新型PVDF基木塑复合材料体系界面行为及物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木塑复合材料(WPC)具有热伸缩性和吸水性小,尺寸稳定性好,耐菌噬,使用、维修简便等优点,充分体现了可再生资源有效利用,开始代替木材广泛应用于户外建筑等多个领域。目前,以聚乙烯、聚丙烯、聚氯乙烯等为基体的木塑复合材料存在抗紫外线、耐水性及阻燃性三项功能难以兼顾的技术难题。本论文提出采用聚偏氟乙烯(PVDF)作为木塑复合材料的基体树脂,通过硅烷提高PVDF和木粉的界面相容性,系统研究了复合材料界面结构、外界环境作用下界面响应行为及对力学、耐水、阻燃等物性的影响规律,揭示了力学性能增强机制、抗紫外老化及破坏机理、耐水界面结构形态和凝聚相协同阻燃机制,成功开发了集抗紫外线、耐水及阻燃于一体的高性能PVDF基木塑复合材料。主要研究工作包括:
     (1)针对PVDF基木塑复合材料界面结构及特性要求,优选出三氟丙基三甲氧基硅烷(TF3)、十七氟癸基三甲氧基硅烷(TF17)等四种木粉表面改性剂,木粉表面通过形成醚共价键Si-O-Cellulose均获得了不同程度疏水改性;含氟长链的空间位阻效应使得形成于木粉表面的Si-O-Cellulose数量减少。
     (2)系统研究了硅烷改性复合材料的界面性质及力学性能增强机制。硅烷改性优化使复合材料力学性能得到明显增强,2.0wt%TF3改性的复合材料抗弯和IZOD冲击强度分别达到53.7MPa和3.576KJ/m~2。力学性能增强机理是硅烷改性木粉表面的有机功能基团-R与PVDF之间较强的范德华力和机械咬合力,反映在复合材料的冲击断面中有木粉纤维纵向截断,且断面层次分明。
     (3)首次考察了硅烷改性复合材料在紫外线辐照条件下的界面和聚集态结构特性及抗老化机理。经紫外线辐照后,复合材料的界面相及基体连续相发生交联和断链,影响了不同硅烷改性界面相的分子间作用力,聚合物链段运动能力及复合材料的力学性能得到相应改变;KH-550、TF3、TF17改性复合材料界面相的固态无定形区域形成新结晶。
     (4)研究了硅烷改性木塑复合材料界面结构对水汽传输特性的影响。研究表明,硅烷改性木粉与基体的界面结合较好,界面层间隙小,材料吸水率低。紫外线辐照后复合材料吸水总量因木粉纤维上光降解产生的羟基数量增加而升高;界面层与木粉内产生的多通道孔隙增加了其浸渍初始阶段的吸水速率。
     (5)研究了硅烷协同增强复合材料的阻燃特性及机制。硅烷可以协同增强PVDF基木塑复合材料的阻燃性能,材料的燃烧热分解产物H_2O、CO_2等形成气相阻隔屏障,阻碍氧气和热量的渗透;A-151、TF3和TF17协效催化木粉纤维在燃烧表面形成大量堆叠炭粒,有效阻隔火焰及热量的传播。2.0wt%TF3改性的PVDF复合材料LOI为38.7%,0.8mm试样可以达到UL94-VO燃烧等级。
Wood plastic composites(WPC) are extensively applied to several realm instead of timber, which embodied the valid application of rebirth resources. Comparing with timber, wood plastic composites have less hot flexibility and water absorbability, excellent size stability, anti-bacteria corrosion, convenient usage and maintainability. At present, WPC are mainly composed of wood flour and thermoplastic including polypropylene, polyethylene and poly(vinyl chloride). There are some technique difficulties for these WPC that stil could not generally present the high-durability of ultraviolet ray, the high efficiency of flame retardance and water resistance. Therefore, in this research, polyvinylidene fluoride (PVDF) was chosen to manufactured the WPC, and a technique was put forward. To improve the compatibility of wood flour and PVDF, the surface modification of wood flour was carried out using four different silane. The interface structure of composites, interface response behavior under surroundings action outside which affected the mechnical properties, water resistance and flame retardance were studied systematically. The mechanism of reinforced mechnical properties, high-durability of ultraviolet ray, water resistance and condensed phase synergistic flame retardance were concluded. Finally, PVDF/wood flour composites presenting high properties composed of anti-ultraviolet, water resistance and flame retardance was invented successfully. The main researches are summarized below:
