熔体插层聚丙烯纳米复合材料:形成过程、剥离机理、形态与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熔体插层法制备聚合物/层状硅酸盐纳米复合材料作为一种新的制备方法已经得到广泛的应用,该过程的一些理想化模型和理论也得到了深入的研究。但是,由于大分子插层的特殊性,理想化的模型一方面需要实验进行验证;另一方面由于对插层过程的简化,还不能解释一些实验现象,比如纳米复合材料的形成过程、剥离机理等。纳米复合材料的形成与分散不仅与层状硅酸盐的化学改性、两者之间的相互作用、是否加入相容剂有关,而且与加工条件与过程密切相关。层状硅酸盐的分散形态直接影响聚合物纳米复合材料的性能,对于聚合物纳米复合材料的分散形态与性能之间的关系也缺乏深入的研究。为了进一步理解熔体插层过程,探索纳米复合材料的形成过程、剥离机理、形态与性能等基本理论问题,本文在前人工作的基础上,以熔体插层法制备聚丙烯/蒙脱土纳米复合材料作为研究对象,对该体系的熔体插层过程及其影响因素、蒙脱土的分散形态与性能的关系、纳米复合材料的形态结构进行了深入的研究。
     本文首先在热力学分析的基础上,通过WAXD和SEM对聚丙烯/蒙脱土纳米复合材料的形成过程和剥离机理进行研究。分别研究了混合时间、混合设备、加工工艺对纳米复合材料的形成的影响,由此提出纳米复合材料形成和剥离的模型,并对其影响因素进行了讨论。研究发现,熔体插层在1分钟内已经发生,混合时间的延长只能增加剥离部分蒙脱土的含量,使插层过程更加完善。但是更长的熔融共混时间无助于进一步的剥离,长时间的熔融共混会导致蒙脱土片层的重新集聚。纳米复合材料的最终形态依赖于聚合物与蒙脱土之间的相互作
    
     四川大学博土学位论文
    用、相容剂的用量、加工过程所受到的剪切作用、熔体插层时间、熔体插层温
    度以及聚合物熔体的粘度。
     因为聚丙烯的非极性特点,很难通过熔体插层制备完全剥离的纳米复合材
    料,总是形成部分插层、部分剥离的结构。只有完全剥离的纳米复合材料才能
    表现出最好的增强效果,因此如何得到完全剥离的聚丙烯纳米复合材料是目前
    研究的重点。为了进一步提高蒙脱土的剥离和分散,我们引入动态剪切场进一
    步控制材料的剥离和取向程度。通过 Zd.WAXD研究蒙脱土和聚丙烯的不同的-
    取向形态,用WAXD、SEM和TEM研究蒙脱土在聚丙烯基体中的分散行为。“
    研究发现,动态保压产生的剪切场有利于蒙脱土片层在聚丙烯基体中的进一步
    的剥离和分散。蒙脱土的含量越高,剪切引起的分散效果越明显。通过动态剪
    切还可以研究聚合物在硅酸盐片层之间的受限情况。只有当聚丙烯和蒙脱土之
    间存在很好的相互作用时,蒙脱土片层明显限制聚丙烯分子链在外力作用下的
    取向,使聚丙烯分子链的取向度降低。剥离的蒙脱土对聚丙烯分子链运动的限
    制作用更大。
     目前,熔体插层纳米复合材料的研究集中于制备方法、形态表征、以及性-_
    能研究方面,但是对于层状硅酸盐的分散形态与力学性能的关系却未见报道。
    本文在用WAXD、SEM和TEM对蒙脱土在聚丙烯中的分散行为进行全面表征
    的基础上,讨论了蒙脱土的分散情况对纳米复合材料的增强效果的影响,探索
    聚丙烯/蒙脱土纳米复合材料的性能提高幅度不大的原因;以及蒙脱土片层的取
    向对纳米复合材料性能的影响。研究发现,蒙脱土片层的解离程度和蒙脱土片
    层的取向是影响纳米复合材料的性能的两个关键因素。研究还发现,在蒙脱土
    的含量较低时,聚丙烯/蒙脱土纳米复合材料能够达到同时增强、增韧的效果。
     本文采用PLM、WAXD、SAXS对纳米复合材料中聚丙烯的结晶结构从球
    晶的尺寸到晶片厚度进行了全面的研究,系统地讨论了蒙脱土片层的加入对聚
    丙烯的形态结构的影响。蒙脱土片层在聚丙烯的结晶过程中起到了有效的成核
    作用。由于纳米级分散的蒙脱士片层与聚丙烯有很好的相互作用,对聚丙烯的
    结晶起阻碍作用,使晶片厚度和结晶度降低,对无定形区的影响很小。蒙脱土
    的分散尺寸越小、分散越均匀,对结晶的影响更明显。
     本文还通过DSC对聚丙烯/蒙脱土纳米复合材料的等温结晶动力学和非等
    温结晶行为进行研究。由于剥离的蒙脱土片层具有更好的成核作用,蒙脱土的
    
