聚合物基纳米复合材料的制备、性能及其相关力学问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物基纳米复合材料是一种重要的新型材料,具有不同于宏观复合材料的许多优异性能,为新材料的研究和制备提供了新方向和新途径,倍受世界各国重视。由于聚合物基纳米复合材料增强相特征尺度在几十纳米量级,远小于长链高分子的链长,其内部结构(高分子单元结构、链结构和聚集态结构等)具有跨物质层次多尺度构筑特征,采用经典的细观力学、连续介质力学和流变学理论模型的描述受到局限,本文在聚合物基纳米复合材料制备的基础上,尝试使用多尺度均匀化理论对其力学性能进行研究。
     本文对聚合物基纳米复合材料的制备、性能及其相关力学问题进行了研究。主要研究内容和创新成果如下:
     1.制备了四氨基铜钛菁纳米粒子和二氧化硅纳米粒子,在此基础上,采用原位聚合法制备了尼龙6/二氧化硅纳米复合材料和尼龙6/四氨基铜钛菁纳米复合材料。描述并表征这两类纳米复合材料的微结构,实验分析了这两类材料的力学性能和部分功能性特性。实验结果表明,尼龙6/二氧化硅纳米复合材料中的纳米粒子含量为5%时,纳米复合材料的拉伸强度、拉伸弹性模量比纯尼龙6分别提高了41%和47%;当纳米粒子的含量为3%时,纳米复合材料的冲击强度和显微硬度分别比纯尼龙6提高了59%和32%。当尼龙6/四氨基铜钛菁纳米复合材料中的纳米粒子含量为0.8%时,纳米复合材料的拉伸强度、拉伸弹性模量和冲击强度比纯尼龙6分别提高了12%、24%和139%。四氨基铜钛菁纳米粒子的加入使得尼龙6/四氨基铜钛菁纳米复合材料的紫外滤光性、抗紫外老化能力以及红外蓄热、保温性得到了明显的提高。
     2.基于所制备的纳米复合材料的微结构特性及宏观力学性能,建立了基于微结构特性的多尺度力学模型,对每一层次都视为周期性结构,采用逐次双尺度均匀化方法,讨论了聚合物结晶度、聚合物结晶相弹性模量、纳米颗粒弹性模量和纳米颗粒体积分数等参数对聚合物基纳米复合材料等效弹性模量的影响,计算获得了材料的宏观等效力学参数。将理论计算结果与实验结果进行了对比,结果表明,在理论条件满足的前提下,即纳米颗粒分散均匀的情况下,两者基本吻合,从而验证了理论模型的正确性。
     3.多孔材料是一种轻质的结构材料,在其基体材料中添加纳米颗粒可以赋予其一定的功能性,但是同时也带来其结构中的多尺度问题。为了更好地了解纳米颗粒对多孔聚合物基纳米复合材料的影响,通过甲基丙烯酸甲酯本体聚合发泡的新方法,实验制备了多孔PMMA/二氧化硅纳米复合材料和多孔PMMA/二氧化钛纳米复合材料;对二氧化钛纳米颗粒的功能性进行了一些实验研究;对所得复合材料的力学性能进行了实验研究,分析了实验结果;实验结果表明,复合材料的压缩应力-应变曲线具有多孔泡沫材料明显的三阶段特征即线弹性段、塑性屈服平台段及致密段;随着复合材料中纳米颗粒含量的增加,材料的压缩弹性模量也随之增大;而对于同一纳米颗粒含量的复合材料来说,随着变形速率的增大,材料的抗压强度随之增大。
     4.采用多尺度逐次均匀化理论建立了多孔聚合物基纳米复合材料的理论模型,研究了复合材料的宏观等效弹性常数与聚合物基体材料以及纳米粒子的材料常数、纳米粒子的含量之间的关系;将理论计算结果与实验结果进行了对比,结果表明,理论结果偏大,而两者的增长趋势一致,这说明理论结果与实验结果吻合,从而验证了理论模型的正确性。
Polymeric nanocomposite is an important new material. It has many excellent properties which being differ from macroscopical composite materials, and gives new direction and approach to research and prepare new materials. Therefor, it gets much regard in the world. The characteristic scale of the polymeric nanocomposite’s reinforcement is a few decades nanometer levels, which less than the cable length of the long-chain macromolecule. The inner structures(the cell strutures of the macromolecule, chain structures, aggregative state structures etc.) of the polymeric nanocomposite have multiscale build characteristics of spanning matter layers. Adopting classical micromechanics, continuity mechanics and rheology theory models to describe them had been localization. In this paper, basing on the preparation of the polymeric nanocomposite, we tried to study their mechanics properties by using multiscale homogenization theory.