     (1) To aim at the interface structure and characteristic of PVDF/wood flour composites, the surface modification of wood flour was carried out using vinyltriethoxysilane (A-151), gamma-aminopropyltriethoxysilane (KH-550), Trifluoropropyl-trimethoxysilane (TF3) and (Heptadecafluoro-1,1,2,2- tetradecyl) trimethoxysilane (TF17). The results showed that the wood flour surface acquired hydrophobic modification with different degree by forming Si-O-Cellulose on wood flour surface. Because of the steric hindrance of fluorinated long-chain, the sum of Si-O-Cellulose covalent bonding on the wood flour surface decreased.
     (2) The effects of interface characteristic on the reinforced mechanical properties of composites were investigated systematically. The results showed that the mechanical of composites were reinforced while the wood flour being modified by appropriate silane. When the concentration of TF3 was 2.0 wt% with respect to the wood flour content, flextual and IZOD impact strength increased to 53.7 MPa and 3.576 KJ/m~2 respectively. The mechanism of reinforced properties is high van der waals force between organic functional group on wood flour surface and PVDF, and mechanical combinative force. The analysis of interface between wood and PVDF indicated that the fracture surface of reinforced composites presented lengthways-truncation of wood flour. The clear fracture surface were observed.
     (3) The interface, aggregate structure and anti-aging mechnism of PVDF/wood flour composites exposure to ultraviolet radiation were investigated for the first time. The analysis indicated that there were crosslinking and chain scission at the interface and continuous phase of composites while exposure to ultraviolet radiation. Van der waals force at the interface was affected. The movement ability of polymer chains and mechnical properties of composites were changed accordingly, KH-550、TF3 and TF17 facilitated crystallization in solid amorphous phase of composites interface.
     (4) The effects of silane on water transmission of composites were investigated. The results showed that interface between silane-modified wood flour and polymer were improved, interface gap shorten and water absorption of composites decreased. Total water absorption of composites exposure to ultraviolet increased, indicating that ultraviolet radiation degradation initiated the increasing amounts of hydroxy group on wood flour surface; multiple hole gererated at the interface and the inside of wood floor cellulose increased the initial water absorption of composites.
     (5) Synergistic flame-retarded effects between silane and PVDF/wood flour composites were studied. The study showed that synergistic flame-retarded effects were enhanced by silane. H_2O, CO_2 etc generated from materials pyrolytic decomposition form the gas obstruction, which prohibite penetration of oxygen and heat; Wood flour modified by A-151, TF3 and TF17 facilitate the formation of combustion char particles, which effectively obstruct the dispersion of flame and heat. The LOI of PVDF/wood flour composites treated by 2.0 wt%TF3 was 38.7%, 0.8mm sample could be passed by UL94-V0 flame-retarded rating.