     四川大学博土学位论文
     含量为 IWt%的纳米复合材料的结晶速率最快。聚丙烯及其纳米复合材料在等温
     结晶过程中基本上满足Avrami方程,结晶活化能明显降低。聚丙烯/蒙脱土纳
     米复合材料的结晶温度增加,熔融温度和结晶度有一定的降低。
     本论文的特色和创新性主襄表现在以下几个方面:
     1.我们采用扫描电子显微镜(SEM)、广角X-射线衍射(WAXD)和透射电镜
     (TEM)相结合,从宏观到微观的不同层次上研究蒙脱土片层在聚合物基体
     中的分散情况。首次对不同混合时间、不同混合设备以及加工工艺进行研究,
     由此提出纳米复合材料的形成过程和剥离机理。特别是发现了蒙脱土的插层
     和剥离过程在1分钟内就已经发生,而且时间的增加会导?
Polymer melt intercalation is a more versatile approach to make polymer layered silicate nanocomposites, which has been most widely investigated in recent years. The thermodynamics and kinetics theories involved in polymer melt intercalation have also been intensively reported. However, most of the theoretic simulations are too ideal to describe the formation of polymer melt intercalation. The formation mechanism of polymer nanocomposites is the key to the development of nanocomposite. The final properties of the fabricated articles
    depend on mainly the exfoliation and dispersion of the platelets. In this work, Polypropylene (PP) /montmorillonite (MMT) nanocomposite made by melt intercalation was chosen to study the melt intercalation process, exfoliation mechanism, morphology and properties of polymer nanocomposites.
    First, The formation process and exfoliation mechanism were investigated by WAXD and SEM. Based on the results from melt compounding time, temperature, shear force, a model of nanocomposites formation and exfoliation was proposed. At the same time, influences factor in nanocomposite formation were also discussed. We found that the melt intercalation process has occured in one minute and MMT layers may aggregate as the increasing of the compounding time. The final structure of nanocomposites depends on the interaction between polymer and silicate, the content
    
    
    of compatibilizer, shear force, compounding time, melt temperature and polymer melt viscosity.
    In order to improve the dispersion of MMT in PP matrix, the prepared PP/MMT nanocomposites via direct melt intercalation were further subject to oscillating stress achieved by dynamic packing injection molding. Shear induced morphological changes were investigated by WAXD, SEM and TEM, as well as Instron. The original nanocomposites possess a partly intercalated and partly exfoliated morphology. A transformation of intercalated structure into exfoliated structure was found after shearing, and more homogeneous dispersion of MMT in PP matrix was obtained. On the other hand, the orientation of PP chains in PP/MMT nanocomposites becomes very difficult under external shear force, which indicates that the molecular motion of PP chain intercalated between MMT layers is highly confined.
    Most of articles on polymer nanocomposites focus on the importance of the chemistry used to modify the surface of the clay, usually montmorillonite(MMT) and characterization of the nano-scale structure obtained. The role and importance of processing was also discussed recently. However, few papers concerning the correlation between morphology of MMT and mechanical properties were reported. In order to better understand the tensile behavior of PP/ Montmorillonite(MMT) nanocomposites, and further improve the reinforcement efficiency, we prepared the PP nanocomposites via direct melt intercalation using conventional twin-screw extrusion. The macroscopic and microscopic dispersion of MMT in PP matrix was verified by XRD and TEM, combined with SEM. While the tensile property was
    obtained by video-controlled tensile set-up, which gives true stress-strain curve. The orientation of silicates platelets and the degree of exfoliation are two key factors to determine the reinforcement efficiency. The other properties of nanocomposites are also discussed.
    
    
    The crystal morphologies were investigated by PLM, WAXD, and SAXS. It is found that exfoliation MMT layers can serve as the nucleating agent, which speed up the crystallization rate of the nanocomposites and also causes the decreasing of crystal size. The melting point and lamellar of PP nanocomposite were found decreased, compared with the pure PP, which is an indication of a strong interaction between PP and MMT. In this case, it can be considered that PP crystallizes in a confined space.
引文
1.Eric Drexler. Unbounding the Future: the Nanotechnology Revolution. New York. William Morrow and Compony. Inc. 1991: Chap 1.7
    2.Chris Oriakhi. Nano sandwiches. Chemistry in Britain. 1998.34 (1): 59~62
    3.薛群基,阎逢元.纳米微粒填充聚合物复合材料的摩擦学特性.纳米有机复合材料应用技术研讨会论文集.1999(北京):21
    4.Mo CM, Zhang LD, Xie CY. Luminescence of nanometer-sized amorphous silicon nitride solids. J.Appl.Phys. 1993.73:5185~5193
    5.Carotenuto G, Nicolais L. Correlation between fragility and microstructure in organic-inorganic nanocomposites. Science & Engineering of Composite Materials. 1996. 5(2):57~61
    6.尚修勇,朱子康,印杰.可溶性PI/SiO_2纳米复合材料的制备及其性能研究.高分子学术论文报告会论文集.1999(上海):f~166
    7.刘景春,韩建成.跨世纪高科技材料纳米SiO_2的应用领域.化工新型材料.1998.7:3~6
    8.Maeda S, Armes S P. Preparation and characterisation of novel polypyrrole-silica colloidal nanocomposites. J. Mat. Chem. 1994.4 (6): 935~942
    9.Pu ZC, Mark JE, Jethmalani JM, Ford WT. Mechanical properties of a polymethyl acrylate nanocomposite containing regularly-arranged silica particles. Polymer Bulletin. 1996. 37:545~551
    10.盛京,孙琦.多孔超细SiO_2粒子的合成及其与聚合物的复合.纳米有机复合材料应用技术研讨会论文集.1999(北京):18
    11.胡圣飞,徐声钧,李纯清.纳米级无机粒子对塑料增韧增强研究进展.塑料.1998.27(4):13~16
    12.王旭,黄锐.PP/纳米级CaCO_3复合材料的性能研究.中国塑料.1999.13(10):22~25
    13.胡平,张天翔.聚合物填料型超高分子量聚乙烯/碳纳米管复合材料的研究.高分子学术论文报告会论文集.1999(上海):f~71
    
