电场对输电线路绝缘子覆冰及放电特性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是覆冰严重的国家,随着电力建设的不断发展,绝缘子的覆冰及闪络问题已经成为输电线路安全运行及外绝缘设计所面临的重要问题。目前国内外对绝缘子覆冰及电气特性已有大量研究,但试验方法不一、理论与实际结合不多,尤其是覆冰试验过程带电与否并无统一的标准,这导致人工气候室内的试验研究成果很难应用到工程实际当中。因此研究电场对绝缘子覆冰过程及电气性能的影响,探讨带电和不带电试验的等价性,不仅能为不带电的试验结果应用到工程实际提供有价值的参考,而且能进一步深化输电线路绝缘子的覆冰机理及外绝缘特性,具有重大的现实意义和理论意义。
     本文以国家自然科学基金项目为依托,将计算机仿真和人工气候室的试验研究结合,主要从电场效应和热效应两方面来说明电场对绝缘子覆冰过程及电气性能的影响机理;通过比较绝缘子覆冰特性和电气特性来得出电场的影响规律。通过大量的试验和理论分析,得到的主要结论有:
     电场计算的结果表明:绝缘子表面的电场特性与覆冰类型密切相关。对于干增长的雾凇覆冰,主要受外加电压大小和绝缘子型式的影响;对于湿增长的雨凇覆冰,主要受与外加电压大小、绝缘子材料和型式、覆冰水电导率有关。电场的计算为试验结果提供了理论依据。
     在带电覆冰过程中监测绝缘子表面实时的泄漏电流和紫外脉冲光子量的变化规律表明:电场对覆冰的影响存在间接效应,即带电覆冰过程中电场作用下产生的各类放电活动和焦耳热对覆冰过程有重要的影响。将绝缘子带电覆冰过程分为初始期、发展期和稳定期。提出根据紫外脉冲光子量的变化来评估绝缘子覆冰期和融冰期安全状态的标准。
     由于严重覆冰后的绝缘子类似一个圆柱体的状态,其表面的覆冰和电气特性与其材料和型式的关系不大,因此利用光滑支柱绝缘子作为模型进行研究。通过模型建立了具有普遍规律性的带电覆冰过程的全面热平衡方程,并利用此模型的动态平衡过程得到了泄漏电流和外加电场强度的临界条件,同时得到了各类放电活动的热效应对覆冰融化的影响,结果这些热量大部分用于维持电弧的燃烧和损耗,仅15%~35%用于覆冰的融化。
     为了说明电场对不同类型覆冰特性的影响规律,试验中采用覆冰外观及分布、覆冰增长速率、覆冰质量、覆冰密度及微观状态四个参数来进行比较,从无电晕放电时、有电晕放电无局部电弧时,有局部电弧产生时三种情况分析电场对绝缘子覆冰过程的影响机理,得出了交流电场对绝缘子覆冰过程的影响主要与覆冰类型、外加电压大小、覆冰水电导率、绝缘子型式与材料四个方面有关。
     对于雾凇覆冰,电场的作用主要体现于极化作用、电吸力、微弱的电晕和火花放电。极化作用使得水滴被极化而受电场力的吸附作用,且运动方向改变;电吸力使得空气中过冷却水滴的运动速度加快和碰撞率增加,提高了覆冰强度;而电晕放电和火花放电会导致水滴的炸裂分散和形态改变。总的作用使得雾凇覆冰速率和覆冰质量都随着外加电压的增加而增强,而覆冰密度随外加电压的增加有先增加后减小的趋势。对于雨凇覆冰,电场的主要作用体现于各类放电活动产生的焦耳热融冰效应,加之其它几种放电活动,总的作用减弱或抑制了覆冰桥接绝缘子,使得雨凇覆冰质量随着电压增加或覆冰水电导率的增加而减少,覆冰密度随着电压的增加或覆冰水电导率的增加有先减少后增加的趋势。对于研究的四种绝缘子,普通玻璃型绝缘子表面的放电活动最为剧烈,普通瓷型绝缘子次之,瓷三伞防污型绝缘子再次,而复合绝缘子最弱。
     结合电场仿真的结果与试验结果表明:电场计算的结果能对电场影响绝缘子覆冰特性做出很好的说明,覆冰过程中局部电场强度的变化、冰面高电导率水膜的存在是导致放电活动发生,影响绝缘子覆冰特性的主要原因。
     对于雨凇覆冰,相同试验环境下带电覆冰绝缘子冰闪电压低于不带电的情况,这是因为其覆冰过程改变了覆冰外观、减少了覆冰质量、增大了空气间隙长度和有效泄漏距离造成的,且其影响与外加电压大小和覆冰水电导率有关。为了对带电和不带电的试验提供有价值的参考,结合研究提出了闪络电压与覆冰期外加电压呈幂函数关系。将覆冰期外加电压作为一个重要参数,与串长、覆冰质量、覆冰水电导率、污冰参数一起提出了复杂环境下绝缘子最低交流冰闪电压的综合校正公式。
China is a country suffering the severe problem of icing. As the development of power construction, insulator icing and flashover has become an important problem about the safety operation of transmission lines and the design of the external insulation. At present there are lots of researches about the characteristics of ice-covered insulators, however, there are still many problems. In the previous studies, the test methods were not unified and the theory analysis couldn’t be combined with practice, especially there were not a standard about the insulator icing process with or without voltage, which led to the difficulty of applying the laboratory test results to practical projects. This paper focuses on the effect on the process of insulator icing and electrical characteristics, and the equivalence between charged test and uncharged test is analyzed. The results can not only provide valuable reference for practical projects, but also deepen the icing mechanism of line insulators and external insulation characteristic. Therefore, the paper is of great realistic significance and theoretical value.
