):1665-1675.
    [111]K. Lee, J.Y. Kim, S.H. Park, S.H. Kim, S. Cho, A.J. Heeger, Air-StablePolymer Electronic Devices, Advanced Materials,2007,19(18):2445-2449.
    [112]L.-M. Chen, Z. Hong, G. Li, Y. Yang, Recent Progress in Polymer Solar Cells:Manipulation of Polymer:Fullerene Morphology and the Formation ofEfficient Inverted Polymer Solar Cells, Advanced Materials,2009,21(14-15):1434-1449.
    [113]J.-H. Huang, H.-Y. Wei, K.-C. Huang, C.-L. Chen, R.-R. Wang, F.-C. Chen,K.-C. Ho, C.-W. Chu, Using a low temperature crystallization process toprepare anatase TiO2buffer layers for air-stable inverted polymer solar cells,Energy&Environmental Science,2010,3(5):654-658.
    [114]D.S. Germack, C.K. Chan, B.H. Hamadani, L.J. Richter, D.A. Fischer, D.J.Gundlach, D.M. DeLongchamp, Substrate-dependent interface compositionand charge transport in films for organic photovoltaics, Applied PhysicsLetters,2009,94(23):233303-233303.
    [115]Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, Y.Yang, Vertical Phase Separation in Poly(3-hexylthiophene): FullereneDerivative Blends and its Advantage for Inverted Structure Solar Cells, AdvFunct Mater,2009,19(8):1227-1234.
    [116]L.-M. Chen, Z. Xu, Z. Hong, Y. Yang, Interface investigation and engineering-achieving high performance polymer photovoltaic devices, Journal ofMaterials Chemistry,2010,20(13):2575-2598.
    [117]K. Frederik C, All solution roll-to-roll processed polymer solar cells free fromindium-tin-oxide and vacuum coating steps, Organic Electronics,2009,10(5):761-768.
    [118]F.C. Krebs, T. Tromholt, M. Jorgensen, Upscaling of polymer solar cellfabrication using full roll-to-roll processing, Nanoscale,2010,2(6):873-886.
    [119]N. Espinosa, H.F. Dam, D.M. Tanenbaum, J.W. Andreasen, M. J rgensen, F.C.Krebs, Roll-to-Roll Processing of Inverted Polymer Solar Cells usingHydrated Vanadium (V) Oxide as a PEDOT:PSS Replacement, Materials,2011,4(1):169-182.
    [120]S.K. Hau, H.-L. Yip, O. Acton, N.S. Baek, H. Ma, A.K.Y. Jen, Interfacialmodification to improve inverted polymer solar cells, Journal of MaterialsChemistry,2008,18(42):5113-5119.
    [121]C.-Y. Li, T.-C. Wen, T.-H. Lee, T.-F. Guo, J.-C.-A. Huang, Y.-C. Lin, Y.-J. Hsu,An inverted polymer photovoltaic cell with increased air stability obtained byemploying novel hole/electron collecting layers, Journal of MaterialsChemistry,2009,19(11):1643-1647.
    [122]T. Kuwabara, H. Sugiyama, T. Yamaguchi, K. Takahashi, Inverted typebulk-heterojunction organic solar cell using electrodeposited titanium oxidethin films as electron collector electrode, Thin Solid Films,2009,517(13):3766-3769.
    [123]I. Sasajima, S. Uesaka, T. Kuwabara, T. Yamaguchi, K. Takahashi, Flexibleinverted polymer solar cells containing an amorphous titanium oxide electroncollection electrode, Organic Electronics,2011,12(1):113-118.
    [124]Y.-J. Kang, C.S. Kim, D.S. You, S.H. Jung, K. Lim, D.-G. Kim, J.-K. Kim, S.H.Kim, Y.-R. Shin, S.-H. Kwon, J.-W. Kang, Effect of electron transport layercrystallinity on the transient characteristics of inverted organic solar cells,Applied Physics Letters,2011,99(7):073308-073303.
    [125]Y. Zhou, H. Cheun, J.W.J. Potscavage, C. Fuentes-Hernandez, S.-J. Kim, B.Kippelen, Inverted organic solar cells with ITO electrodes modified with anultrathin Al2O3buffer layer deposited by atomic layer deposition, Journal ofMaterials Chemistry,2010,20(29):6189-6194.