     In this paper, the preparation, properties and related mechanics issues of polymeric nanocomposites have been studied. Main research contents and creative results as follows:
     1. Basing on the preparation of (NH2)4PcCu and SiO2 nanograins, the PA6/SiO2 nanocomposites and the PA6/(NH2)4PcCu nanocomposites were prepared by in-situ polymerization. Their microcosmic structure characteristics were described and their mechanics and functional properties were studied. The results indicated that when the content of the SiO2 nanograins is 5%, the tensile strength and elastic module of the PA6/SiO2 nanocomposites increase 41% and 47% than pure PA6; when the content of the SiO2 nanograins is 3%, the impact strength and microhardness of the nanocomposites increase 59% and 32% than pure PA6. When the content of the (NH2)4PcCu nanograins is 0.8%, the tensile strength, elastic module and impact strength of the PA6/(NH2)4PcCu nanocomposites increase 12%, 24% and 139% than pure PA6. The ultraviolet filtration, anti-ultraviolet aging and the infrared thermal storage retardation of the PA6/(NH2)4PcCu nanocomposites had obviously improved with the addition of the (NH2)4PcCu nanograins.
     2. Basing on the microcosmic structure characteristics and mechanics properties of the nanocompsities, the multiscale analysis model was built. The influences of the model’s parameters including the polymer crystallinity, the elastic module of the polymer crystal, the elastic modulus of the nanograin and the nanograin’s fraction on the equivalent elastic modulus of the polymeric nanocomposite were discussed by the multiscale homogenization method. We had compared the experiment results with the theory results, the results indicated that the experiment results basically tallied with the theory results, on the premise of the theory coming into existence, i.e., in case of nanograin dispersing evenly. Therefor, the validity of the model was validated.
     3. Porous materials are a sort of lightweight structural materials. The accession of the nanograins in its matrix material could endow it with definite functionality, and brought the multiscale questions in its structure. For better understanding the influence of the nanograins on the porous polymeric nanocomposites, the PMMA porous material, the porous PMMA/SiO2 nanocomposites and the porous PMMA/TiO2 nanocomposites were prepared by MMA itself polymerization foaming method. We studied the functionality of the TiO2 nanograins initially. Their mechanics properties were studied and the experiment results were analyzed. The results indicated that the compressive stress-strain curves of the nanocomposites had obvious three phases characters of the porous foams, i.e., linear elastic phase, plastic yield flat phase and compact phase. Along with the nanograins content of the nanocomposites increasing, the compressive elastic modulus of the nanocomposites augmented. The nanocomposites that which had the same nanograins content, with the transfiguration speed increasing, their compressive strength added.
     4. The theory model of the porous polymeric nanocomposite was built by the multiscale successive homogenization theory. The relations between the macroscopical equivalent elastic constant of the nanocomposites and the material constant of the polymeric matrix materials and the nanograins and the nanograins content were studied. We had compared the experiment results with the theory results, the results indicated that the former was a little less than the latter in magnitude, but both of their increase trends were accordantly. Thus it shown that the experiment results were accorded with the theory results, the validity of the model was validated.
引文
[1]徐国财,张立德.纳米复合材料[M] .北京:化学工业出版社,2002.
    [2]黄丽,郭江江,姜志国,等.纳米科学技术在高分子材料领域的现状[J].化工进展,2003,22(6):564-567.
    [3]姜其斌,贾德民,杨军,等.聚合物-层状硅酸盐纳米复合材料应用研究进展[J].弹性体,2003,13(4):44-49.
    [4] Okamotot M,Morida S,Kotaka T.Dispersed structure and ionic conductivity of smectic clay/polymer nanocomposites[J].Polymer,2001,42:2685.
    [5] Tong Y J,Li Y S,Xie F C,et al.Preparation and characteristics of polyimide-TiO2 nanocomposite film[J].Polymer International,2000,49(11): 1543-1547.
    [6]邓月义,张姗,赵树高.纳米CaCO3改性及其在聚合物复合材料中的应用[J].塑料科技,2007,35(4):46-48.
    [7]张烨,周贵恩,李磊.纳米TiO2-甲基丙烯酸甲酯聚合物均匀分散系的制备和结构[J].材料研究学报,1998,12:292-295.