    
    14. Vaia RA, Vasudevan S, Krawiec W, Scanlon LG, Giannelis EP. New polymer electrolyte nanocomposites: melt intercalation of poly (ethylene oxide) in mica-type silicate. Adv. Mater. 1995. 7:154-156
    15. Favier V, Chanzy H, Cavaille JY. Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules. 1995. 28: 6365-6367
    16. Helbert W, Cavaille J Y, Dufresne A. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. I. Processing and mechanical behaviour. Polym. Composites. 1996. 17 (4) : 604-611
    17. Favier V, Canova G R, Shrivastava S C, Cavaille J Y. Mechanical percolation in cellulose whisker nanocomposites. Polym. Engng. Sci. 1997. 37(10) : 1732-1739
    18. Chazeau L, Cavaille JY, Perez J. Plasticized PVC reinforced with cellulose whiskers, Ⅱ, plastic behavior. J. Polym. Sci. Poly. Phys. 2000. 38: 383-392
    19. 王一中,董华,余鼎声.尼龙6/凹凸棒土纳米复合材料的合成.合成树脂及塑料.1997. 14 (2) :16-18
    20. Giannelis EP. Polymer layered silicate nanocomposites. Adv. Mater. 1996. 8(1) : 29-35
    21. Wang L, Brazis P, Rocci M, Kannewurf CR, Kanatzidis MG. A new redox host for intercalative polymerization: Insertion of polyaniline into alpha-RuCl3. Chem. Mater. 1998. 10 (11) : 3298-3300
    22. Heising J, Bonhomme F, Kanatzidis MG. Toward pillared metai sulfides: Encapsulation and Rietveld structural characterization of the Al13O4(OH)(24) (H2O)(12) (7+) cluster into MoS2 and WS2. Journal of Solid State Chemistry. 1998. 139(1) : 22-26
    23. Gonzalez G, Santaana MA, Benavente E. Lithium chemical diffusion coefficients in poly (ethylene oxide)-molybdenum sulfide nanocomposites. Journal of Physics & Chemistry of Solids. 1997. 58 (9) : 1457-1460
    24. Yang D, Westreich P, Frindt RF. Transition metai dichalcogenide/polymer nanocomposites. Nanostructured Materials. 1999. 12 (1-4 Part A Special Issue SI): 467-470
    25. Hernan L, Morales J, Santos J. Synthesis and characterization of poly (ethylene oxide) nanocomposites of misfit layer chalcogenides. Journal of Solid State Chemistry. 1998. 141(2) : 323-329
    26. Gonzalez G, Santa Ana MA, Benavente E. Mixed conductivity and lithium diffusion in poly
    
    (ethylene oxide) molybdenum disulfide nanocomposites. Electrochimica Acta. 1998. 43(10-11) : 1327-1332
    27. Lemmon JP, Lerner MM. Preparation and characterization of nanocomposites of polyethers and molybdenum disulfide. Chem. Mater. 1994. 6 (2) : 207-210
    28. Lemmon JP, Wu JH, Oriakhi C, Lerner MM. Preparation of nanocomposites containing poly (ethylene oxide) and layered solids. Electrochimica Acta. 1995. 40 (13-14) : 2245-2249
    29. Lemmon JP, Lerner MM. Preparation of nanocomposites of poly (ethylene oxide) with TiS2. Solid State Communications. 1995. 94 (7) : 533-537
    30. Jeevanandam P, Vasudevan S. Intercalation of alkali metai polyethylene oxide polymer electrolytes in layered CdPS3. Chemistry of Materials. 1998. 10(5) : 1276-1285
    31. Lacroix PG, Clement R, Nakatani K, Zyss J, Ledoux I. Stilbazolium-MPS(3) nanocomposites with large 2nd-order optical nonlinearity permanent magnetization. Science. 1994. 263 (5147) : 658-660
    32. Oriakhi CO, Lerner MM. Rapid and quantitative displacement of poly (ethylene oxide) from MnPS3 and other layered hosts. Chem. Mater. 1996. 8 (8) : 2016-2022
    33. Matsuo Y, Hatase K, Sugie Y. Preparation and characterization of poly (vinyl alcohol)-and Cu(OH)(2) poly(vinyl alcohol)-intercalated graphite oxides. Chem. Mater. 1998. 10 (8) : 2266-2269
    34. Matsuo Y, Tahara K, Sugie Y. Structure and thermal properties of poly (ethylene oxide)-intercalated graphite oxide. Carbon. 1997. 35 (1) : 113-120
    35. Lei Wang, Schindler J, Kannewurf C R, Kanatzidis M G. Lamellar polymer-LixMoO3 nanocomposites via encapsulative precipitation. J. Mater. Chem. 1997. 7(7) : 1277-1283
    36. Nazar LF, Wu H, Power WP. Synthesis and properties of a new (PEO)(x)[Na(H2O)]0. 25MoO3 nanocomposite. J. Mater. Chem. 1995. 5 (11) : 1985-1993
    37. Kerr TA, Leroux F, Nazar LF. Surfactant-mediated incorporation of poly(p-phenylene) into MoO3. Chem. Mater. 1998. 10 (10) : 2588-2591
    38. Tagaya H, Takeshi K, Ara K, Kadokawa J, Karasu M, Chiba K. Preparation of new organic-inorganic nanocomposite by intercalation of organic compounds into MoO3 by ultrasound. Materials Research Bulletin. 1995. 30 (9) : 1161-1171
    39. Liu Y J, Schindler J L, DeGroot D C, Kannewurf C R, Hirpo W, Kanatzidis M G. Synthesis,
    