    [126]T.Z. Oo, R.D. Chandra, N. Yantara, R.R. Prabhakar, L.H. Wong, N. Mathews,S.G. Mhaisalkar, Zinc Tin Oxide (ZTO) electron transporting buffer layer ininverted organic solar cell, Organic Electronics,2012,13(5):870-874.
    [127]G. Li, C.W. Chu, V. Shrotriya, J. Huang, Y. Yang, Efficient inverted polymersolar cells, Applied Physics Letters,2006,88(25):253503-253503.
    [128]H. Liao, Highly efficient inverted polymer solar cell by low temperatureannealing of Cs2CO3interlayer, Appl. Phys. Lett.,2008,92(17):173303.
    [129]Y.-I. Lee, J.-H. Youn, M.-S. Ryu, J. Kim, H.-T. Moon, J. Jang, Electricalproperties of inverted poly(3-hexylthiophene): Methano-fullerene [6,6]-phenylC71-butyric acid methyl ester bulk hetero-junction solar cell with Cs2CO3and MoO3layers, Sol Energ Mat Sol C,2011,95(12):3276-3280.
    [130]T. Kuwabara, M. Nakamoto, Y. Kawahara, T. Yamaguchi, K. Takahashi,Characterization of ZnS-layer-inserted bulk-heterojunction organic solar cellsby ac impedance spectroscopy, Journal of Applied Physics,2009,105(12):124513-124516.
    [131]J.-J. Zhu, Z.-Q. Xu, G.-Q. Fan, S.-T. Lee, Y.-Q. Li, J.-X. Tang, Invertedpolymer solar cells with atomic layer deposited CdS film as an electroncollection layer, Organic Electronics,2011,12(12):2151-2158.
    [132]M.R. Rajesh Menon, M.V. Maheshkumar, K. Sreekumar, C. Sudha Kartha, K.P.Vijayakumar, Inverted polymer solar cells with indium sulfide electronselective layer, Sol Energ Mat Sol C,2010,94(12):2212-2217.
    [133]M.R.R. Menon, M.V. Maheshkumar, K. Sreekumar, C.S. Kartha, K.P.Vijayakumar, Spray pyrolysed In2S3thin films: A potential electron selectivelayer for large area inverted bulk-heterojunction polymer solar cells, physicastatus solidi (a),2012,209(1):199-203.
    [134]X. Chen, J. Yang, L.Y.X.C. Haley, J. Lu, F. Zhu, K.P. Loh, Towards highefficiency solution processable inverted bulk heterojunction polymer solarcells using modified indium tin oxide cathode, Organic Electronics,2010,11(12):1942-1946.
    [135]K. Sun, H. Zhang, J. Ouyang, Indium tin oxide modified with sodiumcompounds as cathode of inverted polymer solar cells, Journal of MaterialsChemistry,2011,21(45):18339-18346.
    [136]K. Sun, B. Zhao, A. Kumar, K. Zeng, J. Ouyang, Highly efficient, invertedpolymer solar cells with indium tin oxide modified with solution-processedzwitterions as the transparent cathode, ACS Applied Materials&Interfaces,2012,4(4):2009-2017.
    [137][Y. Zhu, X. Xu, L. Zhang, J. Chen, Y. Cao, High efficiency inverted polymericbulk-heterojunction solar cells with hydrophilic conjugated polymers ascathode interlayer on ITO, Sol Energ Mat Sol C,2012,97(0):83-88.
    [138]C.Y. Jiang, X.W. Sun, D.W. Zhao, A.K.K. Kyaw, Y.N. Li, Low work functionmetal modified ITO as cathode for inverted polymer solar cells, Sol Energ MatSol C,2010,94(10):1618-1621.
    [139]J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, L. Dai, Hole and ElectronExtraction Layers Based on Graphene Oxide Derivatives for HighPerformance Bulk Heterojunction Solar Cells, Advanced Materials,2012,24(17):2228-2233.
