紫外线致皮肤成纤维细胞和角质形成细胞中的自噬研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探讨中波紫外线(ultraviolet B, UVB)照射人皮肤成纤维细胞诱导的自噬对细胞凋亡活性的影响。通过单丹磺酰戊二胺(Monodansylcadaverine, MDC)染色和免疫荧光标记微管相关蛋白1轻链3(light chain3, LC3)的方法,确定不同剂量3-甲基腺嘌呤(3-methyladenine3-MA)对自噬的抑制作用。UVB照射后立即使用0.5mmol/L3-MA孵育细胞4h作为自噬的抑制方法。Hoechst和碘化丙啶(propidium iodide, PI)染色结合Annexin V-异硫氰酸荧光素(fluorescein isothiocyanate, FITC)和PI标记细胞后流式细胞术作为凋亡的分析方法。0.5mmol/L3-MA能明显抑制人皮肤成纤维细胞自噬活性(饥饿诱导组自噬细胞阳性百分数为63.037%±5.876%,3-MA孵育后下降至34.425%±5.183%)。0.5mmol/L3-MA对细胞活性影响最小。50mJ/cm2照射剂量下3-MA孵育较未孵育细胞强Hoechst和强PI双染细胞增多;100mJ/cm2照射剂量下3-MA孵育较未孵育细胞强Hoechst和强PI双染细胞减少。在50mJ/cm2照射剂量下,抑制自噬的细胞的中晚期凋亡细胞百分比(10.933±0.839)较未抑制细胞(7.267±0.473)上升,两者之间差异具有统计学意义(t=5.197,P=<0.05);而在100mJ/cm2照射剂量下,抑制自噬的细胞的中晚期凋亡水平(7.100±0.781)较未抑制细胞(10.133±0.681)下降,两者之间差异具有统计学意义(t=6.286, P<0.05)。UVB诱导的人皮肤成纤维细胞自噬在50mJ/cm2照射剂量下通过抑制凋亡对细胞起到保护作用,而在100mJ/cm2照射剂量下发生的较高水平白噬可能诱导了自噬性细胞死亡。
     观察慢性紫外线损伤对小鼠皮肤角质形成细胞凋亡和自噬交互调控元件Bax、 Bcl-2、Beclin-1及半胱氨酸天冬氨酸蛋白酶-3(Caspase-3)的调控效应。采用模拟日光的UV对实验小鼠进行照射,设立对照。照射从最小红斑量(UVB0.07J/cm2,长波紫外线(ultraviolet A, UVA)0.7J/cm2)开始,1次/d,每周增加0.5个红斑量,每周照射5天,共9周,UVB总剂量达9.45J/cm2, UVA总剂量达94.5J/cm2,应用免疫组化法分别对实验前后(W0和W9) Bax、Bcl-2、Beclin-1和Caspase-3的表达进行检测,表达强度以免疫反应强度分布指数(immunoreactivity intensity distribution index, IRIDI)表示。在损伤组,照光(?)(?) Beclin-1、Caspase-3、Bax、Bcl-2的表达计分均值(范围)分别为0.30(0-2)、0.25(0-2)、0.35(0-2)、0.25(0-1),照光后计分分别为2.70(2-6)、3.30(2-9)、3.35(2-6)、0.25(0-1)。损伤组小鼠表皮角质形成细胞中Beclin-1、Caspase-3、Bax蛋白表达显著升高,且差异有统计学意义(P均<0.05),Bcl-2蛋白表达变化不明显,且无统计学意义(P>0.05)。损伤组W9时Beclin-1和Bax的表达明显高于Bcl-2(P均<0.05)。在同时期正常饲养小鼠Beclin-1、Caspase-3. Bax、Bcl-2的均值(范围)在W0为0.20(0-1)、0.20(0-1)、0.30(0-1)、0.20(0-1),W9则为0.30(0-1)、0.20(0-1)、0.30(0-1)、0.10(0-1)。分析发现Beclin-1、Caspase-3、Bax、Bcl-2表达无统计学意义上的表达差异(P>0.05)。慢性UV损伤对小鼠皮肤角质形成细胞中凋亡和自噬的交互调控元件Beclin-1和Bax具有上调表达的作用,而对另一元件Bcl-2表达调控效应不显著。这一系列的调控效应可能参与了凋亡和自噬在慢性UV皮肤损伤中的交互调控。
     研究UVB照射对体外培养的HaCaT细胞自噬的调控效应。使用由低到高三种剂量照射HaCaT细胞后继续培养4小时,使用透射电镜进行细胞超微结构分析,并使用蛋白免疫印迹方法进行LC3-Ⅰ→Ⅱ型转换分析。结果发现小剂量和中等剂量的UVB照射后,细胞内可出现自噬体,并且在小剂量照射后更为多见;然而,当接受了高剂量照射后,细胞中不能发现此类的结构。小剂量UVB照射后,LC3-Ⅱ的蛋白表达量升高;中等剂量UVB照射对LC3-Ⅱ的蛋白表达量没有产生显著的变化;而高剂量的UVB照射产生了对LC3-Ⅱ的蛋白表达显著下调。研究结果提示小剂量UVB单次照射对角质形成细胞具有诱导自噬的效应,而高剂量的UVB单次照射产生了抑制自噬的效应。
For investigating the interaction between apoptosis and autophagy which induced by different doses of ultraviolet B radiation in human skin fibroblast, the first part of this study has been designed. Inhibition effect by3-MA incubation was confirmed by MDC staining and LC3expression calibrated by immunofluorescence. The method of inhibition of autophagy was used by incubation4h with0.5mmol/L3-MA after different doses of UVB radiation immediately. The qualitative and quantitive methods of apoptosis assay were performed by fluorescence staining with Hoechst accompanied with PI and flow cytometry stained with Annexin V-FITC and PI. Fibroblast incubated with0.5mmol/L3-MA presented obvious inhibition of autophagy and low impairment on cell viability. The percentage of autophagic cell descended from63.037±5.876, which were induced by starvation, to34.425±5.183. The intensity of fluorescence which reflected expression of LC3increased gradually followed by increase of the UVB