    structure, and reactions of poly(ethylene oxide)/ V2O5 intercalative nanocomposites. Chem. Mater. 1996. 8 (2) : 525-534
    40. Goward GR, Leroux F, Nazar LF. Poly(pyrrole) and poly(thiophene)/vanadium oxide interleaved nanocomposites: positive electrodes for Hthium batteries. Electrochimica Acta. 1998. 43(10-11) : 1307-1313
    41. Harreld J, Wong HP, Dave BC, Dunn B, Nazar LF. Synmesis and properties of polypyrrole vanadium oxide hybrid aerogels. Journal of Non-Crystalline Solids. 1998. 225 (1) : 319-324
    42. Wu CG, Degroot DC, Marcy HO, Schinder JL, Kannewurf CR, Liu YJ, Hirpo W, Kanatzidis MG. Redox intercalative polymerization of anline in V2O5 xerogel. The postintercalative intralamellar polymer growth in polyaniline/metal oxide nanocomposites is facilitated by molecular oxygen. Chem. Mater. 1996. 8 (8) : 1992-2004
    43. Kloster GM, Thomas JA, Brazis PW, Kannewurf CR, Shriver DF. Synthesis, characterization, and transport properties of new mixed ionic-electronic conducting V2O5-polymer electrolyte xerogel nanocomposites. Chem. Mater. 1996. 8 (10) : 2418-2430
    44. Melanova K, Benes L, Zima V, Vahalova R, Kilian M. Intercalation of poly(oxyethylene) compounds into the MOXO4 (M = V, Nb; X = P, As) host lattice. Chem. Mater. 1999. 11 (8) : 2173-2178
    45. Zarbin AJG, Maia DJ, De Paoli MA, Alves OL. Polyaniline intercalation in alpha-Sn(HPO4) (2) .H2O . Synthetic Metals. 1999. 102 (1-3) : 1277-1278
    46. Costantino U, Casciola M, Pani G, Jones DJ, Roziere J. Vibrational spectroscopic characterisation of protonic conducting polyethyleneimine-alpha-and gamma-zirconium phosphate nanocomposites. Solid State lonics. 1997. 97 (1-4) : 261-267
    47. Ding Y, Jones DJ, Mairelestorres P, Roziere J. Two-dimensional nanocomposites: alternating inorganic polymer layers in zirconium phosphate. Chem. Mater. 1995. 7 (3) : 562-571
    48. Kaschak DM, Johnson SA, Hooks DE, Kim HN, Ward MD, Mallouk TE. Chemistry on the edge: A microscopic analysis of the intercalation, exfoliation, edge functionalization, and monolayer surface tiling reactions of alpha-zirconium phosphate. Journal of the American Chemical Society. 1998. 120 (42) : 10887-10894
    49. Destefanis A, Foglia S, Tomlinson AAG. Assembly and polymerisation of some aromatic
    
    amines in alpha-VOPO4-center-dot-2H(2) O. J. Mater. Chem. 1995. 5 (3) : 475-483
    50. Bhuvanesh NSP, Gopalakrishnan J. Polymerization of aniline in layered HMMoO6 center dot H2O (M = Nb, Ta). Materials Science & Engineering B-Solid State Materials for Advanced Technology. 1998. 53 (3) : 267-271
    51. Koene BE, Nazar LF. Synthesis and electrochemical lithium insertion in polyaniline / HMWO(6) (M=TA,NB) nanocomposites. Solid State Ionics. 1996. 89 (1-2) : 147-157
    52. Yin S, Uchida S, Fujishiro Y, Aki M, Sato T. Phase transformation of protonic layered tetratitanate under solvothermal conditions. J. Mater. Chem. 1999. 9 (5) : 1191-1195
    53. Whilton NT, Vickers PJ, Mann S. Bioinorganic clays-synthesis and characterization of amino-and polyamino acid intercalated layered double hydroxides. J. Mater. Chem. 1997. 7 (8) : 1623-1629
    54. Oriakhi CO, Farr Ⅳ, Lerner MM. Thermal characterization of poly (styrene sulfonate) layered double hydroxide nanocomposites. Clays & Clay Minerals. 1997. 45 (2) : 194-202
    55. Oriakhi CO, Farr Ⅳ, Lerner MM. Incorporation of poly (acrylic acid), poly (vinylsulfonate) and poly(styrenesulfonate) within layered double hydroxides. J. Mater. Chem. 1996. 6 (1) : 103-107
    56. Tunney JJ, Detellier C. Interlamellar amino functionalization of kaolinite. Canadian Journal ofChemistry. 1997. 75(11) : 1766-1772
    57. Kyu T, Zhou ZL, Zhu GC, Tajuddin Y, Qutubuddin S. Novel filled polymer composites prepared from in situ polymerization via a colloidal approach. I. Kaolin/nylon-6 in situ composites. J. Polym. Sci. Polym. Phys. 1996. 34: 1761-1768
    58. Messersmith PB, Stupp SI. Synthesis of nanocomposites: organoceramics. Chem. Mater. 1992. 7 (9) : 2599-2611
    59. Messersmith PB, Stupp SI. High-temperature chemical and microstructural transformations of a nanocomposite organoceramic. Chem. Mater. 1995. 7 (3) : 454-460
    60. Messersmith PB, Osenar P, Stupp SI. Preparation of a nanostructured organoceramic and its reversible interlayer expansion. J. Mater. Res. 1999. 14 (2) : 315-318
    61. Ibrahim MA, Lee BG, Park NG, Pugh JR, Eberl DD, Frank AJ. Synthesis of new oligothiophene derivatives and their intercalation compounds: orientation effects. Synthetic Metals. 1999. 105 (1) : 35-42
    