    [8] Stackhouse S,Coveney P V.Plane-wave density functional theoretic study of formation of clay-polymer nanocomposite materials by self-catalyzed in situ intercalafive polymerization[J].Journal of the American ChemicalSociety, 2001, 123: 11764-11774.
    [9] Qian G D,Yang Z,Wang M Q.Time-resolved spectra and energy migration of europium chelate with thenoyltrifluoroacetone in-situ synthesized in ormosil[J].Journal of Materials Science Letters,2000, 19: 1315-1318.
    [10]杨柏,黄金满,郝恩才,等.半导体纳米微粒在聚合物基体中的复合与组装[J].高等学校化学学报,1997,18:1219-1226.
    [11] O'Haver J H,Harwell J H,Evans L R,et al.Polar copolymer-surface-modified precipitated silica[J].Journal of Applied Polymer Science, 1996, 59: 1427-1435.
    [12] Waddell W H,O'Haver J H,Evans L R,et al.Organic polymer-surface modified precipitated silica[J].Journal of Applied Polymer Science, 1995, 55: 1627-1641.
    [13] Combes J R,White L D,Tripp C P.Chemical modification of metal oxide surfaces in supercritical CO2[J].Langmuir,1999,15:7870-7875.
    [14] Georgi U,Brendler E,Goerz H,et al.Chemical modification of thin silica films via the sol-gel-process[J].Journal of Sol-Gel Science and Technology, 1997, 8: 507-509.
    [15]潘登余,王大志,刘皖育,等.纳米V2O5新相的制备与表征研究[J].材料科学与工程,2000,18(2):43-46.
    [16]尚修勇,朱子康,印杰,等.偶联剂对PI/SiO2纳米复合材料形态结构及性能的影响[J].复合材料学报,2000,17(4):15-19.
    [17] Zoran S P , Ivan I , Alan W . Structure and properties of polyurethanesilica nanocomposites[J].Journal of Applied Polymer Science,2000,76:133.
    [18] Usuki A,Kojima Y,Kawasumi M,et al.Synthesis of nylon 6-clay hybrid[J].Journal of Materials Research,1993,8:1179-1184.
    [19]漆宗能,尚文宇.聚合物/层状硅酸盐纳米复合材料理论与实践[M].北京:化学工业出版社,2002.
    [20]杨小燕.尼龙6/纳米复合材料研究进展及应用[J].化学工业与工程技术,2005,26(6):18-21.
    [21] Matejka L,Plestil J,Dusek K.Structure evolution in epoxy-silica hybrids[J].Journal of Non-Crystalline Solids,1998,226:114-121.
    [22] Hsiue G H, Chen J K , Liu Y L . Synthesis and characterization of nanocomposite of polyimide-silica hybrid from nonaqueous sol-gel process[J] . Journal of Applied Polymer Science,2000,76:1609-1618.
    [23]马永梅,范家起.浅谈高分子/粘土纳米复合材料市场应用及发展[J].纳米科技与产业,2003,(8):67-71.
    [24]包丽萍,杨延钊,邵华,等.高聚物/粘土纳米复合材料阻燃性能的研究进展[J].化工进展,2003,22(6):597-601.
    [25]魏风艳,巩强,严生.聚合物-粘土纳米复合材料[J].材料导报,2003,17:110-113.
    [26]李同年,周振兴,卢文奎.聚苯乙烯-蒙脱土插层复合材料的制备与性能[J].塑料工业,2000,28(2):33-35.
    [27] Manias E,Touny A,Wu L,et al.Polypropylene/montmorillonite nanocomposites.Review of the synthetic routes and materials properties.Chem Mater,2001,13:3516-3523.
    [28]李玱玱.浅谈聚合物/纳米复合材料研究进展[J].橡塑技术与装备,2003,29(12):33-38.
    [29]王笛阳,何素芹,等.尼龙66/蒙脱土纳米复合材料的制备与表征[J].中国塑料,2001,15(10):23.
    [30]韩克清,陈业,余木火.聚合物/蒙脱土纳米复合材料的研究进展[J].合成技术及应用,2003,18(3):24-27.
    [31]丁超,郭宝春,贾德民,等.聚丙烯/粘土纳米复合材料最新进展[J].合成树脂及塑料,2003,20(2):74.
    [32] Ma J S , Qi Z N , Hu Y L . Synthesis and characterization of polypropylene/clay nanocomposites[J].J Appl Polym Sci,2001,82(14):361l-3617.
    [33]王光辉,张玲.PVC/粘土纳米复合材料的研究进展[J].聚氯乙烯,2003,(5):1-10.