radiation doses, however the increase of intensity of fluorescence attenuated after inhibition autophagy by3-MA. Under radiation of50mJ/cm2dose, inhibition of fibroblast autophagy resulted in elevation of intermedial and non-viable apoptosis. Hoechst and PI staining showed increase of cells which showed both strong blue and red fluorescence. Flow cytometry assay revealed that increase of cells which stained with Annexin V-FITC and PI, from7.267±0.473to10.933±0.839. The difference has statistical significance (t=-5.197, P=0.035<0.05). On the contrary, under radiation of100mJ/cm2dose, inhibition of autophagy resulted in descent of intermedial and non-viable apoptosis. Hoechst and PI assay showed that decrease of cells which showed both strong blue and red fluorescence. Flow cytometry assay revealed that decrease of cells which stained with Annexin V-FITC and PI, from10.133±0.681to7.100±0.781. The difference has statistical significance (t=6.286, P=0.024<0.05). Fibroblast autophagy induced by50mJ/cm2UVB radiation has the pro-survival effect by inhibition of apoptosis.100mJ/cm2UVB radiation on fibroblast maybe induce autophagic cell death.
     The aim of the second part of this study is to investigate the expression of Bax、Bcl-2、 Caspase-3and Beclin-1, which were regulatory elements involved in cross-talk between apoptosis and autophagy, within keratinocytes of mice skin exposed chronic ultraviolet irradiation. We have constituted the model of chronic UV-damaged mice, which were irradiated UVA plus UVB simulated solar light. The irradiation began form the MED
     (UVB0.07J/cm2, UVA0.7J/cm2), and increased0.5MED per week. The protocol contained1irradiation per day,5irradiation per week, total9weeks, as well as UVB9.45J/cm2and UVA94.5J/cm2of total dose. The expression of Bax、Bcl-2、Caspase-3and Beclin-1was investigated in epidermal keratinocytes of two groups through immunohistochemical study and analyzed contrastively between the starting point and end point of this research. Wilcoxon signed ranks text was performed for statistics. The average value for Bax、Bcl-2、Caspase-3and Beclin-1was0.30(0-2)、0.25(0-2)、0.35(0-2)、0.25(0-1) respectively in chronic UV-damaged group before UV irradiation. The average value for Bax、Bcl-2、Caspase-3and Beclin-1was2.70(2-6)、3.30(2-9)、3.35(2-6) and0.25(0-1) respectively after UV irradiation. There was significance difference in expression of Bax、Caspase-3and Beclin-1(P<0.05), but no statistical difference in expression of Bel-2(P>0.05). The average value for Bax、Bcl-2、Caspase-3and Beclin-1was0.20(0-1)、0.20(0-1)、0.30(0-1)、0.20(0-1) respectively in control group at the beginning of study, and the average value for Bax、Bcl-2、Caspase-3and Beclin-1was0.30(0-1)、0.20(0-1)、0.30(0-1)、0.10(0-1) respectively at the end of study. There was no statistical difference in expression of Bax、Bcl-2、Caspase-3and Beclin-1(P>0.05). Chronic UV irridiation can up-regulate the expression of Beclin-1and Bax which both are involved in cross-talk between apoptosis and autophagy. It may play a role in cross-talk of apoptosis and autophagy in chronic skin photodamage.