    
    62. Burnside SD, Wang HC, Giannelis EP. Direct polymer intercalation in single crystal vermiculite. Chem. Mater. 1999. 11 (4) : 1055-1060
    63. Messersmith PB, Giannelis EP. Polymer-layered silicate nanocomposites: in situ intercalation polymerisation of epsilon-caprolactone in layered silicates. Chem. Mater. 1993. 5 (8) : 1064-1066
    64. Tamura K, Nakazawa H. Intercalation of n-alkyltrimethylammonium into swelling fluoro-mica. Clays & Clay Minerals. 1996. 44 (4) : 501-505
    65. Carrado KA, Thiyagarajan P, Elder DL. Pplyvinyl alcohol clay complexes formed by direct synthesis. Clays & Clay Minerals. 1996. 44 (4) : 506-514
    66. Porter TL, Hagerman ME, Reynolds BP, Eastman MP, Parnell RA. Inorganic/organic host-guest materials: Surface and interclay reactions of styrene with copper(Ⅱ)-exchanged hectorite. J. Polym. Sci. Part B-Polym. Phys. 1998. 36 (4) : 673-679
    67. Fischer HR, Gielgens LH, Koster TPM. Nanocomposites from polymers and layered minerals. Acta Polym. 1999. 50: 122-126
    68. Lan T, Kaviratna PD, Pinnavaia TJ. Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chem. Mater. 1995. 7 (11) : 2144-2150
    69. Kurokawa Y, Yasuda H, Oya A. Preparation of a nanocomposite of polypropylene and smectite. J. Mat. Sci. Lett. 1996. 15: 1481-1483
    70. Dong Choo Lee, Lee Wook Jang. Preparation and characterisation of PMMA-clay hybrid composite by emulsion polymerisation. J. Appl. Polym. Sci. 1996. 61 (7) : 1117-1122
    71. Akelah A, Moet A. Polymer-clay nanocomposites: free-radical grafting of polystyrene on to organophilic montmorillonite interlayers. J. Mater. Sci. 1996. 31 (13) : 3589-3596
    72. Akelah A, Moet A. Synthesis of organophilic polymer-clay nanocomposites. J. Appl. Polym. Sci. Appl. Polym. Symp. 1994. 55: 153-172
    73. Lan T, Pinnavaia TJ. Clay-reinforced epoxy nanocomposites. Chem. Mater. 1994. 6 (12) : 2216-2219
    74. Wang MS, Pinnavaia TJ. Clay-polymer nanocomposites formed from acidic derivatives of montmorillonite and an epoxy resin. Chem. Mater. 1994. 6 (4) : 468-474
    75. Wu J, Lerner MM. Structural, Thermal, and electrical characterization of layered nanocomposites derived from Na-montnorillonite and polyethers. Chem. Mater. 1993. 5 (6) :
    
    835-838
    76. Lan T, Kaviratna PD, Pinnavaia TJ. On the nature of polyimide clay hybrid composites. Chem. Mater. 1994. 6 (5) : 573-575
    77. Hutchison JC, Bissessur R, Shriver DF. Conductivity anisotropy of polyphosphazene-montmorillonite composite electrolytes. Chem. Mater. 1996. 8 (8) : 1597-1599
    78. Laus M, Francescangeli O, Sandrolini F. New hybrid nanocomposites based on an organophilic clay and poly(styrene-b-butadiene) copolymers. J. Mater. Res. 1997. 12 (11) : 3134-3139
    79. Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A. Preparation and mechanical properites of polypropylene-clay hybrids. Macromolecules. 1997. 30 (20) : 6333-6338
    80. Ogata N, Kawakage S, Ogihara T. Poly (vinyl alcoho!)-clay and poly (ethylene oxide)-clay blends prepared using water as solvent. J. Appl. Polym. Sci. 1997. 66 (3) : 573-581
    81. Jimenez G, Ogata N, Kawai H, Ogihara T. Structure and thermal/mechanical properties of poly (epsilon-caprolactone)-clay blend. J. Appl. Polym. Sci. 1997. 64 (11) : 2211-2220
    82. Ogata N, Jimenez G, Kawai H, Ogihara T. Structure and thermal/mechanical properties of poly(1-lactide)-clay blend. J. Polym. Sci. Part B-Polym. Phys. 1997. 35 (2) : 389-396
    83. Oriakhi CO, Nafshun RL, Lerner MM. Preparation of nanocomposites of linear poly(ethylenimine) with layered hosts. Mater. Res. Bull. 1996. 31 (12) : 1513-1520
    84. Srikhirin T, Moet A, Lando JB. Polydiacetylene-inorganic clay nanocomposites. Polymers for Advanced Technologies. 1998. 9 (8) : 491-503
    85. Wang SJ, Long CF, Wang XY, Li Q, Qi ZN. Synthesis and properties of silicone rubber organomontmorillonite hybrid nanocomposites. J. Appl. Polym. Sci. 1998. 69 (8) : 1557-1561
    86. Lee DC, Jang LW. Characterization of epoxy-clay hybrid composite prepared by emulsion polymerization. J. Appl. Polym. Sci. 1998. 68 (12) : 1997-2005
    87. Fournaris KG, Karakassides MA, Petridis D, Yiannakopoulou K. Clay-polyvinylpyridine nanocomposites. Chemistry of Materials. 1999. 11 (9) : 2372-2381
    88. Noh MH, Jang LW, Lee DC. Intercalation of styrene-acrylonitrile copolymer in layered silicate by emulsion polymerization. J. Appl. Polym. Sci. 1999. 74 (1) : 179-188
    