    [34]孙翠华,宋国君,王俊霞,等.蒙脱土/橡胶纳米复合材料的研究进展[J].橡胶工业,2003,50(4):249-252.
    [35] Akane Okada , Arimitu Usuki . The chemistry of polymerclay hybrids[J]. Master Sci &Engin,1995,3(2):109-1l5.
    [36]王胜杰,李强,漆宗能.硅橡胶/蒙脱土复合材料的制备、结构与性能[J].高分子学报,1998,2(2):149-153.
    [37] Ganter M,Gronski W,Semke H,et al.Surface compatibilized layered silicate-Anovel class nanofillers for rubber with improved mechanical properties[J].Kautschuk Gummi Kunststofe,2001,54(4):166-171.
    [38]杨军,王进,唐先贺,等.橡胶/蒙脱土纳米复合材料的制备技术进展[J].特种橡胶制品,2003,24(4):46-51.
    [39]惠雪梅,张炜,王晓洁.环氧树脂纳米复合材料研究进展[J].合成树脂及塑料,2003,20(6):62-65.
    [40]林安,程学群,张三平.纳米二氧化钛表面化学改性及在涂料中的应用[J].材料保护,2002,35(11):6-7.
    [41]陈立新,齐鲁华,王汝敏.纳米/环氧树脂基复合材料研究进展[J].河南化工,2002,(11):4-6.
    [42]王成云,龚丽雯,张伟压,等.聚酯纳米复合材料研究的进展[J].聚酯工业,2003,16(1):10-12.
    [43]朱笑初,景肃,盂娟,等.PBT/粘土纳米复合材料的制备和性能表征[J].塑料工业,2000,28(2):45-47.
    [44]漆宗能,柯扬船,丁幼康,等.一种聚对苯二甲酸丁二酯/层状硅酸盐纳米复合材料及其制备方法[P].国家知识产权局,CN1187506A,1998.
    [45] Ke Y C,Long C F,Qi Z N.Crystallization,Properties,Crystal and Nanoseale Morphology of PET- clay Nanocomposites[J].J Appl Polym.Sci,1999,71:1139-1145.
    [46]徐群华,孟卫,杨绪杰,等.纳米二氧化钛增强增韧不饱和聚酯数脂的研究[J].高分子材料科学与工程,2001,(2):13-18.
    [47] Haggenmuller R,Gommans H,Rinzler A,et al.Aligned single-wall carbon nanotubes in composites by melt processing methods[J].Chem phys Lett,2000,330(3-4):219-225.
    [48]王彪,王贤保,胡平安,等.碳纳米管/聚合物纳米复合材料研究进展[J].高分子通报,2002,(6):8-14.
    [49] Sun Q, Harmer M A , Fameth W E . An extremely active solid acid catalyst , Nation resin/silica composite,for the Friedel-Crafts benzylation of benzene and p-xylene with benzyl alcohol[J].Industrial&Engineering Chemistry Research,1997,36:5541-5544.
    [50]陶国良,侯寅,任明.纳米TiO2/PP复合材料的研究[J].塑料工业,2002,30(11):21-22.
    [51]张长生,赵晓东,罗世凯,等.聚合物/纳米SiO2复合材料的研究进展[J].塑料科技,2005(1):5-7.
    [52] Neumann D,Fisher M ,Tran L,et a1.Synthesis and characterization of an isocyanate functionalized polyhedral oligosilsesquioxane and the subsequent formation of an organic-inorganic hybrid polyurethane [J].J.Am.Chem.Soc.,2002,124(47):13998-13999.
    [53] Su S J, Kuramoto N.Processable polyaniline-itanium dioxide nanocomposites:effect of titanium dioxide on the conductivity[J].Synthetic Metals,2000,114:147-153.
    [54] Ray S S,Biswas M.A colloidal silica poly(N-vinylcarbazole) nanocomposite dispersible in aqueous and nonaqueous media[J].Materials Research Bulletin,1998,33:533-538.
    [55] Zhan g S, Zhu Y ,Yang X, et a1.Fabrication of fluorescent hollow capsule with CdS-polyelectrolyte composite films [J].Materials Letters,2006,60(29):3447-3450.
    [56] Martini J E , Waldman F A , Suh N P. The production and analysis of microcellular thermoplastic foams[C]. SPE ANTEC Tech. Papers,1982(28):674-676.
    [57] Martini J E,Suh N P,Waldman F A.Impact of microcellular plastics on industrial practice and academic research[J]. Macromolecular Symposia,2003,201(1):187-202.