引文
[1]Markarian J.Outdoor living space drives growth in wood-plastic composites[J].Plastics,Additives and Compounding,2008,10(4):20-25
    [2]Pages P.,Carrasco F.,Saurina J.,et al.FTIR and DSC study of HDPE structural changes and mechanical properties variation when exposed to weathering aging during Canadian winter[J].Journal of Applied Polymer Science,1996,60(2):153-159
    [3]Selden R.,Nystrom B.,Langstrom R.UV aging of poly(propylene)/woodefiber composites[J].Polymer Composites,2004,25(5):543-553
    [4]Colom X.,Canavate J.,Pages E,et al.Changes in crystallinity of the HDPE matrix in composites with cellulosic fiber using DSC and FTIR[J].Journal of Reinforced Plastics and Composites,2000,19(10):818-830
    [5]Lundin T.,Cramer S.M.,Falk R.H.,et al.Accelerated Weathering of Natural Fiber-Filled Polyethylene Composites[J].Journal of Materials in Civil Engineering,2004,16(6):547-555
    [6]Stark N.M.,Matuana L.M.Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy[J].Polymer Degradation and Stability,2004,86(1):1-9
    [7]Pucciariello R.,Villani V.,Bonini C.,et al.Physical properties of straw lignin-based polymer blends[J].Polymer,2004,45(12):4159-69
    [8]Geng Y.,Li K.,Simonsen J.Further investigation of polyaminoamide-epichlorohydrin/stearic anhydride compatibilizer system for wood-polyethylene composites[J],Journal of Applied Polymer Science,2005,99(3):712-718
    [9]Zhang C.,Li K.C.,Simonsen J.Terminally functionalized polyethylenes as compatibilizers for wood-polyethylene composites[J].Polymer Engineering and Science,2005,46(1):108-113
    [10]Cui Y.H.,Lee S.,Tao J.Effects of alkaline and silane treatments on the water-resistance properties of wood-fiber-reinforced recycled plastic composites[J].Journal of Vinyl and Additive Technology,2008,14(4):211-220
    [11]许民,高延明,王克奇.改性剂对木塑复合材料力学性能影响的研究[J].林业科技, 2006,31(3):32-34
    [12]Koztowski R.,Wladyka-Przybylak M.Flammability and fire resistance of composites reinforced by natural fibers[J].Polymers for Advanced Technologies,2008,19(6):446-453
    [13]Velasco J.I.,Morhain C.,Martinez A.B.,et al.The effect of filler type,morphology and coating on the anisotropy and microstructure heterogeneity of injection-moulded discs of polypropylene filled with aluminium and magnesium hydroxides.Part 2.Thermal and dynamic mechanical properties[J].Polymer,2002,43(25):6813-6819
    [14]Titelman G.I.,Gonen Y.,Keidar Y.,et al.Discolouration of polypropylene-based compounds containing magnesium hydroxide[J].Polymer Degradation and Stability,2002,77(2):345-352
    [15]Li B.,He J.M.Investigation of mechanical property,flame retardancy and thermal degradation of LLDPE-wood-fibre composites[J].Polymer Degradation and Stability,2004,83(2):241-246
    [16]赵义平,刘敏江,张环.木粉填充LDPE回收料的研究[J].塑料加工应用,2001,23(4):13-15
    [17]王清文,王伟宏.木塑复合材料与制品[M].北京:化学工业出版社,2007
    [18]Oksman K.,Clemons C.Mechnical properties and morphology of impact modified polypropylene-wood flour composites[J].Journal of Applied Polymer Science,1998,67(9):1503-1513
    [19]Sain M.,Suhara P.,Law S.,et al.Interface modification and mechanical properties of natural fiber- polyolefin composite products[J].Journal of Reinforced Plastics and Composites,2005,24(2):121-130.