     The third part of this study was designed to investigate the regulation of autophagy in human keratinocyte cell line, HaCaT suffering from UVB irradiation. At the point of fourth hour after three different doses of UVB irradiation from low to high, HaCaT cells were performed ultrastructural analysis through transmission electron microscopy and investigation of LC3-Ⅱ expression by immunoblotting. Lots of double-membrane structures, the content of which was similar to cytoplasm, were observed in the cytoplasm exposed to low dose of UVB. Degraded organelles can be found in some of these structures. The quantity of these structures in cells exposed to medium dose of UVB also can be found but not as more as that in cells exposed to low dose. However, this structure was hardly seen in cells exposed to high dose of UVB. Accordingly, expression of LC3-Ⅱ was up-regulated in HaCaT suffering from low dose of UVB irradiation, and down-regulated by high dose of UVB. These findings demonstrated that autophagy in keratinocyte was induced by low dose of UVB irradiation, but inhibited by high dose of UVB irradiation.
引文
[1]Rabinowitz JD, White E. Autophagy and metabolism. Science.2010;330(6009):134 4-1348.
    [2]Nicklin P, Bergman P, Zhang B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell.2009; 136(3):521-534.
    [3]Wu YT, Tan HL, Huang Q, et al. Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy. 2009;5(6):824-834.
    [4]Corcelle E, Djerbi N, Mari M, et al. Control of the autophagy maturation step by the MAPK ERK and p38:lessons from environmental carcinogens. Autophagy. 2007;3(1):57-59.
    [5]Herrero-Martin G, H(?)yer-Hansen M, Garcia-Garcia C, et al. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 2009;28(6):677-685.
    [6]Tasdemir E, Maiuri MC, Galluzzi L, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol.2008;10(6):676-687.
    [7]McPhee CK, Baehrecke EH. Autophagy shows its animal side. Cell. 2010;141(6):922-924.
    [8]Matsunaga K, Saitoh T, Tabata K, et al. Two Beclin 1-binding proteins, Atgl4L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol. 2009;11(4):385-396.
    [9]Hanada T, Noda NN, Satomi Y, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem.2007;282(52):37298-37302.
    [10]Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282(33):24131-24145.
    [11]Kang C, Avery L. To be or not to be, the level of autophagy is the question:dual roles of autophagy in the survival response to starvation. Autophagy.2008;4(1):82-84.
    [12]Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion. Nature.2008;451(7182):1069-1075.
    [13]秦正红,乐卫东主编.自噬——生物学与疾病[M].1版.北京:科学出版社,2011:146.
    [14]Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing:crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol.2007;8(9):741-752.
    [15]Matsuda M, Hoshino T, Yamashita Y, et al. Prevention of UVB radiation-induced epidermal damage by expression of heat shock protein 70. J Biol Chem. 2010;285(8):5848-5858.
    [16]Muthusamy V, Piva TJ. The UV response of the skin:a review of the MAPK, NFkappaB and TNFalpha signal transduction pathways. Arch Dermatol Res. 2010;302(1):5-17.
    [17]Vostd lova J, Zdarilova A, Svobodova A. Prunella vulgaris extract and rosmarinic acid prevent UVB-induced DNA damage and oxidative stress in HaCaT keratinocytes. Arch Dermatol Res.2010;302(3):171-81.
    [18]Tsaalbi-Shtylik A, Verspuy JW, Jansen JG, Error-prone trans lesion replication of damaged DNA suppresses skin carcinogenesis by controlling inflammatory hyperplasia. Proc Natl Acad Sci U S A.2009 Dec 22; 106(51):21836-41.
    [19]Clingen PH, Berneburg M, Petit-Frere C, Contrasting effects of an ultraviolet B and an ultraviolet A tanning lamp on interleukin-6, tumour necrosis factor-alpha and intercellular adhesion molecule-1 expression. Br J Dermatol.2001;145(1):54-62.
    [20]Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, et al. PARP-1 is involved in autophagy induced by DNA damage. Autophagy.2009;5(1):61-74.
    [21]Huang Q, Shen HM. To die or to live:the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy.2009;5(2):273-276.
    [22]Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007;26(7):1749-1760.
    [23]Chen Y, Gibson SB. Is mitochondrial generation of reactive oxygen species a trigger for autophagy? Autophagy.2008;4(2):246-248.
    [24]张青松,鞠梅,陈崑等.培养的人皮肤成纤维细胞光老化模型中自噬水平的研究.中华皮肤科杂志2010;43(08):572-574.
    [25]张青松,顾恒.UVB对人皮肤成纤维细胞自噬影响的初步研究.中国麻风皮肤病杂志,2008,24(7):511-513.