    [58] Waldman F A.The processing of microcelhlar foam[D].S. M. Thesis,Dept. Mech. Eng. MIT,1982.
    [59]王进,程兴国,何嘉松,等.超临界CO2在聚合物制备中的应用[J].高分子通报,2001(6):8-17.
    [60] Kazuaki Okamoto , Suprakas Sinha Ray , Masami Okamoto . New poly(butylene succinate)/layered silicate nanocomposites. II. Effect of organically modified layered silicates on structure,properties,melt rheology,and biodegradability[J]. Journal of Polymer Science Part B:Polymer Physics,2003,41:3160-3172.
    [61] Petr Svoboda,Changchun Zeng,Hua Wang,et al. Morphology and mechanical properties of polypropylene/organoclay nanocomposites[J]. Journal of Applied Polymer Science,2002,85:1562-1570.
    [62] Tae H. Kim,Sung T. Lim,Chung H. Lee,et al. Preparation and rheological characterization of intercalated polystyrene/organophilic montmorillonite nanocomposite[J]. Journal of Applied Polymer Science,2003,87:2106-2112.
    [63] Chong Min Koo,Mi Jung Kim,Min Ho Choi,et al. Mechanical and rheological properties of the maleated polypropylene-layered silicate nanocomposites with different morphology [J]. Journal of Applied Polymer,2003,88:1526-1535.
    [64] Phillip B. Messersmith, Emmanuel P. Giannelis. Synthesis and barrier properties of poly (-caprolactone)- layered silicate nanocomposites[J]. Journal of Polymer Science Part A:Polymer Chemistry. 1995.33:1047-1057.
    [65] Masami Okamoto,Pham Hoai Nam,Pralay Maiti,et al. Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam[J]. Nano letters,2001,1:503-505.
    [66] Xiangmin Han , Changchun Zeng , L. James Lee , et al. Extrusion of polystyrene nanocomposite foams with supercritical COP[J]. Polymer Engineering And Science,2003,43:1261-1275.
    [67] Mingjun Yuan , Lih-Sheng Turng , Shaoqin Gong , et al. Study of injection molded microcellular polyamide-6 nanocomposites[J]. Polymer Engineering And Science,2004,44:673-686
    [68] Xia Cao,L. James Lee,Tomy Widya,et al. Polyurethane/clay nanocomposites foams: processing,structure and properties[J]. Polymer,2005,46:775-783.
    [69] Yingwei Di , Salvatore Iannace , Ernesto Di Maio , et al . Poly(1actic acid)/organoclay nanocomposites:thermal,rheological properties and foam processing[J]. Journal of Polymer Science:Part
    [70] Young-Wook Chang,Dongsuk Lee,Seong-Youl Bae.Preparation of polyethylene-octene elastomer/clay nanocomposite and microcellular foamprocessed in supercritical carbon dioxide [J]. Polymer International,2006,55:184-189.
    [71] Suprakas Sinha Ray,Masami Okamoto. Bioderadable polylactide and its nanocomposites: opening a new dimension for plastics and compoites[J]. Macromol. Rapid Commun,2003,24:815-840.
    [72] Suprakas Sinha Ray,Masami Okamoto. New polylactide/layered silicate nanocomposites,melt rheology and foam processing[J]. Macromol. Rapid Commun,2003,288:936-944.
    [73] Masaki Mitsunaga,Yasuhito Ito,Suprakas Sinha Ray,et al.Intercalated polycarbonate/clay nanocomposites:nanostructure control and foam processing[J]. Macromol. Mater. Eng.,2003,288:543-548.
    [74] N. C. Nayak,D. K. Tripathy. Morphology and Physical Properties of Closed Cell Microcellular Ethylene-Octene Copolymer: Effect of Precipitated Silica Filler and Blowing Agent[J]. Journal of Applied Polymer Science,2002,83:357-366.
    [75] Yonglai Yang,Mool C. Gupta,Kenneth L. Dudkey,et al.Conductive Carbon Nanofiber polymer Foam Structure[J]. Advanced Materials,2005,17:1999-2003.
    [76] Philipp Wemer,Raquel Verdejo,Frank W?llecke,et al.Carbon Nanofibers Allow Foaming of Semicrystalline Poly (ether ether ketone)[J]. Advanced Materials,2005,17:2864-2869.
    [77] Pham Hoai Nam,Pralay Maiti,Masami Okamoto,et al.Foam Processing and Cellular Structureof Polypropylene / Clay Nanocomposites[J]. Polymer Engineering And Science ,2002,42:9.