    [20]Oksman K.,Lindberg H.,Holmgren A.The nature and location of SEBS-MA compatibilizer in polyethylene-wood flour composites[J].Journal of Applied Polymer Science,1998,69(1):201-209
    [21]雷文,韩阳,雷文广等.聚丙烯/木粉复合材料的加工成型及其力学性能研究[J].塑料工业,2007,35(6):192-195
    [22]党文杰,宋永明,王清文等.木纤维/聚丙烯复合材料界面相容性及增韧改性的研究[J].北京林业大学学报,2007,29(2):133-137
    [23]Oksman K.,Lindberg H.Influence of thermoplastic elastomers on adhesion in polyethylene -wood flour composites[J].Journal of Applied Polymer Science,1998,68(11):1845-1855
    [24]Li Q.X.,Matuana L.M.Effectiveness of maleated and acrylic acid- functionalized polyolefin coupling agents for HDPE-wood-flour composites[J].Journal of Thermoplastic Composite Materials,2003,16(6):551-564
    [25]宋国君,王海龙,王立等.HDPE-g-MAH增容HDPE/木粉复合材料的制备及加工设备的研究[J].塑料,2006,35(6):46-49
    [26]吴远楠,武军.不同增容剂对HDPE基木塑复合材料力学性能的影响[J].包装工程,2006,27(6):85-87
    [27]许民,谭海彦,姜晓冰等.偶联剂对木塑复合材料性能的影响[J]_林产工业,2006,33(4):30-32
    [28]许民,朱毅,姜晓冰.聚丙烯比例对木塑复合材料性能的影响[J].林业机械与木工设备,2006,34(12):14-16
    [29]Marcovicj N.E.,Marcelo A.V.Thermal and mechanical characterization of linear low density polyethylene/wood flour composites[J].Journal of Applied Polymer Science,2003,90(10):2775-2784
    [30]Hristov V.N.,Vasileva S.T.,Krumova M.,et al.Deformation mechanisms and mechanical properties of modified polypropylene/wood fiber composites[J].Polymer Composites,2004,25(5):521-526
    [31]陈广汉,陈福林,雷彩红等.POE-g-MAH在木粉/PVC复合材料中的应用研究[J].塑料,2007,36(1):43-46
    [32]Sombatsompop N.,Chaochanchaikul K.Average mixing torque,tensile and impact properties,and thermal stability of poly(vinyl chloride)/sawdust composites with different silane coupling agents[J].Journal of Applied Polymer Science,2005,96(1):213-221
    [33]Chotirat L.,Chaochanchaikul K.,Sombatsompop N.On adhesion mechanisms and interfacial strength in acrylonitrile-butadiene-styrene/wood sawdust composites[J].International Journal of Adhesion & Adhesives,2007,27(8):669-678
    [34]Abdelmouleh M.,Boufi S.,Belgacem M.N.,et al.Short natural-fibre reinforced polyethylene and natural rubber composites:Effect of silane coupling agents and fibres loading[J].Composites Science and Technology,2007,67(7-8):1627-1639
    [35]Pothan L.A.,Thomas S.Polarity parameters and dynamic mechanical behaviour of chemically modified banana fiber reinforced polyester composites[J].Composites Science and Technology, 2003,63(9): 1231-1240
    
    [36] Pickeringa K.L., Abdallaa A., Jia C., et al. The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites[J]. Composites: Part A: Applied Science and Manufacturing, 2003,34(10): 915-926
    
    [37] Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., et al. Chemical modification of henequen fibers with an organosilane coupling agent[J]. Composites Part B: Engineering, 1999,30(3): 321-331
    
    [38] Nachtigall S.M.B., Stedilef C, Felix A.H.O., et al. Polypropylene functionalization with vinyltriethoxysilane[J]. Journal of Applied Polymer Science, 1999,72(10): 1313-1319
    
    [39] Bengtsson M., Oksman K. Silane crosslinked wood plastic composites: Processing and properties[J]. Composites Science and Technology, 2006,66(13):2177-2186
    
    [40] Bengtsson M., Oksman K. The use of silane technology in crosslinking polyethylene/wood flour composites[J]. Composites: Part A, 2006,37(5):752-765
    