    
    89. Zhu ZK, Yang Y, Yin J, Wang XY, Ke YC, Qi ZN. Preparation and properties of organosoluble montmorillonite polyimide hybrid materials. J. Appl. Polym. Sci. 1999. 73(11): 2063~2068
    90. Noh MW, Lee DC. Synthesis and characterization of PS-clay nanocomposite by emulsion polymerization. Polymer Bulletin. 1999. 42 (5): 619~626
    91. Chen TK, Tien YI, Wei KH. Synthesis and characterization of novel segmented polyurethane clay nanocomposite via poly (epsilon-caprolactone)/clay. J. Polym. Sci. Part A-Polym. Chem. 1999. 37 (13): 2225~2233
    92. Liu LM, Qi ZN, Zhu XG. Studies on nylon 6/clay nanocomposites by melt-intercalation process. J. Appl. Polym. Sci. 1999. 71(7):1133~1138
    93. Ke YC, Long CF, Qi ZN. Crystallization, properties, and crystal and nanoscale morphology of PET-clay nanocomposites. J. Appl. Polym. Sci. 1999. 71 (7): 1139~1146
    94. Messersmith PB, Giannelis EP. Synthesis and barrier properties of poly (ε-caprolactone)-layered silicate nanocomposites. J. Polym. Sci. Polym. Chem. 1995. 33:1047~1057
    95. Frisch HL, Mark JE. Nanocomposites prepared by threading polymer chains through zeolite, mesoporous silica, or silica nanotubes. Chem. Mater. 1996. 8:1735~1738
    96.孙维林,王铁军,刘庆旺.粘土理化性能.中国地质出版社.北京.1992:58
    97. Liu LM, Qi ZN, Zhu XG. Studies on Nylon 6/clay nanocomposites by melt-intercalation process. J.Appi. Polym. Sci. 1999.71:1133~1138
    98. Matejka L, Plestil J. Structure development during sol-gel process in organic-silica networks.Macromolecular Symposia. 1997. 122:191~196
    99.陈艳,王新宇,高宗明,朱晓光,漆宗能.聚酰亚胺/二氧化硅纳米尺度复合材料的研究.高分子学报.1997.(1)73~79
    100. Liu G, Ding J, Guo A. et al. Poential skin layers for membranes with tunable nanochannels. Macromolecules. 1997.30:1851~1855
    101. Tian D, Dubois Ph, Jerome R. A new poly(ε-caprolactone) containing hybrid cermer prepared by sol-gel process. Polymer. 1996.37(17): 3983~3987
    102.赵竹第,高宗明等.苯乙烯-马来酸酐共聚物/聚硅氧烷纳米尺度复合材料的研究.高分子学报.1996.2:228~233
    
    
    103.应圣康,袁荞龙,喻志刚.中国专利申请号:99119829.8
    104.李旭华,袁荞龙,王得宁,应圣康.杂化材料的制备、性能及应用.功能高分子学报.2000.13(2):211~218
    105.熊传溪,等.以超微细Al_2O_3作种子乙酸乙烯酯的乳液聚合的研究.高分子材料科学与工程.1995.11(6):45~52
    106. Shang SW, Wiuiams JW, et al. Preparation and Properties of EVA/SiO_2 hybrid materials. J.Mater. Sci. 1992.27:4949~4954
    107.胡平,范守善等.碳纳米管/UHMWPE复合材料的研究.工程塑料应用.1998.26(1):1~3
    108. Burnside SD, Giannelis EP. Nanostructure and properties of polysiloxane-layered silicate nanocomposites. J. Polym. Sci: part B: Polym. Physics. 2000. 38:1595~1604
    109. Rong MZ, Zhang MQ, Zhang YX, Zeng HM, Walter R, Friedrich K. Irradiation graft polymerization on nano-inorganic particles: an effective means to design polymer-based nanocomposites. J. Mater. Sci. Lett. 2000. 19:1159~1161
    110.罗忠富,黄锐,卢艾等.表面处理对HDPE/nano-CaCO_3复合材料性能的影响.中国塑料.1999,13(11):47~51
    111.赵竹第,李强,欧玉春,漆宗能,王佛松.尼龙-6/蒙脱土纳米复合材料的制备、结构与力学性能的研究.高分子学报.1997.(5):519~523
    112. Okada A, Kawasumi M, Kurauchi T, Kamigaiti O. Synthesis and characterization of a nylon 6-clay hybrid. Polym. Prepr. 1987.28:447~448
    113. Tsai Hui-Lien, Schindler JL, Kannewurf CR, Kanatzidis MG. Plastic superconducting polymer-NbSe_2 nanocomposites. Chem. Mater. 1997.9:875~878
    114. Kojima Y, Matsuoka T, Takahashi H, Kurauchi T. Crystallization of nylon 6-clay hybrid by annealing under elevated pressure. J. Appl. Polym. Sci. 1994. 51:683~687
    115.章永化.华南理工大学博士学位论文.1996.7
    116.王胜杰,李强,漆宗能等.硅橡胶/蒙脱土复合材料的制备、结构与性能.高分子学报.1998.2:149~153
    117. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP. Kinetics of polymer melt intercalation.Macromolecules. 1995.28:8080~8085
    118. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP. Microstructural evolution of melt intercalated
    
    polymer-organically modified layered silicates nanocomposites. Chem. Mater. 1996. 8: 2628-2635
    119. 刘立敏,乔放,朱晓光,漆宗能.1997年全国高分子学术论文报告会论文集.1997(合 肥).2:fl 11
    120. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. & Eng. 2000. R28 (1-2) : 1-59
    121. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O. Synthesis and properties of polyimide-clay hybrid. J. Polym. Sci.: part A: Polym. Chem. 1993. 31: 2493-2498
    122. Carrado KA, Xu LQ. In-situ synthesis of polymer-clay nanocomposites from silicate gels. Chem. Mater. 1998. 10: 1440-1445
    123. Furuchi N, Kurokawa Y, Oya A. Preparation and properties of polypropylene reinforced by smectite. J. Mater. Sci. 1996. 31: 4307-4310
    124. Kurokawa Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O. One-pot synthesis of Nylon-6 clay hybrid. J. Polym. Sci.: part A: Polym. Chem. 1993. 31: 1755-1758
    125. Dennis HR, Hunter DL, Chang D, Kim S, et al. Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer. 2001. 42: 9513-9522
    126. Messersmith PB, Giannelis EP. Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem. Mater. 1994. 6: 1719-1725
    127. 张国耀,易国祯,漆宗能等.聚对苯二甲酸乙二醇酯/蒙脱土纳米复合材料的制备和性 能.高分子学报.1999. (3) :309-314
    128. Yang F, Ou YC, Yu ZZ. Polyamide 6/silica nanocomposites prepared by in situ polymerization. J. Appl. Polym. Sci. 69: 355-361
    129. Zerda AS, Lesser AJ. Intercalated clay nanocomposites: morphology, mechanics, and fracture behavior. J. Polym. Sci. part B: polym. Physics. 2001. 39: 1137-1146
    130. Shi HZ, Lan T, Pinnavaia TJ. Interfacial effects on the reinforcement properties of polymer-organoclay nanocomposites. Chem.Mater. 1996. 8: 1584-1587
    131. Tseng CR, Wu JY, Lee HY, chang FC. Preparation and crystallization behavior of syndiotactic polystyrene-clay nanocomposites. Polymer. 2001. 42: 10063-10070
    132. Strawhecker KE, Manias E. Structure and properties of Poly (vinyl alcohol) /
    