    [78] Changchun Zeng,Xiangmin Han, L. James Lee,et al. Polymer-Clay Nanocomposites Foams Prepared Using Carbon Dioxide[J]. Advanced Material,2003,15:1743-1747.
    [79] Kentaro Taki,Tatsunori Yanagimoto,Eita Funami,et al. Visual Observation of CO2 Foaming of Polypropylene-Clay Nanocomposites[J].Polymer Engineering And Science,2004,44:1004-1011.
    [80] Youhei Fujimoto , Suprakas Sinha Ray , Masami Okamoto , et al. Well-Controlled Biodegradable Nanocomposite Foams: From Microcellular to Nanocellular[J]. Macromol. Rapid Commun,2003,24:457-461.
    [81]邓如生,魏运方,陈步宁.聚酰胺树脂及其应用[M].北京:化学工业出版社,2002.
    [82]彭治权,施祖培.塑料工业手册--聚酰胺[M].北京:化学工业出版社,2001.
    [83] Andrea B R Mayer . Palladium and platinum nanocatalysts protected by amphiphilic copolymers[J].Poly J.,1998,30(3):197-205.
    [84] Wiley J., Kaner R. . Rapid Solid-State Precursor Synthesis of Materials[J]. Science,1992,255:1093-1097.
    [85] Schmidt H. K. . Synthesis and Processing of Nano-Scale Materials Through Chemistry[M].Sci.Technol.Polym.Adv.Mater.(Proc.Int.Conf.Front.Polym.Adv.Mater.),fourthed,1997(Published 1998) .
    [86] Hench L.L., J.K.West.Gel-silica hybrid optics[J].Chem.Rev.,1990,90:33.
    [87] Chu X.,Chung W.I.,Schmidt L.D..Sintering of sol-gel-prepared submicrometer particles studied by transmission electron microscopy[J]. Am. Ceram. Soc., 1996,79:777.
    [88] Zhang G.,Liu M..Preparation of nanostructure tin oxide using a sol-gel process based on tin tetrachloride and ethylene glycol[J]. Mater. Sci., 1999, 34:3213.
    [89] Luca V.,Djajanti S.,Howe R.F..Structure and electronic properties of sol-gel Titanium oxides studied by X-ray absorption spectroscopy[J].Phys.Chem. B, 1998, 102:10650.
    [90] Ferroni L.P.,Cerrato G..Determination of amorphous interfaced phases in Al2O3/SiC nanocomposites by computer-aided high-resolution electron microscopy[J], Nanotechnology 1999,10:90.
    [91]张密林,丁立国,景晓燕,等.纳米二氧化硅的制备、改性与应用研究进展[J].应用科技,2004,31(6):64-66.
    [92]朱赛芬,吴周安.纳米材料的制备及在化工中的应用[J].上海化工,2001,8:22-25.
    [93]宋秀芹,马建峰.无机非金属材料的软化学合成[J].硅酸盐通报,1996,6:57-60.
    [94]陈建峰,邹海魁,刘润静,等.超重力反应沉淀法合成纳米材料及其应用[J].现代化工,2001,21(9):9-12.
    [95]张鹏远,公延明,陈建峰.超重力碳分制备纳米氢氧化铝[J].华北工学院学报,2002,2(34): 235-239.
    [96]刘海弟,贾宏,郭奋,等.超重力反应沉淀法制备白炭黑的研究[J].无机盐工业,2003,35(1):13-15.
    [97]覃兴华,卢迪芬.反胶团微乳液法制备超微细颗粒的研究进展[J].化工新型材料,1998,2:27-29.
    [98] Beck S.J.,Vartuli J.C.,Roth W.J.et al. A new family ofmesoporous molecular sieves prepared with liquid-crystaltemplate mechanis[J].Am Chem Soc,1992,114:10834-10843.
    [99]林健.催化剂对正硅酸乙酯水解-聚合机理的影响[J].无机材料学报,1997,3:363-369.
    [100]周其凤,王新久.液晶高分子[M].北京:科学出版社,1994.
    [101]何智兵,黄勇刚,张溪文.酞菁铜的性能和应用研究进展[J].材料导报,2000,14(10):51-55.
    [102] Chen H Z,Jiang K J,Wang M,et a1.Preparation and photoconductivity study of TiOPc nanometer particles[J].Journal of Photochemistry and Photobiology A:Chemistry,1998,117:149-152.