    [41] Herrera-Franco P.J., Valadez-Gonza'lez A. A study of the mechanical properties of short natural-fiber reinforced composites[J].Composites Part B: Engineering, 2005,36 (8):597-608
    
    [42] Fernanda M.B.C., Thais H.S.C., Daisy L.C., et al. Thermal behaviour of modified wood fibers[J]. Polymer Testing, 1998,17(5):299-310
    
    [43] Lee S.H., Wang S.Q., George M.P., et al. Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis[J]. Composites Part A: Applied Science and Manufacturing, 2007,38(6): 1517-1524
    
    [44] Cui Y.H., Lee S., Noruziaan B., et al. Fabrication and interfacial modification of wood/recycled plastic composite materials[J]. Composites Part A: Applied Science and Manufacturing, 2008,39(4):655-661
    
    [45] Thais H.S.C., Daisy L.C., Denise C.S.S., etal. Statistical experimental design and modeling of polypropylene-wood fiber composites[J]. Polymer Testing, 2000,19(4): 419-428
    
    [46] Ichazo M.N., Albano C, Gonzalez J., et al. Polypropylene/wood flour composites: treatments and properties[J]. Composite Structures, 2001,54(2-3):207-214
    
    [47] Vetter L.D., Cnudde V., Masschaele B., etal. Detection and distribution analysis of organosilicon compounds in wood by means of SEM-EDX and micro-CT[J]. Materials Characterization, 2006,56(1):39-48
    [48]Love K.T.,Nicholson B.K.,Lloyd J.A.,e tal.Modification of Kraft wood pulp fibre with silica for surface functionalisation[J].Composites Part A:Applied Science and Manufacturing,2008,39(12):1815-1821
    [49]贾义军,张秀斌.木粉接枝甲基丙烯酸甲酯/丁酯及其在木粉/PVC复合材料中的应用[J].沈阳化工学院学报,2006,20(2):105-109
    [50]Geng Y.,Li K.,Simonsen J.Effects of a new compatibilizer system on the flexural properties of wood-polyethylene composites[J].Journal of Applied Polymer Science,2004,91(6):3667-3672
    [5l]赵永生,王克俭,朱复华等.蒙脱土/硅烷改性木粉/PVC复合材料[J].复合材料学报,2007,24(3):63-71
    [52]Jiang H.L.,Kamdem D.P.Thermal and dynamic mechanical behavior of poly(vinyl chloride)/wood flour composites[J].Journal of Applied Polymer Science,2008,107(2):951-957
    [53]Matuana L.M.,Kamdem D.P.,Zhang J.Photoaging and stabilization of rigid PVC/wood fiber composites[J].Journal of Applied Polymer Science,2001,80(11):1943-1950
    [54]吕群,李伟,周云等.一种外观似木的PP基木塑复合材料的生产技术研究[J].化学建材,2008,24(1):16-19
    [55]Falk R.H.,Lundin T.,Felton C.The effects of weathering on wood-thermop lastic composites intended for outdoor applications[C].Madison:Durability and Disaster Mitigation In Wood frame Housing,2000:175-179
    [56]Stark N.M.,Matuana L.M.Photostabilization of wood flour filled HDPE composites[C].San Francisco.CA:ANTEC,Society of Plastics Engineers,2002:2209-2213
    [57]Stark N.M.,Matuana L.M.Ultravioletweathering of photostabilized wood flour filled high density polyethylene[J].Journal of Applied Polymer Science,2003,90(10):2609 -2617
    [58]Rowell R.M.,Lange S.E.,Jacobson R.E.Weathering performance of plant-fiber thermop lastic composites[J].Molecular Crystals & Liquid Crystals,2000,353:85-94
    [59]Matuana L.M.,Kamdem D.P.Accelerated ultraviolet weathering of PVC/wood flour composites[J].Polymer Engineering Science,2002,42(8):1657-1666
    [60]Stark N.M.Effect of weathering cycle and manufacturing method on performance ofwood flour and high-density polyethylene composites[J].Journal of Applied Polymer Science,2006,100(4):3131-3140