    [26]张青松,鞠梅,陈崑等.西罗莫司和3-甲基腺嘌呤对人皮肤成纤维细胞自噬水平及分泌基质金属蛋白酶1、3影响的研究.中华皮肤科杂志,2011;44(12):867-870.
    [1]Levine B, Klionsky DJ. Development by self-digestion:molecular mechanisms and biological functions of autophagy. Dev Cell.2004;6(4):463-77.
    [2]Debnath J, Baehrecke EH, Kroemer G. Does autophagy contribute to cell death? Autophagy.2005;1(2):66-74.
    [3]Levine B, Yuan J. Autophagy in cell death:an innocent convict? J Clin Invest. 2005;115(10):2679-88.
    [4]张青松,顾恒.UVB对人皮肤成纤维细胞自噬影响的初步研究.中国麻风皮肤病杂志,2008,24(7):511-513
    [5]张青松,鞠梅,陈昆等.培养的人皮肤成纤维细胞光老化模型中自噬水平的研究.中华皮肤科杂志2010;43(08):572-574.
    [6]Eisenberg-Lerner A, Bialik S, Simon HU, et al. Life and death partners:apoptosis, autophagy and the cross-talk between them. Cell Death Differ.2009;16(7):966-75.
    [7]Wu YT, Tan HL, Shui G, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem.2010;285(14):10850-61.
    [8]Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330(6009):1344-1348.
    [9]Kondo Y, Kanzawa T, Sawaya R, The role of autophagy in cancer development and response to therapy. Nat Rev Cancer.2005 Sep;5(9):726-34. Levine B. Unraveling the role of autophagy in cancer. Autophagy.2006;2(2):65-6.
    [10]Kang C, Avery L. To be or not to be, the level of autophagy is the question:dual roles of autophagy in the survival response to starvation. Autophagy.2008;4(1):82-4.
    [11]Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion. Nature.2008;451(7182):1069-75.
    [12]Gosselin K, Deruy E, Martien S, et al. Senescent keratinocytes die by autophagic programmed cell death. Am J Pathol.2009;174(2):423-35.
    [13]Puissant A, Robert G, Fenouille N, et al. Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res.2010;70(3):1042-52.
    [14]Klionsky DJ, Abeliovich H, Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 2008;4(2):151-75.
    [15]Huang WP, Scott SV, Kim J, et al. The itinerary of a vesicle component, Aut7p/Cnt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem.2000;275(8):5845-51.
    [16]Seglen PO, Gordon PB.3-Methyladenine:specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA.1982;79(6):1889-92.
    [17]Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27-42.
    [18]Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing:crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol.2007;8(9):741-52.
    [1]Sumiyoshi M, Hayashi T. Effects of the nonsugar fraction of brown sugar on chronic ultraviolet B irradiation-induced photoaging in melanin-possessing hairless mice. J Nat Med,2009,63(2):130-136.
    [2]郭鲁义,李春雨,张宁等.实用光老化动物模型建立方法的探讨.中国美容医学,2008,17(2):235-237.
    [3]廖朝晖,鲁建云.结缔组织生长因子mRNA在硬皮病模型小鼠真皮中的表达.中华皮肤科杂志.2006,39(1):22-25.
    [4]康玉英,鞠梅,顾恒等.基质金属蛋白酶在曝光部位及非曝光部位皮肤中的表达.中华皮肤科杂志,2009,42(4):244-247.
    [5]顾恒,常宝珠,陈崑主编.光皮肤病学.1版.北京:人民军医出版社,2009.
    [6]陈旭,顾恒.皮肤光老化模型构建的评价.中华皮肤科杂志.2010,43(10):79-81.
    [7]Kang C, Avery L. To be or not to be, the level of autophagy is the question:dual roles of autophagy in the survival response to starvation. Autophagy.2008;4(1):82-84.
    [8]Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion. Nature.2008;451(7182):1069-1075.
    [9]秦正红,乐卫东主编.自噬——生物学与疾病.1版.北京:科学出版社,2011:146.
    [10]Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing:crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol.2007;8(9):741-752.
    [11]Levine B, Sinha S, Kroemer G. Bcl-2 family members:dual regulators of apoptosis and autophagy. Autophagy.2008;4(5):600-606.
    [12]Sohn EJ, Li H, Reidy K, et al. EWS/FLI1 oncogene activates caspase 3 transcription and triggers apoptosis in vivo. Cancer Res.2010;70(3):1154-1163.
    [13]Yue Z, Jin S, Yang C, et al. Beclin 1, an autophagy gene essential for early embryonic development,is a hap lo insufficient tumor suppressor. Proc Natl Acad Sci U S A.2003;100(25):15077-15082.
    [14]Eum KH, Lee M. Crosstalk between autophagy and apoptosis in the regulation of paclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts. Mol Cell Biochem. 2011;348(1-2):61-68.