    [140]X. Wan, G. Long, L. Huang, Y. Chen, Graphene A Promising Material forOrganic Photovoltaic Cells, Advanced Materials,2011,23(45):5342-5358.
    [141]Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton,J.R. LaRoche, ZnO nanowire growth and devices, Materials Science andEngineering: R: Reports,2004,47(1-2):1-47.
    [142]K. Ellmer, Resistivity of polycrystalline zinc oxide films: current status andphysical limit, Journal of Physics D: Applied Physics,2001,34(21):3097.
    [143]F.C. Krebs, J. Fyenbo, D.M. Tanenbaum, S.A. Gevorgyan, R. Andriessen, B.van Remoortere, Y. Galagan, M. Jorgensen, The OE-A OPV demonstratoranno domini2011, Energy&Environmental Science,2011,4(10):4116-4123.
    [144]F.C. Krebs, J. Fyenbo, M. Jorgensen, Product integration of compactroll-to-roll processed polymer solar cell modules: methods and manufactureusing flexographic printing, slot-die coating and rotary screen printing,Journal of Materials Chemistry,2010,20(41):8994-9001.
    [145]I.-W. Hwang, D. Moses, A.J. Heeger, Photoinduced Carrier Generation inP3HT/PCBM Bulk Heterojunction Materials, The Journal of PhysicalChemistry C,2008,112(11):4350-4354.
    [146]Y. Sun, X. Gong, B.B.Y. Hsu, H.-L. Yip, A.K.Y. Jen, A.J. Heeger,Solution-processed cross-linkable hole selective layer for polymer solar cellsin the inverted structure, Applied Physics Letters,2010,97(19):193310-193313.
    [147]S.K. Hau, Y.-J. Cheng, H.-L. Yip, Y. Zhang, H. Ma, A.K.Y. Jen, Effect ofChemical Modification of Fullerene-Based Self-Assembled Monolayers on thePerformance of Inverted Polymer Solar Cells, ACS Applied Materials&Interfaces,2010,2(7):1892-1902.
    [148]M.-Y. Lin, C.-Y. Lee, S.-C. Shiu, I.-J. Wang, J.-Y. Sun, W.-H. Wu, Y.-H. Lin,J.-S. Huang, C.-F. Lin, Sol–gel processed CuOx thin film as an anodeinterlayer for inverted polymer solar cells, Organic Electronics,2010,11(11):1828-1834.
    [149]M.-Y. Liu, C.-H. Chang, C.-H. Chang, K.-H. Tsai, J.-S. Huang, C.-Y. Chou,I.-J. Wang, P.-S. Wang, C.-Y. Lee, C.-H. Chao, C.-L. Yeh, C.-I. Wu, C.-F. Lin,Morphological evolution of the poly (3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester, oxidation of the silver electrode, and their influenceson the performance of inverted polymer solar cells with a sol–gel derived zincoxide electron selective layer, Thin Solid Films,2010,518(17):4964-4969.
    [150]H.-J. Park, K.-H. Lee, B. Kumar, K.-S. Shin, S.-W. Jeong, S.-W. Kim, InvertedOrganic Solar Cells with ZnO Thin Films Prepared by Sol-Gel Method,Journal of Nanoelectronics and Optoelectronics,2010,5(2):135-138.
    [151]C. Zhang, H. You, Z. Lin, Y. Hao, Inverted Organic Photovoltaic Cells withSolution-Processed Zinc Oxide as Electron Collecting Layer, Japanese Journalof Applied Physics,2011,50(8).
    [152]C.-P. Chen, Y.-D. Chen, S.-C. Chuang, High-Performance and Highly DurableInverted Organic Photovoltaics Embedding Solution-Processable VanadiumOxides as an Interfacial Hole-Transporting Layer, Advanced Materials,2011,23(33):3859-3863.
    [153]I.-J. Wang, S.-C. Shiu, M.-Y. Lin, J.-S. Huang, Y.-H. Lin, C.-F. Lin,Improvement of inverted-type organic solar cells by mild oxygen plasmaetching on polymer thin film, Sol Energ Mat Sol C,2010,94(10):1681-1685.