    Na~+-montmorillonite nanocomposites. Chem. Mater. 2000. 12:2943~2949
    133. Reichert P, Nitz H, Klinke S, Brandsch R, Thomann R, Miilhaupt. Poly (propylene) / organoclay nanocomposite formation: influence of compatibilizar functionality and organoclay modification. Macromol. Mater. Eng. 2000. 275:8~17
    134. Usuki A, Kato M, Okada A, Kurauchi T. Synthesis of polypropylene-clay hybrid. J. Appl. Polym. Sci. 1997.63:137~139
    135. Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A. Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride-modified polypropylene oligomer. J. Appl. Polym. Sci. 1998.67:87~92
    136. Oya A, Kurokawa Y, Yasuda H. Factors controlling mechanical properties of clay mineral/ polypropylene nanocomposites. J. Mater. Sci. 2000. 35:1045~1050
    137. Hasegawa N, Okamoto H, Kato M, Usuki A. Preparation and mechanical properties of polypropylene-clay hybrids based on modified polypropylene and organophilic clay. J. Appl. Polym. Sci. 2000. 78. 1918~1922
    138. Wang KH, Choi MH, Koo CM, Choi YS, Chung IJ. Synthesis and characterization of maleated polyethylene/clay nanocomposites. Polymer. 2001.42:9819~9826
    139. Heinemann J, Reichert P, Thomann R, Mulhaupt R. Polyolefin nanocomposites formed by melt compounding and transition metal catalyzed ethane homo-and copolymerization in the presence of layered silicates. Macromol. Rapid Commun. 1999. 20(8): 423~430
    140. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Fredrich K. Structure-property relationships of irradiation grafted nano=inorganic particle filled polypropylene composites. Polymer. 2001.42:167~183
    141. Liu XH, Wu QJ. PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer. 2001.42:10013~10019
    142.柯扬船,漆宗能,聚酯/层状硅酸盐纳米复合材料的制备与性能.1997年全国高分子学术论文报告会论文集.1997(合肥).2:f101
    143.王新宇,王胜杰,李强,漆宗能.聚甲基丙烯酸甲酯/蒙脱土纳米复合材料的研究.1997年全国高分子学术论文报告会论文集.1997(合肥).2:f113
    144.王新宇,王胜杰,李建科,漆宗能.HIPS/蒙脱土纳米复合材料的研究.1997年全国高分子学术论文报告会论文集.1997(合肥).2:f115
    
    
    145. Hambir S, Bulakh N, Kodgire P, Kalgaonkar R, Jog JP. PP/clay nanocomposites: a study of crystallization and dynamic mechanical behavior. J. Polym. Sci: Part B: Polym. Phys. 2001. 39:446-450
    146. Kodgire P, Kalgaonkar R, Hambir S, Bulakh N, Jog JP. PP/clay nanocomposites: Effect of clay treatment on morphology and dynamic mechanical properties. J. Appl. Polym. Sci. 2001. 81: 1786-1792
    147. Gilman JW, Jackson CL, Morgan AB, et al. Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem. Mater. 2000. 12: 1866-1873
    148. Dietsche F, Mulhaupt R. Thermal properties and flammability of acrylic nanocomposites based upon organophilic layered silicates. Polym. Bull. 1999. 43: 395-402
    149. Zanetti M, Lomakin S, Camino G. Polymer layered silicate nanocomposites. Macromol. Mater. Eng. 2000. 279: 1-9
    150. Yang Y, Zhu ZK, Yin J, Wang XY, Qi ZN. Preparation and properties of hybrids of organo-soluble polyimide and montmorillonite with various chemical surface modification methods. Polymer. 1999. 40: 4407-4414
    151. Wu JH, Lerner MM. Structural, thermal, and electrical characterization of layered nanocomposites derived from Na-montmorillonite and polyethers. Chem. Mater. 1993. 5: 835-838
    152. Tsai HL, Schindler JL, Kannewurf CR, Kanatzidis G. Plastic superconducting polymer-NbSe2 nanocomposites. Chem. Mater. 1997. 9: 875-878
    153. 邹志明,章永化,龚克成.改性蒙脱土对聚丙烯的抗紫外老化作用.中国塑料. 2000. 14(11) :81-83
    154. Vaia RA, Giannelis EP. Lattice modei of polymer melt intercalation in organically-modified layered silicates. Macromolecules. 1997. 30: 7990-7999
    155. Vaia RA, Giannelis EP. Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules. 1997. 30: 8000-8009
    156. Lee JY, Baljon ARC, Loring RF. Simulation of polymer melt intercalation in layered nanocomposites. J. Chem. Phys. 1998. 109(23) : 10321-10330
    157. Lee JY, Baljon ARC, Loring RF. Spontaneous swelling of layered nanostructures by a
    