    [15]Lalier L, Cartron PF. Bax activation and mitochondrial insertion during apoptosis. Apoptosis,2007;12(5):887-896.
    [16]Maiuri MC, Criollo A, Kroemer G.Crosstalk between apoptosis and autophagy within the Beclin 1 interactome. EMBO J.2010;29(3):515-516.
    [17]Oberstein A, Jeffrey PD. Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem.2007;282(17):13123-13132.
    [18]Maiuri MC, Le Toumelin G, et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1.EMBO J.2007;26(10):2527-2539.
    [19]Moretti L, Attia A, Kim KW, et al. Crosstalk between Bak/Bax and mTOR signaling regulates radiation-induced autophagy. Autophagy.2007;3(2):142-4.
    [1]Rabinowitz JD, White E. Autophagy and metabolism. Science.2010;330(6009):13 44-1348.
    [2]Nicklin P, Bergman P, Zhang B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell.2009;136(3):521-534.
    [3]Wu YT, Tan HL, Huang Q, et al. Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy. 2009;5(6):824-834.
    [4]Wang RC, Levine B. Calcipotriol induces autophagy in HeLa cells and keratinocytes. J Invest Dermatol.2011 Apr;131(4):990-3.
    [5]Tong X, Smith KA, Pelling JC. Apigenin, a chemopreventive bioflavonoid, induces AMP-activated protein kinase activation in human keratinocytes. Mol Carcinog.2012 Mar;51(3):268-79.
    [6]Pursiheimo JP, Rantanen K, Heikkinen PT, et al. Hypoxia-activated autophagy accelerates degradation of SQSTM1/p62. Oncogene.2009 Jan 22;28(3):334-44.
    [7]Aymard E, Barruche V, Naves T, et al. Autophagy in human keratinocytes:an early step of the differentiation? Exp Dermatol.2011 Mar;20(3):263-8.
    [8]Lee HM, Shin DM, Yuk JM, et al. Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1. J Immunol.2011 Jan 15;186(2):1248-58.
    [9]Mann SS, Hammarback JA. Molecular characterization of light chain 3. A microtubule binding subunit of MAP1 A and MAP1B. J Biol Chem.1994 Apr 15;269(15):11492-7.
    [10]Lang T, Schaeffeler E, Bernreuther D, et al. Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. EMBO J.1998 Jul 1;17(13):3597-607.
    [11]Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J.2000 Nov 1;19(21):5720-8.
    [12]He H, Dang Y, Dai F, et al. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem.2003 Aug 1;278(31):29278-87.
    [13]Tanida I, Ueno T, Kominami E. Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Metl21 to expose Gly120 for lipidation and targeting to autophagosomal membranes. J Biol Chem.2004 Nov 12;279(46):47704-10.
    [14]Klionsky DJ, Abeliovich H, Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy.2008 Feb;4(2):151-75.
    [1]Amano S. Possible involvement of basement membrane damage in skin photoaging. J Investig Dermatol Symp Proc.2009;14(1):2-7.
    [2]Montagner S, Costa A. Molecular basis of photoaging. An Bras Dermatol. 2009;84(3):263-269.
    [3]Zaid MA, Afaq F, Syed DN,et al. Inhibition of UVB-mediated oxidative stress and markers of photoaging in immortalized HaCaT keratinocytes by pomegranate polyphenol extract POMx. Photochem Photobiol.2007;83(4):882-888.
    [4]Chang KC, Shen Q, Oh IG,et al. Liver X receptor is a therapeutic target for photoaging and chronological skin aging. Mol Endocrinol.2008;22(11):2407-2419.
    [5]Tanaka K, Hasegawa J, Asamitsu K,et al. Prevention of the ultraviolet B-mcdiated skin photoaging by a nuclear factor kappaB inhibitor, parthenolide. J Pharmacol Exp Ther.2005;315(2):624-630.
    [6]Bernerd F, Asselineau D. An organotypic model of skin to study photodamage and photoprotection in vitro. J Am Acad Dermatol.2008;58(5 Suppl2):S155-159.
    [7]Codriansky KA, Quintanilla-Dieck MJ, Gan S,et al. Intracellular degradation of elastin by cathepsin K in skin fibroblasts—a possible role in photoaging. Photochem Photobiol.2009;85(6):1356-1363.
    [8]Zhou BR, Lin BJ, Jin SL, Mitigation of acute ultraviolet B radiation-mediated damages by baicalin in mouse skin. Photodermatol Photoimmunol Photomed. 2009;25(5):250-258.
    [9]Sumiyoshi M, Hayashi T, Kimura Y. Effects of the nonsugar fraction of brown sugar on chronic ultraviolet B irradiation-induced photoaging in melanin-possessing hairless mice. J Nat Med.2009;63(2):130-136.