    [154]S. Sanchez, S. Berson, S. Guillerez, C. Lévy-Clément, V. Ivanova, TowardHigh-Stability Inverted Polymer Solar Cells with an Electrodeposited ZnOElectron Transporting Layer, Advanced Energy Materials,2012.
    [155]A. Tolkki, K. Kaunisto, A. Efimov, H. Kivisto, L. Storbacka, R. Savikoski, K.Huttunen, S. Lehtimaki, H. Lemmetyinen, Directed electron transfer inLangmuir-Schafer layers of porphyrin-fullerene and phthalocyanine-fullerenedyads in inverted organic solar cells, Physical Chemistry Chemical Physics,2012,14(10):3498-3504.
    [156]D.C. Lim, W.H. Shim, K.-D. Kim, H.O. Seo, J.-H. Lim, Y. Jeong, Y.D. Kim,K.H. Lee, Spontaneous formation of nanoripples on the surface of ZnO thinfilms as hole-blocking layer of inverted organic solar cells, Sol Energ Mat SolC,2011,95(11):3036-3040.
    [157]Y. H. Lin, P. C. Yang, J.-S. Huang, G. D. Huang, I.-J. Wang, W.-H. Wu, M.-Y.Lin, W.-F. Su, C.-F. Lin, High efficiency inverted polymer solar cells withsolution-processed metal oxides, Sol Energ Mat Sol C,2011,95(8):2511-2515.
    [158]C.M. Amb, S. Chen, K.R. Graham, J. Subbiah, C.E. Small, F. So, J.R.Reynolds, Dithienogermole As a Fused Electron Donor in Bulk HeterojunctionSolar Cells, Journal of the American Chemical Society,2011,133(26):10062-10065.
    [159]D.R. Bekci, S. Erten-Ela, Effect of nanostructured ZnO cathode layer on thephotovoltaic performance of inverted bulk heterojunction solar cells, Renew.Energy,2012,43:378-382.
    [160]T.-Y. Chu, S.-W. Tsang, J. Zhou, P.G. Verly, J. Lu, S. Beaupré, M. Leclerc, Y.Tao, High-efficiency inverted solar cells based on a low bandgap polymer withexcellent air stability, Sol Energ Mat Sol C,2012,96(0):155-159.
    [161]J.-W. Kang, Y.-J. Kang, S. Jung, M. Song, D.-G. Kim, C. Su Kim, S.H. Kim,Fully spray-coated inverted organic solar cells, Sol Energ Mat Sol C,2012,103(0):76-79.
    [162]T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang, X. Gong,Inverted polymer solar cells with8.4%efficiency by conjugatedpolyelectrolyte, Energy&Environmental Science,2012,5(8):8208-8214.
    [163]X. Bulliard, S.-G. Ihn, S. Yun, Y. Kim, D. Choi, J.-Y. Choi, M. Kim, M. Sim,J.-H. Park, W. Choi, K. Cho, Enhanced Performance in Polymer Solar Cells bySurface Energy Control, Adv Funct Mater,2010,20(24):4381-4387.
    [164]T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov, C.J. Brabec, Inverted organicsolar cells using a solution processed aluminum-doped zinc oxide buffer layer,Organic Electronics,2011,12(9):1539-1543.
    [165]M.R. Lilliedal, A.J. Medford, M.V. Madsen, K. Norrman, F.C. Krebs, Theeffect of post-processing treatments on inflection points in current–voltagecurves of roll-to-roll processed polymer photovoltaics, Sol Energ Mat Sol C,2010,94(12):2018-2031.
    [166]K. Takanezawa, K. Hirota, Q.-S. Wei, K. Tajima, K. Hashimoto, EfficientCharge Collection with ZnO Nanorod Array in Hybrid Photovoltaic Devices,The Journal of Physical Chemistry C,2007,111(19):7218-7223.
    [167]K. Takanezawa, K. Tajima, K. Hashimoto, Efficiency enhancement of polymerphotovoltaic devices hybridized with ZnO nanorod arrays by the introductionof a vanadium oxide buffer layer, Applied Physics Letters,2008,93(6):063308-063303.