    [61]Stark N.M.,Matuana L.M.Characterization of weathered wood-plastic composite surfaces using FTIR spectroscopy, contact angle, and XPS[J]. Polymer Degradation and Stability, 2007, 92(10):1883-1890
    [62] Stark N.M., Matuana L.M. Surface chemistry and mechanical property changes of wood-flour/high-density-polyethylene composites after accelerated weathering[J]. Journal of Applied Polymer Science, 2004;94(6):2263-2273
    [63] Stark N.M., Matuana L.M. Influence of photostabilizers on wood flour-HDPE composites exposed to xenon-arc radiation with and without water spray[J]. Polymer Degradation and Stability, 2006,91(12):3048-3056
    [64] Lundin T. Effect of accelerated weathering on the physical and mechanical properties of naturalefiber thermoplastic composites[D]. M.S. thesis, Madison,University of Wisconsine,2001
    [65] Stark N.M., Matuana L.M., Clemons CM. Effects of processing method on surface and weathering characteristics of woodeflour/HDPE composites[J]. Journal of Applied Polymer Science, 2004,93(3): 1021 -1030
    [66] Muasher M., Sain M. The efficacy of photostabilizers on the color change of wood filled plastic composites[J]. Polymer Degradation and Stability, 2006,91 (5): 1156-1165
    [67] Kamdem D.P., Jiang H.L., Cui W.N., et al. Properties of wood plastic composites made of recycled HDPE and wood flour from CCA-treated wood removed from service[J]. Composites Part A: Engineering, 2004,35(3):347-355
    [68] Bengtsson M., Stark N.M., Oksman K. Durability and mechanical properties of silane cross-linked wood thermoplastic composites[J]. Composites Science and Technology, 2007,67 (13):2728-2738
    [69] Clemons C.A., Ibach R.E. Effects of processingmethod and moisture history on laboratory fungal resistance of wood-HDPE composites[J]. Forest Products Journal, 2004,54 (4):50-57
    [70] Joseph K.,Thomas S., Pavithran C. Effect of aging on the physical and mechanical properties of sisal-fiber reinforced polyethylene[J]. Composites Science and Technology, 1995,53 (1):99-101
    [71] Stark N.M. Influence of moisture absorption on mechanical properties of wood-flour polypropylene composites[J]. Journal of Thermoplastic Composite Materials, 2001,14 (5):421-432
    [72] Rangaraj S.V., Smith L.V. Effect ofmoisture on the durability of a wood / thermoplastic composite[J]. Journal of Thermoplastic Composite Materials, 2000,13 (3):140-161
    [73] Lin Q., Zhou X., Dai G. Effect of hydrothermal environment on moisture absorption and mechanical properties of wood flour filled polypropylene composites[J].Journal of Applied Polymer Science,2002,85(14):2824-2832
    [74]Balatinecz J.J.,Park B.D.The effects of temperature and moisture exposure on the properties of wood fiber thermoplastic composite[J].Journal of Thermoplastic Composite Materials,1997,10(9):476-487
    [75]Steckel V.,Clemons C.M.,Thoemen H.Effects of material parameters on the diffusion and sorption properties of wood-flour/polypropylene composites[J].Journal of Applied Polymer Science,2007,103(2):752-763
    [76]Zhang Y.L.,Zhang S.Y.,Chui Y.H.Water vapor adsorption and volumetric swelling of melt-impregnated wood-polymer composites[J].Journal of Applied Polymer Science,2006,102(3):2668-2676
    [77]Nachtigall S.M.B.,Cerveira G.S.,Rosa.S.M.L.New polymeric-coupling agent for polypropylene/wood-flour composites[J].Polymer Testing,2007,26(5):619-628