    [10]Zhuang Y, Hou H, Zhao X,et al. Effects of collagen and collagen hydrolysate from jellyfish (Rhopilema esculentum) on mice skin photoaging induced by UV irradiation. J Food Sci.2009;74(6):H183-188.
    [11]Kim EJ, Jin XJ, Kim YK, et al. UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skin photoaging. J Dermatol Sci.2010;57(1):19-26.
    [12]Li YH, Wu Y, Wei HC,et al. Protective effects of green tea extracts on photoaging and photommunosuppression. Skin Res Technol.2009;15(3):338-345.
    [13]Cho S, Won CH, Lee DH,et al. Red ginseng root extract mixed with Torilus fructus and Corni fructus improves facial wrinkles and increases type I procollagen synthesis in human skin:a randomized, double-blind, placebo-controlled study. J Med Food.2009;12(6):1252-1259.
    [14]Pedretti A, Capezzera R, Zane C,et al. Effects of Topical Boswellic Acid on Photo and Age-Damaged Skin:Clinical, Biophysical, and Echographic Evaluations in a Double-Blind, Randomized, Split-Face Study. Planta Med.2009;16.[Epub ahead of print]
    [15]Hachiya A, Sriwiriyanont P, Fujimura T, et al. Mechanistic effects of long-term ultraviolet B irradiation induces epidermal and dermal changes in human skin xenografts. Am J Pathol.2009;174(2):401-413.
    [16]Laga AC, Murphy GF. The Translational Basis of Human Cutaneous Photoaging On Models, Methods, and Meaning. Am J Pathol.2009; 174(2):357-360.
    [17]Schroeder P, Haendeler J, Krutmann J. The role of near infrared radiation in photoaging of the skin. Exp Gerontol.2008;43(7):629-632.
    [18]Calles C, Schneider M, Macaluso F, et al. Infrared A Radiation Influences the Skin Fibroblast Transcriptome:Mechanisms and Consequences. J Invest Dermatol.2010;4. [Epub ahead of print]
    [19]Quan T, Qin Z, Xia W,et al. Matrix-degrading metalloproteinases in photoaging. J Investig Dermatol Symp Proc.2009;14(1):20-24.
    [20]Uhm YK, Jung KH, Bu HJ, et al. Effects of Machilus thunbergii Sieb et Zucc on UV-induced photoaging in hairless mice. Phytother Res.2010;2. [Epub ahead of print]
    [21]Tucker-Samaras S, Zedayko T, Cole C,et al. A stabilized 0.1% retinol facial moisturizer improves the appearance of photodamaged skin in an eight-week, double-blind, vehicle-controlled study. J Drugs Dermatol.2009;8(10):932-936.
    [22]Ohshima H, Oyobikawa M, Tada A,et al. Melanin and facial skin fluorescence as markers of yellowish discoloration with aging. Skin Res Technol.2009;15(4):496-502.
    [1]Sreevidya CS, Khaskhely NM, Fukunaga A,et al. Inhibition of photocarcinogenesis by platelet-activating factor or serotonin receptor antagonists. Cancer Res. 2008;68(10):3978-84.
    [2]Bos JD. Skin Immune System (SIS).3rd ed. Boca Raton, Florida:CRC Press, 2004.
    [3]Yoshizumi M, Nakamura T, Kato M, et al. Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT. Cell Biol Int. 2008;32(11):1405-1411.
    [4]Hunt DW, Boivin WA, Fairley LA, et al. Ultraviolet B light stimulates interleukin-20 expression by human epithelial keratinocytes. Photochem Photobiol. 2006;82(5):1292-1300.
    [5]An L, Dong GQ, Gao Q, et al. Effects of UVA on TNF-alpha, IL-1beta, and IL-10 expression levels in human keratinocytes and intervention studies with an antioxidant and a JNK inhibitor. Photodermatol Photoimmunol Photomed. 2010;26(1):28-35.
    [6]Atabai K, Jame S, Azhar N, et al. Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages. J Clin Invest.2009;119(12):3713-3722.
    [7]Watanabe T, Totsuka R, Miyatani S, et al. Production of the long and short forms of MFG-E8 by epidermal keratinocytes. Cell Tissue Res. 2005;321(2):185-193.
    [8]Hernandez-Pigeon H, Jean C, Charruyer A, et al. UVA induces granzyme B in human keratinocytes through MIF:implication in extracellular matrix remodeling. J Biol Chem.2007;282(11):8157-8164.
    [9]Klechevsky E, Morita R, Liu M, et al. Functional specializations of human epidermal Langerhans cells and CD 14+ dermal dendritic cells. Immunity. 2008;29(3):497-510.