    [168]C.-Y. Chou, J.-S. Huang, C.-H. Wu, C.-Y. Lee, C.-F. Lin, Lengthening thepolymer solidification time to improve the performance of polymer/ZnOnanorod hybrid solar cells, Sol Energ Mat Sol C,2009,93(9):1608-1612.
    [169]M. Wang, Y. Li, H. Huang, E.D. Peterson, W. Nie, W. Zhou, W. Zeng, W.Huang, G. Fang, N. Sun, X. Zhao, D.L. Carroll, Thickness dependence of theMoO3blocking layers on ZnO nanorod-inverted organic photovoltaic devices,Applied Physics Letters,2011,98(10):103305-103303.
    [170]J.-S. Huang, C.-Y. Chou, C.-F. Lin, Enhancing performance oforganic–inorganic hybrid solar cells using a fullerene interlayer fromall-solution processing, Sol Energ Mat Sol C,2010,94(2):182-186.
    [171]Y. Hames, Z. Alpaslan, A. K semen, S.E. San, Y. Yerli, Electrochemicallygrown ZnO nanorods for hybrid solar cell applications, Solar Energy,2010,84(3):426-431.
    [172]S. Yodyingyong, X. Zhou, Q. Zhang, D. Triampo, J. Xi, K. Park, B. Limketkai,G. Cao, Enhanced Photovoltaic Performance of Nanostructured Hybrid SolarCell Using Highly Oriented TiO2Nanotubes, The Journal of PhysicalChemistry C,2010,114(49):21851-21855.
    [173]K. Sung Hyun, P. Sung Hwak, L. Kyoung Il, K. Seon Min, C. Jin Woo,Inorganic/organic heterojunction solar cell fabricated with ZnO nanowires, in:Photovoltaic Specialists Conference (PVSC),201035th IEEE,2010, pp.001636-001638.
    [174]J. Ajuria, I. Etxebarria, E. Azaceta, R. Tena-Zaera, N. Fernandez-Montcada, E.Palomares, R. Pacios, Novel ZnO nanostructured electrodes for higher powerconversion efficiencies in polymeric solar cells, Physical Chemistry ChemicalPhysics,2011,13(46).
    [175]D.C. Olson, J. Piris, R.T. Collins, S.E. Shaheen, D.S. Ginley, Hybridphotovoltaic devices of polymer and ZnO nanofiber composites, Thin SolidFilms,2006,496(1):26-29.
    [176]Z. Hu, J. Zhang, Y. Liu, Y. Li, X. Zhang, Y. Zhao, Efficiency enhancement ofinverted organic photovoltaic devices with ZnO nanopillars fabricated on FTOglass substrates, Synthetic Metals,2011,161(19–20):2174-2178.
    [177]Z. Hu, J. Zhang, Y. Liu, Z. Hao, X. Zhang, Y. Zhao, Influence of ZnOinterlayer on the performance of inverted organic photovoltaic device, SolEnerg Mat Sol C,2011,95(8):2126-2130.
    [178]G. Cheng, W.-Y. Tong, K.-H. Low, C.-M. Che, Thermal-annealing-freeinverted polymer solar cells using ZnO/Cs2CO3bilayer as electron-selectivelayer, Sol Energ Mat Sol C,2012,103(0):164-170.
    [179]J. Alstrup, M. J rgensen, A.J. Medford, F.C. Krebs, Ultra Fast andParsimonious Materials Screening for Polymer Solar Cells UsingDifferentially Pumped Slot-Die Coating, ACS Applied Materials&Interfaces,2010,2(10):2819-2827.
    [180]A. Manor, E.A. Katz, T. Tromholt, F.C. Krebs, Enhancing functionality ofZnO hole blocking layer in organic photovoltaics, Sol Energ Mat Sol C,2012,98(0):491-493.
    [181]K.-S. Shin, K.-H. Lee, H.H. Lee, D. Choi, S.-W. Kim, Enhanced PowerConversion Efficiency of Inverted Organic Solar Cells with a Ga-Doped ZnONanostructured Thin Film Prepared Using Aqueous Solution, The Journal ofPhysical Chemistry C,2010,114(37):15782-15785.