    [78]Bengtsson M.,Gatenholm P.,Oksman K.The effect of crosslinking on the properties of polyethylene/wood flour composites[J].Composites Science and Technology,2005,65(10):1468-1479
    [79]Gupta B.S.,Reiniati I.,Laborie M.P.G.Surface properties and adhesion of wood fiber reinforced thermoplastic composites[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,302(1-3):388-395
    [80]Abdelmouleh M.,Boufi S.,Belgacemb M.N.,et al.Modification of cellulosic fibres with functionalised silanes:development of surface properties[J].International Journal of Adhesion &Adhesives,2004,24(1):43-54
    [81]杜万里,郭红霞,王群.原位复合纳米SiO2改性脲醛木塑复合材料制备[J].中国塑料,2006,20(10):64-67
    [82]唐辉,徐兴伟.电子束辐射用于木材增强改性的研究[J].云南工业大学学报,1999,15(2):15-20
    [83]赵永生,王克俭,朱复华等.OMMT/WF/PVC的耐热性能研究[J].塑料,2007,36(1):32-37
    [84]Zhao Y.S.,Wang K.J.,Zhu F.H.,et al.Properties of poly(vinyl chloride)/wood flour /montmorillonite composites:Effects of coupling agents and layered silicate[J].Polymer Degradation and Stability,2006,91(12):2874-2883
    [85]Yap M.G.S.,Que Y.T.,Chia L.H.L.,et al.Thermal properties of tropical wood-polymer composites[J].Journal of Applied Polymer Science,1991,43(11):2057-2065
    [86]Anna P.,Zimonyi E.,Marton A.,et al.Surface treated cellulose fibres in flame retarded PP composites[J].Macromolecular Symposia,2003,202(1):245-254
    [87]Matko Sz.,Toldy A.,Keszei S.,et al.Flame retardancy of biodegradable polymers and biocomposites[J].Polymer Degradation and Stability,2005,88(1):138-145
    [88]Guo G.,Park C.B.,Lee Y.H.,et al.Flame retarding effects of nanoclay on wood-fiber composites[J].Polymer Engineering and Science,2007,47(3):330-336
    [89]Francis S.I.,Wooley D.F.Polyvinylidene fluoride[J].Industrial and Engineering Chemistry Research,1964,56(9):53-55
    [90]Kurt A.W.,Christopher C.,Lotfi H.Predicting the exterior durability of new fluoropolymer coatings[J].Journal of Fluorine Chemistry,2000,104(1):63-71
    [91]Abdelmouleh M.,Boufi S.,Ben S.A.,et al.Interaction of silane coupling agents with cellulose[J].Langmuir,2002,18(8):3203-3208
    [92]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990
    [93]Salon M.C.B.,Abdelmouleh M.,Boufi S.,et al.Silane adsorption onto cellulose fibers:Hydrolysis and condensation reactions[J].Journal of Colloid and Interface Science,2005,289(1):249-261
    [94]鲁博,张林文,曾竟成等.天然纤维复合材料[M].北京:化学工业出版社,2005
    [95]张永明,李虹,张恒.含氟功能材料[M].北京:化学工业出版社,2008
    [96]Clark D.T.,Feast W.J.Application of electron spectroscopy for chemical applications(ESCA)to studies of structure and bonding in polymeric systems[J].Journal of Macromolecular Science,Part C:Polymer Reviews,1975,12(2):191-286
    [97]Malcolm P.S.Polymer Chemistry:An Introduction,3rd ed[M].New York:Oxford University Press,1999
    [98]De la Caba K.,Guerrero P.,Dei Rio M.,et al.Weathering behaviour of wood-faced construction materials[J].Construction and Building Materials,2007,21(6):1288-1294
    [99]Scheirs J.,Burks S.,Locaspi A.Developments in fluoropolymer coatings[J].Trends in Polymer Science.1995,3(3):74-82
    [100] Iezzi R.A., Gaboury S. Wood K. Acrylic-fluoropolymer mixtures and their use in coatings[J]. Progress in Organic Coatings, 2000,40(1):55-60