    [10]McGee HM, Dharmadasa T, Woods GM. Solar simulated ultraviolet radiation damages murine neonatal skin and alters Langerhans cell development, but does not induce inflammation. Photochem Photobiol Sci.2009;8(6):881-886.
    [11]Woods GM, Malley RC, Muller HK. The skin immune system and the challenge of tumour immunosurveillance. Eur J Dermatol.2005;15(2):63-69.
    [12]Beissert S, Ruhlemann D, Mohammad T, et al. IL-12 prevents the inhibitory effects of cis-urocanic acid on tumor antigen presentation by Langerhans cells: implications for photocarcinogenesis. J Immunol.2001;167(11):6232-6238.
    [13]Biggs L, Yu C, Fedoric B, et al. Evidence that vitamin D(3) promotes mast cell-dependent reduction of chronic UVB-induced skin pathology in mice. J Exp Med.2010;207(3):455-463.
    [14]Byrne SN, Limon-Flores AY, Ullrich SE. Mast cell migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression. J Immunol.2008;180(7):4648-4655.
    [15]Girardi M, Oppenheim DE, Steele CR, et al. Regulation of cutaneous malignancy by gammadelta T cells. Science.2001;294(5542):605-609.
    [16]Guzman EA, Langowski JL, De Guzman A, et al. S179D prolactin diminishes the effects of UV light on epidermal gamma delta T cells. Mol Cell Endocrinol.2008;280(l-2):6-12.
    [17]Loser K, Beissert S. Regulation of cutaneous immunity by the environment: an important role for UV irradiation and vitamin D. Int Immunopharmacol. 2009;9(5):587-589.
    [18]Loser K, Scherer A, Krummen MB, et al. An important role of CD80/CD86-CTLA-4 signaling during photocarcinogenesis in mice. J Immunol. 2005;174(9):5298-5305.
    [19]Loser K, Apelt J, Voskort M, et al. IL-10 controls ultraviolet-induced carcinogenesis in mice. J Immunol.2007;179(1):365-371.
    [20]Nagano T, Kunisada M, Yu X, et al. Involvement of interleukin-10 promoter polymorphisms in nonmelanoma skin cancers-a case study in non-Caucasian skin cancer patients. Photochem Photobiol.2008;84(1):63-66.
    [21]Meeran SM, Punathil T, Katiyar SK. IL-12 deficiency exacerbates inflammatory responses in UV-irradiated skin and skin tumors. J Invest Dermatol. 2008 Nov;128(11):2716-2727.
    [22]Meeran SM, Katiyar N, Singh T, et al. Loss of endogenous interleukin-12 activates survival signals in ultraviolet-exposed mouse skin and skin tumors. Neoplasia.2009 Sep;11(9):846-855.
    [23]Meeran SM, Katiyar S, Elmets CA, et al. Interleukin-12 deficiency is permissive for angiogenesis in UV radiation-induced skin tumors. Cancer Res. 2007 Apr 15;67(8):3785-3793.
    [24]Wheeler DL, Li Y, Verma AK. Protein kinase C epsilon signals ultraviolet light-induced cutaneous damage and development of squamous cell carcinoma possibly through Induction of specific cytokines in a paracrine mechanism. Photochem Photobiol.2005;81(1):9-18.
    [25]Yang G, Yang X. Smad4-mediated TGF-beta signaling in tumorigenesis. Int J Biol Sci.2010 Jan 1;6(1):1-8.
    [26]Gambichler T, Skrygan M, Tomi NS, et al. Significant downregulation of transforming growth factor-beta signal transducers in human skin following ultraviolet-A1 irradiation. Br J Dermatol.2007;156(5):951-956.
    [27]Gebhardt C, Averbeck M, Viertel A, et al. Ultraviolet-B irradiation enhances melanoma cell motility via induction of autocrine interleukin 8 secretion. Exp Dermatol.2007 Aug;16(8):636-643.
    [28]Bucala R, Donnelly SC. Macrophage migration inhibitory factor:a probable link between inflammation and cancer. Immunity.2007;26(3):281-285.。
    [29]Honda A, Abe R, Yoshihisa Y, et al. Deficient deletion of apoptotic cells by macrophage migration inhibitory factor (MIF) overexpression accelerates photocarcinogenesis. Carcinogenesis.2009;30(9):1597-1605.
    [30]Martin J, Duncan FJ, Keiser T, et al. Macrophage migration inhibitory factor (MIF) plays a critical role in pathogenesis of ultraviolet-B (UVB)-induced nonmelanoma skin cancer (NMSC). FASEB J.2009 Mar;23(3):720-730.