    [182]K. Aung Ko Ko, S. Xiaowei, Z. De Wei, T. Swee Tiam, Y. Divayana, H.V.Demir, Improved Inverted Organic Solar Cells With a Sol-Gel DerivedIndium-Doped Zinc Oxide Buffer Layer, Selected Topics in QuantumElectronics, IEEE Journal of,2010,16(6):1700-1706.
    [183]H. Oh, J. Krantz, I. Litzov, T. Stubhan, L. Pinna, C.J. Brabec, Comparison ofvarious sol–gel derived metal oxide layers for inverted organic solar cells, SolEnerg Mat Sol C,2011,95(8):2194-2199.
    [184]S.-W. Cho, Y.T. Kim, W.H. Shim, S.-Y. Park, K.-D. Kim, H.O. Seo, N.K. Dey,J.-H. Lim, Y. Jeong, K.H. Lee, Y.D. Kim, D.C. Lim, Influence of surfaceroughness of aluminum-doped zinc oxide buffer layers on the performance ofinverted organic solar cells, Applied Physics Letters,2011,98(2):023102-023103.
    [185]R. S ndergaard, M. Helgesen, M. J rgensen, F.C. Krebs, Fabrication ofPolymer Solar Cells Using Aqueous Processing for All Layers Including theMetal Back Electrode, Advanced Energy Materials,2011,1(1):68-71.
    [186]S.K. Hau, H.-L. Yip, H. Ma, A.K.Y. Jen, High performance ambient processedinverted polymer solar cells through interfacial modification with a fullereneself-assembled monolayer, Applied Physics Letters,2008,93(23):233304-233303.
    [187]C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, C.-S.Hsu, Highly Efficient and Stable Inverted Polymer Solar Cells Integrated witha Cross-Linked Fullerene Material as an Interlayer, Journal of the AmericanChemical Society,2010,132(13):4887-4893.
    [188]T. Stubhan, M. Salinas, A. Ebel, F.C. Krebs, A. Hirsch, M. Halik, C.J. Brabec,Increasing the Fill Factor of Inverted P3HT:PCBM Solar Cells ThroughSurface Modification of Al-Doped ZnO via Phosphonic Acid-Anchored C60SAMs, Advanced Energy Materials,2012:
    [189]Y.-J. Cheng, C.-H. Hsieh, Y. He, C.-S. Hsu, Y. Li, Combination of Indene-C60Bis-Adduct and Cross-Linked Fullerene Interlayer Leading to Highly EfficientInverted Polymer Solar Cells, Journal of the American Chemical Society,2010,132(49):17381-17383.
    [190]A. De Sio, K. Chakanga, O. Sergeev, K. von Maydell, J. Parisi, E. von Hauff,ITO-free inverted polymer solar cells with ZnO:Al cathodes and stable topanodes, Sol Energ Mat Sol C,2012,98(0):52-56.
    [191]贺蕴秋,王德平,徐振平.无机材料物理化学.化学工业出版社,2005:178-213.
    [192]T. Tanigaki, H. Suzuki, Y. Kimura, O. Kido, Y. Saito, C. Kaito, Dynamicbehavior of SiO-and SiO2-coated ZnO ultrafine particles and growthmechanism of Zn2SiO4crystal, Journal of Crystal Growth,2003,256(3–4):317-323.
    [193]H. Amekura, Y. Sakuma, K. Kono, Y. Takeda, N. Kishimoto, C. Buchal,Luminescence from ZnO nanoparticles/SiO2fabricated by ion implantationand thermal oxidation, Physica B: Condensed Matter,2006,376–377(0):760-763.
    [194]任俊,沈健,卢寿慈.颗粒分散科学与技术.化学工业出版社,2005:1-355.
    [195]F.S. Johnson, The solar constant, Journal of meteorology,1954,11(6):431-439.
    [196]朱永法.纳米材料的表征与测试结束.化学工业出版社,2006.
    [197]J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, B. Feng, Effectof annealing temperature on the structure and optical properties of ZnOnanoparticles, Journal of Alloys and Compounds,2009,477(1–2):632-635.
    [198]Y. Chen, D.M. Bagnall, H.-j. Koh, K.-t. Park, K. Hiraga, Z. Zhu, T. Yao,Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growthand characterization, Journal of Applied Physics,1998,84(7):3912-3918.