    polymer melt. J. Chem. Phys. 1999. 111(21) : 9754-9760
    158. Hackett E, Manias E, Giannelis EP. Molecular dynamics simulations of organically modified layered silicated. J. Chem. Phys. 1998. 108(17) : 7410-7415
    159. Hackett E, Manias E, Giannelis EP. Computer simulation studies of PEO/layer silicate nanocomposites. Chem. Mater. 2000. 12: 2161-2167
    160. Baljon ARC, Lee JY, Loring RF. Molecular view of polymer flow into a strongly attractive slit. J. Chem. Phys. 1999. 111(19) : 9068-9072
    161. Branka AC, Heyes DM. Dispersions of rodlike particles in shear flow by Brownian dynamics simulations. J. Chem. Phys. 1998. 109(1) : 312-317
    162. Manias E, Chen H, Krishnamoorti R, Genzer J, Kramer EJ, Giannelis EP. Intercalation kinetics of long polymer in 2 nm confinements. Macromolecules. 2000. 33: 7955-7966
    163. Giannelis EP, Chen H, Demeter J, Manias E, et al. Mobility of polymers in nanometer slits: kinetics of polymer melt intercalation in layered silicated. Polym. Prepr. 1999. 40(2) : 91-92
    164. Lyatskaya Y, Balazs AC. Modeling the phase behavior of polymer-clay composites. Macromolecules. 1998. 31: 6676-6680
    165 .Balazs AC, Singh C, Zhulina E. Modeling the interactions between polymers and clay surfaces through self-consistent field theory. Macromolecules. 1998. 31: 8370-8381
    166. Balazs AC, Singh C, Zhulina E, Lyatskaya Y. Modeling the phase behavior of polymer/clay nanocomposites. Acc. Chem. Res. 1999. 32: 651-657
    167. Singh C, Balazs AC. Effect of polymer architecture on the miscibility of polymer/clay mixtures. Polym. Int. 2000. 49:469-471
    168. Ginzburg VV, Balazs AC. Calculating phase diagrams of polymer-platelet mixtures using desity functional theory: implications for polymer/clay composites. Macromolecules. 1999. 32: 5681-5688
    169. Ginzburg VV, Singh C, Balazs AC. The phase diagrams of po!ymer/clay composites: the role of grafted organic modifiers. Macromolecules. 2000. 33: 1089-1099
    170. Ogawa M, Kuroda K. Preparation of inorganic-organic nanocomposites through intercalation of organoammonium ions into layered silicates. Bull. Chem. Soc. Jpn. 1997. 70: 2593-2618
    171. Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O. Swelling behavior of montmorillonite cation exchanged for ω-amino acids by e-caprolactam. J. Mater. Res. 1993.
    
    8(5) :1174-1178
    172. 李强,赵竹第,欧玉春,漆宗能,王佛松.尼龙6/蒙脱土纳米复合材料的结晶行为.高 分子学报.1997. (1) :188-193
    173. Vaia RA, Sauer BB, Tse OK, Giannelis EP. Relaxations of confined chains in polymer nanocomposites: glass transition properties of poly (ethylene oxide) intercalated in montmorillonite. J. Polym. Sci.: part B: Polym. Phys. 1997. 35: 59-67
    174. Wang KH, Xu MZ, Choi YS, Chung IJ. Effect of aspect ratio of clay on melt extensional process of maleated polyethylene/clay nanocomposites. Polym. Bull. 2001. 46: 499-505
    175. Shelley JS, Mather PT, DeVries KL. Reinforcement and environment degradation of nylon-6/clay nanocomposites. Polymer. 2001. 42: 5849-5858
    176. Krishnamoorti R, Vaia RA, Giannelis EP. Structure and dynamics of polymer-layered silicate nanocomposites. Chem. Mater. 1996. 8: 1728-1734
    177. Krishnamoorti R, Giannelis EP. Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules. 1997. 30: 4097-4102
    178. Galgali G, Ramesh C, Lele A. A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites. Macromolecules. 2001. 34: 852-858
    179. Solomon MJ, Almusallam AS, Seefeldt KF, et al. Rheology of polypropylene/clay hybrid materials. Macromolecules. 2001. 34: 1864-1872
    180. Nam PH, Maiti P, Okamoyo M, Kotaka T, Hasegawa N, Usuki A. A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites. Polymer. 42. 21: 9633-9640
    181. Ren JX, Silva AS, Krishnamoorti R. Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules. 2000, 33:3739-3746
    182. Upadhyay RD, Kale DD. Properties of polypropylene filled with synthetic sodium aluminum silicate. J. Appl. Polym. Sci. 2001. 81: 2297-2303
    183. Brune DA, Bicerano J. Micromechanics of nanocomposites: comparison of tensile and compressive elastic moduli, and prediction of effects of incomplete exfoliation and imperfect alignment on modulus. Polymer. 2002. 43: 369-387
    184. Usuki A, Koiwai A, Kojima Y, Kawasumi M, Okada A, Kurauchi T, Kamigaito O.
    
    Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid. J. Appl. Polym. Sci. 1995. 55:119-123
    185. Lee JW, Lim YT, Park OO. Thermal characteristics of organoclay and their effects upon the formation of polypropylene/organoclay nanocomposites. Polym. Bulletin. 2000. 45:191-198
    186. Huang XY, Lewis S, Brittain WJ. Synthesis of polycarbonate-layered silicate nanocomposites via cyclic oligomers. Macromolecules. 2000. 33: 2000-2004
    187. Kornmann X, Berglund LA, Sterte J. Nanocomposites based on montmorillonite and unsaturated polyester. Polym. Eng. Sci. 1998. 38(8) : 1351-1358
    188. Khare R, Pablo JJ, Yethiraj A. Rheology of confined polymer melts. Macromolecules. 1996. 29:7910-7918

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700