    [31]Stapelberg MP, Williams RB, Byrne SN, et al. The alternative complement pathway seems to be a UVA sensor that leads to systemic immunosuppression. J Invest Dermatol.2009;129(11):2694-2701.
    [32]Tober KL, Thomas-Ahner JM, Kusewitt DF, et al. Effects of UVB on E prostanoid receptor expression in murine skin. J Invest Dermatol.2007 Jan;127(1):214-221.
    [33]Brouxhon S, Konger RL, VanBuskirk J, et al. Deletion of prostaglandin E2 EP2 receptor protects against ultraviolet-induced carcinogenesis, but increases tumor aggressiveness. J Invest Dermatol.2007;127(2):439-446.
    [34]Katiyar SK. UV-induced immune suppression and photocarcinogenesis: chemoprevention by dietary botanical agents. Cancer Lett.2007;255(1):1-11.
    [1]Katoh Y, Katoh M. Hedgehog target genes:mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med.2009;9(7):873-886.
    [2]Roop D, Toftgard R. Hedgehog in Wnterland. Nat Genet.2008;40(9):1040-1041.
    [3]Adolphe C, Hetherington R, Ellis T, et al. Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res.2006;66(4):2081-2088.
    [4]Youssef KK, Van Keymeulen A, Lapouge G, et al. Identification of the cell lineage at the origin of basal cell carcinoma. Nat Cell Biol.2010 Mar; 12(3):299-305.
    [5]Von Hoff DD, LoRusso PM, Rudin CM, et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med.2009;361(12):1164-1172.
    [6]Asplund A, Gry Bjorklund M, Sundquist C, et al. Expression profiling of microdissected cell populations selected from basal cells in normal epidermis and basal cell carcinoma. Br J Dermatol.2008;158(3):527-538.
    [7]Liu ZL, Li Y, Kong QY, et al. Immunohistochemical profiling of Wnt, NF-kappaB, Stat3 and Notch signaling in human epidermal tumors. J Dermatol Sci. 2008;52(2):133-136.
    [8]Stacey SN, Gudbjartsson DF, Sulem P, et al. Common variants on Ip36 and Iq42 are associated with cutaneous basal cell carcinoma but not with melanoma or pigmentation traits. Nat Genet.2008;40(11):1313-1318.
    [9]Yang, S.H. et al. Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/-catenin signaling. Nat Genet.2008;40(9):1130-1135.
    [10]Schnidar H, Eberl M, Klingler S, et al. Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res.2009;69(4):1284-1292.
    [11]Pivarcsi A, Muller A, Hippe A, et al. Tumor immune escape by the loss of homeostatic chemokine expression. Proc Natl Acad Sci U S A. 2007; 104(48):19055-19060.
    [12]Okuyama R, Tagami H, Aiba S. Notch signaling:its role in epidermal homeostasis and in the pathogenesis of skin diseases. J Dermatol Sci.2008;49(3):187-194.
    [13]Nicolas M, Wolfer A, Raj K, et al. Notchl functions as a tumor suppressor in mouse skin. Nat Genet.2003;33(3):416-421.
    [14]Gambichler T, Skrygan M, Kaczmarczyk JM, et al. Increased expression of TGF-beta/Smad proteins in basal cell carcinoma. Eur J Med Res.2007;12(10):509-514.
    [15]Eichberger T, Kaser A, Pixner C, et al. GLI2-specific transcriptional activation of the bone morphogenetic protein/activin antagonist follistatin in human epidermal cells. J Biol Chem.2008;283(18):12426-12437.
    [16]Salto-Tellez M, Peh BK, Ito K, et al. RUNX3 protein is overexpressed in human basal cell carcinomas. Oncogene.2006;25(58):7646-7649.
    [17]Wang XY, Zhang R, Lian S. Aberrant expression of Fas and FasL pro-apoptotic proteins in basal cell and squamous cell carcinomas. Clin Exp Dermatol.2010 May 20. [Epub ahead of print]
    [18]Hafner C, Landthaler M, Vogt T. Activation of the PI3K/AKT signalling pathway in non-melanoma skin cancer is not mediated by oncogenic PIK3CA and AKT1 hotspot mutations. Exp Dermatol.2010 Jun 14. [Epub ahead of print]
    [19]Yu M, Zloty D, Cowan B, et al. Superficial, nodular, and morpheiform basal-cell carcinomas exhibit distinct gene expression profiles. J Invest Dermatol. 2008;128(7):1797-1805.
    [20]Chu CY, Cha ST, Lin WC, et al. Stromal cell-derived factor-1 alpha (SDF-lalpha/CXCL12)-enhanced angiogenesis of human basal cell carcinoma cells involves ERKl/2-NF-kappaB/interleukin-6 pathway. Carcinogenesis. 2009;30(2):205-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700