    [199]S. Cho, J. Ma, Y. Kim, Y. Sun, G.K.L. Wong, J.B. Ketterson,Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin filmsprepared by the oxidation of the metallic Zn, Applied Physics Letters,1999,75(18):2761-2763.
    [200]H.S. Kang, J.S. Kang, S.S. Pang, E.S. Shim, S.Y. Lee, Variation of lightemitting properties of ZnO thin films depending on post-annealingtemperature, Materials Science and Engineering: B,2003,102(1–3):313-316.
    [201]T.-B. Hur, D.-H. Yoo, G.S. Jeen, Y.-H. Hwang, H.-K. Kim, The Effects ofThermal Annealing of ZnO Ceramics, Journal of the Korean Physical Society,2003,42: S1283-S1286.
    [202]F. Van Craeynest, W. Maenhout-Van Der Vorst, W. Dekeyser, Interpretation ofthe Yellow Colour of Heat Treated ZnO Powder, physica status solidi (b),1965,8(3):841-846.
    [203]S. Onodera, Whisker crystal growth of zinc-silicate, Materials ResearchBulletin,1996,31(7):793-798.
    [204]J. El Ghoul, K. Omri, L. El Mir, C. Barthou, S. Alaya, Sol–gel synthesis andluminescent properties of SiO2/Zn2SiO4and SiO2/Zn2SiO4:V compositematerials, Journal of Luminescence,2012,132(9):2288-2292.
    [205]H. He, Y. Wang, Y. Zou, Photoluminescence property of ZnO–SiO2compositessynthesized by sol–gel method, J. Phys. D: Appl. Phys.,2003,36:2972–2975.
    [206]L. Xiangfu, C. Wenjuan, M. Xueming, S. Wangzhou, Influence of AnnealingHeat on the Microstucture and Fluorescent Characteristic of ZnO2-SiO2Composite Film, Journal of synthetic crystals,2007,36(1):141-145.
    [207]M.-h.W. Hsun-chin Chen, Jui-hong Horng, Mau-ohon Houng, and Yeong-herWang, Effect of Bismuth Addition on Sintering Behavior and MicrowaveDielectric Properties of Zinc Titanate Ceramics, Journal of electronicmaterials,2005,34(1):119-124.
    [208]刘忠池. ZnO-TIO:基低温烧结微波介质陶瓷的改性及其机理研究.华中科技大学博士学位论文,2009:36-37.
    [209]K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J. Caruso, M.J.Hampden-Smith, T.T. Kodas, Green photoluminescence efficiency andfree-carrier density in ZnO phosphor powders prepared by spray pyrolysis,Journal of Luminescence,1997,75(1):11-16.
    [210]K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E.Gnade, Mechanisms behind green photoluminescence in ZnO phosphorpowders, Journal of Applied Physics,1996,79(10):7983-7990.
    [211]H. Cheng, H.D. Park, K.S. Sohn, J.D. Lee, Electronic structure of Zn2SiO4andZn2SiO4: Mn, journal of the Korean Physical Society,1999,34(6):545-548.
    [212]黄本诚.空间环境工程学.宇航出版社,1993:37-41.
    [213]M.M. Mikhailov, M.I. Dvoretskii, Thermal Radiation Characteristics ofReflecting Coatings Based on Zinc Oxide for Space Systems under theConditions of the effect of Earth’s Radiation Belts, Journal of AdvancedMaterials,1995,2(1):41-49.
    [214]方书金,张启仁.晶体色心物理学.上海交通大学出版社,1989:24-28.
    [215]J.F. Ziegler, SRIM-2003, Nuclear Instruments and Methods in PhysicsResearch Section B: Beam Interactions with Materials and Atoms,2004,219–220(0):1027-1036.
    [216]S. Endo, E. Yoshida, H. Nikjoo, S. Uehara, M. Hoshi, M. Ishikawa, K.Shizuma, A Monte Carlo track structure code for low energy protons, NuclearInstruments and Methods in Physics Research Section B: Beam Interactionswith Materials and Atoms,2002,194(2):123-131.