    [103]楚宪峰,陈红征,汪茫.酞菁铜纳米微粒的制备及其聚集态行为[J].真空科学与技术,2000,20(1):63-65.
    [104] Chen H Z,Pan C,Wang M.Characterization and photoconductivity study of TiOPc nanoscale particles prepared by liquid phase direct reprecipitation[J] . Nanostructured Materials,1999,11:523-531.
    [105] Bo Li , Hitoshi Kasai , Hidetoshi Oikawa . Monodispersed Quinacridone Nanocrystals Preparedby a High-Temperature and High-Pressure Liquid Crystallization Method[J].J. Nanosci. Nanotech.,2003,3(5):365-367.
    [106]章舒,刘春平.酞菁铜衍生物的合成与性能研究[J].上海化工,2002, 18:15-17.
    [107]吕维忠,刘波,游新奎,等.超声波化学法合成纳米铁酸镁粉末[J].电子元件与材料,2005,24(2):1-2.
    [108]张平,王霞瑜,魏珊珊,姜勇.尼龙6/无机粒子纳米复合材料直接制备方法[P].国家知识产权局,ZL02139836.4,2004.
    [109] Risch B G ,Wilkes G L.Crystallization kinetics and morphological features of star-branched nylon-6: effect of branch-point functionality[J].Polymer,1993,34:2330-2343.
    [110]石蹼,晋刚,吴宏武,等.纳米SiO2增强增韧聚丙烯的研究[J].中国塑料,2002,1: 37-40.
    [111]潘青山,张平,许福,等.四氨基铜酞菁/尼龙6共聚物的制备与表征[J].塑料工业,2005,33(7):7-9.
    [112] Hashin Z. Analysis of composite materials - a survey [J]. Journal of Applied Mechanics, 1983,(50):481-505.
    [113]胡更开,侯敬春.复合材料力学性能细观预测[J].北京理工大学学报,1995,15(3):265-270.
    [114] Li G,Ponte Castaneda P,Douglas A S. Constitotive models for duetile solids reinforced by rigid spheroidal inclusion[J].Mechanics of Material,1993,(15):279-300.
    [115]张平,尹久仁.聚合物基纳米复合材料跨层次本构理论模型[J].湘潭大学自然科学学报,2003,25(4):22-27.
    [116]张平,邓旭辉等,高聚物多尺度结构模型[J].湘潭大学自然科学学报,2005,27(l):1-5.
    [117]谢桂兰.聚合物基复合材料多尺度方法的研究[D].湘潭:湘潭大学,2006.
    [118]曹礼群.材料物性的多尺度关联与数值模拟[J].世界科技研究与发展,2002,24(6):23-29.
    [119]施祖培,杨维榕,唐立春译.[日]福本·修编.聚酞胺树脂手册[M].北京:中国石化出版社,1994.
    [120] Takahiro Namazu, Yoshitada Isono. Quasi-static bending test of nano-scale SiO2 wire at intermediate temperatures using AFM-base technique[J]. Sensor and Actuator A , 2004 ,104:78-85.
    [121] Jozef Bieerano.Prediction of Polymer Properties[M].third edition,Marcel Dekker,New York,2002.
    [122] Mousa W F,Kobayashi M,Shinzato S, et al.Biological and mechanica properties of PMMA-based bioactive bone cements[J].Biomaterials, 2000, 21:2137-2146.
    [123] Longer K, Marburger C,Berthold A, et a1. Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery,Part.Ⅰ:preparation and physicochemical characterization[J].International Journal of Pharmaceutics,1996,137:67-74.
    [124]陈丽珍.PMMA前景看好[J].国际化工信息,2003,9:29-37.
    [125]施利毅,李春忠,房鼎业.气相氧化法制备超细TiO2粒子的研究进展[J].材料导报,1998,12(6):23-26.
    [126]张志焜,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [127]曹茂盛.等超微颗粒制备科学与技术[M].哈尔滨:哈尔滨工业大学出版社,1997.
    [128]田玉明,黄平,冷叔炎,等.沉淀法的研究及其应用现状[J].材料导报,2000,14(2):47-48.
    [129]方晓明,瞿金清,陈焕钦.液相法合成纳米TiO2的进展[J].硅酸盐通报,2001,6:30-33.
    [130]赵改青,邱克辉,高晓明.化学沉淀法合成纳米TiO2粉体及其应用[J].材料导报,2003,17(11):47-49.
    [131]李凤光.化学液相共沉淀制备超细氧化物粉末[J].稀有金属与硬质合金,1998,9:42-44.