    [101] Nunez A.J., Kenny J.M., Reboredo M.M., et al.Thermal and dynamic mechanical characterization of polypropylene-wood flour composites[J]. Polymer Engineering and Science, 2002,42(4): 733-742
    [102] Son J., Gardner D.J., O'Neill S., et al. Understanding the viscoelastic properties of extruded polypropylene wood plastic composites[J]. Journal of Applied Polymer Science, 2003, 89(6): 1638-1644
    [103] Huda M.S., Drzal L.T., Mohanty A.K., etal. The effect of silane treated- and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites[J]. CompositesPart B: Engineering, 2007,38 (3): 367-379
    [104] 过梅丽. 高聚物与复合材料的动态力学热分析[M]. 北京:化学工业出版社,2002
    [105] Katan E., Narkis M., Siegmann A. The Effect of Some Fluoropolymers' Structures on Their Response to UV Irradiation[J]. Journal of Applied Polymer Science, 1998,70(8): 1471-1481
    [106] Khonakdar H.A., Morshedian J., Wagenknecht U., et al. An investigation of chemical crosslinking effect on properties of high-density polyethylene[J]. Polymer, 2003,44(15): 4301-4309
    [107] Tim R.D., Julie M.E., Mathew C. Evaluation of piezoelectric PVDF polymers for use in space environments. III. comparison of the effects of vacuum UV and gamma radiation[J]. Journal of Polymer Science Part B: Polymer Physics, 2006,44(22):3253-3264
    [108] Horrocks A.R., Philip J.D. Char formation in flame-retarded wool fibres. part 1. effect of intumescent on thermogravimetric behaviour[J]. Fire Materials, 2000,24(3): 151-157
    [109] Horrocks A.R., Zhang S. Enhancing polymer char formation by reaction with phosphorylated polyols. 1 cellulose[J]. Polymer, 2001,42(19):8025-8033
    [110] Zhang S., Horrocks A. R. Substantive intumescent flame retardants for functional fibrous polymers[J]. Journal of Materials Science, 2003,38(10):2195-2198
    [111] Anna P., Marosi G., Bourbigot S. Intumescent flame retardant systems of modified rheology[J]. Polymer Degradation and Stability, 2002,77(2):243-247
    [112] Marosi G., Anna P., Marton A. Flame-retarded polyolefin systems of controlled interphase[J]. Advanced Polymer Technology, 2002, 13(10-12): 1103-1111
    [113]Qu B.J.,Xie R.C.Intumescent char structures and flame-retardant mechanism of expandable graphite-based halogen-free flame-retardant linear low density polyethylene blends[J].Polymer International,2003,52(9):1415-1422
    [114]Schartel B,Braun U.,Schwarz U.Fire retardancy of polypropylene/flax blends[J].Polymer,2003,44(20):6241-6250
    [115]Lewin M.,Endo M.Catalysis of intumescent flame Retardancy of polypropylene by metallic compounds[J].Advanced Polymer Technology,2003,14(1):3-11
    [116]Zhou J.,Fang C.P.,Sheng J.S.,et al.Synergistic action of nanometer ZnO prepared by Sol-Gel method on halogen free flame-retarded polypropylene[J].Rare Metal Materials and Engineering,2008,37(z2):617-619
    [117]Luciana R.M.E,Michel L.B.,Rene D.,et al.Structure-property relationship in intumescent polymeric formulations containing waste zeolite-based material as a synergistic agent[J].European Polymer Journal,2004,40(7):1503-1513
    [118]Bourbigot S.,Le Bras M.,Duquesne S.Recent advances for intumescent polymers[J].Macromolecular Materials and Engineering,2004,289(6):499-511
    [119]李兰杰.聚乙烯基木塑复合材料及其无卤阻燃改性[D].青岛科技大学学位论文,2006
    [120]李兰杰,解廷秀.杨桂生一种无卤阻燃木塑复合材料及其制备方法[P].CN101469082,2007
    [121]王清文,房轶群,宋永明等.阻燃抑烟型木塑复合材料[P].CN101143952,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700