    [217]刘坤. Zn2SiO4/Si发光薄膜与器件研究.浙江大学博士学位论文,2005.
    [218]K.P. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, T. Balasubramanian,Optimization of Zn1-xAlxO film for antireflection coating by RF sputtering,Journal of Alloys and Compounds,2009,473(1-2):534-537.
    [219]K.-i. Ishibashi, Y. Kimura, M. Niwano, An extensively valid and stablemethod for derivation of all parameters of a solar cell from a singlecurrent-voltage characteristic, Journal of Applied Physics,2008,103(9):094507-094506.
    [220]F. Verbakel, S.C.J. Meskers, R.A.J. Janssen, Electronic memory effects indiodes from a zinc oxide nanoparticle-polystyrene hybrid material, AppliedPhysics Letters,2006,89(10):102103-102103.
    [221]M.M. Brewster, M.-Y. Lu, S.K. Lim, M.J. Smith, X. Zhou, S. Gradec ak, TheGrowth and Optical Properties of ZnO Nanowalls, The Journal of PhysicalChemistry Letters,2011,2(15):1940-1945.
    [222]F. Fang, The enhancement of ZnO nanowalls photoconductivity induced byCdS nanoparticle modification, Appl. Phys. Lett.,2008,93(23):233115.
    [223]L. Chul-Ho, et al., Scalable network electrical devices using ZnO nanowalls,Nanotechnology,2011,22(5):055205.
    [224]E. Jang, Soft-solution route to ZnO nanowall array with low threshold powerdensity, Appl. Phys. Lett.,2010,97(4):043109.
    [225]G. She, Controlled synthesis of oriented single-crystal ZnO nanotube arrays ontransparent conductive substrates, Appl. Phys. Lett.,2008,92(5):053111.
    [226]L. Xu, Q. Liao, J. Zhang, X. Ai, D. Xu, Single-Crystalline ZnO NanotubeArrays on Conductive Glass Substrates by Selective Disolution ofElectrodeposited ZnO Nanorods, The Journal of Physical Chemistry C,2007,111(12):4549-4552.
    [227]K.-W. Chae, Q. Zhang, J.S. Kim, Y.-H. Jeong, G. Cao, Low-temperaturesolution growth of ZnO nanotube arrays, Beilstein Journal of Nanotechnology,2010,1:128-134.
    [228]G. Kenanakis, D. Vernardou, E. Koudoumas, N. Katsarakis, Growth of c-axisoriented ZnO nanowires from aqueous solution: The decisive role of a seedlayer for controlling the wires' diameter, Journal of Crystal Growth,2009,311(23-24):4799-4804.
    [229]L.L. Yang, Q.X. Zhao, M. Willander, J.H. Yang, Effective way to control thesize of well-aligned ZnO nanorod arrays with two-step chemical bathdeposition, Journal of Crystal Growth,2009,311(4):1046-1050.
    [230]K. Govender, D.S. Boyle, P.B. Kenway, P. O'Brien, Understanding the factorsthat govern the deposition and morphology of thin films of ZnO from aqueoussolution, Journal of Materials Chemistry,2004,14(16):2575-2591.
    [231]K.M. McPeak, T.P. Le, N.G. Britton, Z.S. Nickolov, Y.A. Elabd, J.B. Baxter,Chemical Bath Deposition of ZnO Nanowires at Near-Neutral pH Conditionswithout Hexamethylenetetramine (HMTA): Understanding the Role of HMTAin ZnO Nanowire Growth, Langmuir,2011,27(7):3672-3677.
    [232]D. Chu, T. Hamada, K. Kato, Y. Masuda, Growth and electrical properties ofZnO films prepared by chemical bath deposition method, physica status solidiA,2009,206(4):718-723.
    [233]D.C. Olson, Y.-J. Lee, M.S. White, N. Kopidakis, S.E. Shaheen, D.S. Ginley,J.A. Voigt, J.W.P. Hsu, Effect of Polymer Processing on the Performance ofPoly(3-hexylthiophene)/ZnO Nanorod Photovoltaic Devices, The Journal ofPhysical Chemistry C,2007,111(44):16640-16645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700