    [132] Weston T B,Webster A H. Menamara V M. [J].J. Can. Ceram Soe., 1967.36:7.
    [133] Murata M., Wakmo K., Tanaka,K., et a1. Chemical preparation of PLZT powder from aqueous solution[J].Mat. Res. Bull.,1976.11(3):323-327.
    [134] Sossina M,David W,Johnson J. et a1. Aqueous Precipitation of Spherical Zinc Oxide Powders for Varistor Applications[J].J. Am. Ceram. Soe.,1989,72(10):2004-2008.
    [135]万海保,曹立新,曾广赋,等. TiO2纳米粉的热处理过程研究[J].化学物理学报,1999,12 (4): 469-473.
    [136]符春林,魏锡文.二氧化钛晶型转变研究进展[J].涂料工业,1999,29(2): 28-30.
    [137]黄建炎.纳米TiO2微粉烧结过程中的相变与晶粒生长[J].安徽大学学报(自然科学版),1998,22 (3): 89-94.
    [138]范雄.X射线金属学[M].北京:机械工业出版社,1981..
    [139] Gent A N, Thomas A G. Mechanics of foamed elastic materials[J]. Rubber Chemistry and Technology, 1963,36(3): 597-610.
    [140] Gibson L J,Ashby M F,Schajer G S,et al. The mechanics of two dimensional cellular materials[C]. Proceedings of the Royal Society of Londom, Series A:Mathematical and Physical Sciences, 1982, 382(1782):25-42.
    [141] Silva M J,Hayes W C ,Gibson L J. The effect of nonperiodic microstructure on the properties of two-dimensional cellular solids[J]. Int. J. Mech. Sci., 1995,37(11): 1161-1177.
    [142] Klintworth J W , Stronge W J. Elastic-plastic yield limits and deformation laws for transversely crushed honeycombs[J]. Int. J. Mech. Sci., 1988, 30(3-4):273-292.
    [143] Gibson L J,Ashby M F. The mechanics of three-dimensional cellular materials, Proceedings of the Royal Society of Londom[C]. Series A: Mathematical and Physical Sciences, 1982, 382: (1782) 43-59.
    [144] Gibson L J, Ashby M F. Cellular Solids: structures & properties[M]. UK: Cambridge University Press, 1997.
    [145] Papka S D ,Kyriakides S. In-plane compressive reponse and crushing of honeycomb[J]. J. Mech. Phy. Solids, 1994, 42(10): 1499-1532.
    [146] Papka S D,Kyriakides S. In-plane crushing of polycarbonate honeycomb[J]. Int. J. Solids Stru., 1998,35(3-4): 239-267.
    [147] Papka S D,Kyriakides S. Biaxial crushing of honeycombs-part I: experiments[J]. Int. J. Solids Stru.,1999, 36(29): 4367-4396.
    [148] Jaeung Chung,Anthony M Waas. Compressive response of honeycombs under in-plane uniaxial static and dynamic loading [J]. Part 2: Simulations, AIAA J.,2002, 40(5): 974-980.
    [149] Simone A E,Gibson L J. The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams[J]. Acta Mater., 1998, 46(11): 3929-3935.
    [150] Simone A E,Gibson L J. Effects of solid distribution on the stiffness and strength of metallic foams[J]. Acta Mater., 1998, 46(6): 2139-2150.
    [151]张俊彦,张平,甘秋兰,等.多孔材料代表单元的性质[J].工程力学,2004,21(2):124-128.
    [152]张俊彦.多孔材料的力学性能及破坏机理[D].湘潭:湘潭大学,2004.
    [153]赵渠森.复合材料[M].北京:国防工业出版社,1979.
    [154] X.L.Wang , W.J.Stronge. Micropolar theory for two-dimensional stresses in elastic honeycomb[J]. Proc. R. Soc. Lond. A, 1999,455:2091-2116.
    [155]尹久仁,张平,童宏贻,等.颗粒增强复合材料基二维蜂窝结构等效参数[C]. CCTAM2007论文摘要集(下),北京,2007:425.
    [156] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems[J]. Proc. Roy. Soc., 1957,A 241:376-396.
    [157]施明泽,卢锡如.有机玻璃受拉与受压弹性常数的测定及其与剪切弹性模量的关系[J].理化检验:物理分册,1991,27(3):42-43..
    [158] Sung-Hwan Lee , Cagri Tekmen , Wolfgang M. Sigmund. Three-point bending of electrospun TiO2 nanofibers[J].Materials Science and Engineering A 2005,398:77–81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700