     Based by NSFC, computer simulation and laboratory test were combined to carry out the project. The influence mechanism of electrical field on insulator icing and electrical characteristics was explained by the electrical effect and the heat effect; comparing the features of insulator icing and electrical properties, the influencing law of the electrical field was replayed. Through lots of laboratory tests and theoretical analysis, the main results were obtained as follows:
     The calculation results of the electrical field indicated that there was a close relationship between the electrical field properties on insulator and the ice type. The rime-ice with dry-growing process was mainly influenced by the applied voltage and the insulator configuration while the glaze-ice with wet-growing process was mainly influenced by the applied voltage, the insulator configuration, the insulator material, and the freezing water conductivity. The electrical field calculation provided theoretical basis for the test results.
     The values of leakage current and the ultraviolet photons were monitored in the icing regime of energized insulator, and the results showed that the electrical field could affect insulator icing indirectly, in the other word, the discharge activities and the joule heat influenced the energized insulator icing process. In order to explain the effect law of electrical field, the process of the energized insulator icing was divided into initial period, developing period and sTab period. In addition, according to the variation of the ultraviolet photons, the standard to evaluate the safety during the icing period and melting period was developed.
     As the configuration of insulator on severe icing condition was close to a cylinder and its icing and electrical characteristics were not clearly influenced by the insulator configuration and material, a model of smooth post insulator was used to research. Based on the model, the overall heating balance equation was built, and the critical equation of the leakage current and external electrical field strength was acquired by analyzing the dynamic balance process of the model. Moreover, results showed that the 15% to 35% of the heat during discharge activities feedback to ice surface and the other was used to ice melting, and most of the heat was used to arc burning and loss.
     To show the influence law of electrical field on different types of icing, four parameters were compared, which were the ice aspect and distribution, ice growth rate, ice quality, ice density and microstructure. In addition, three conditions of insulator, which were no corona existing, corona existing and no local arc existing, local arc existing, were investigated to explain the effect mechanism. The results showed that the mainly effect parameters were the ice type, the applied voltage, the freezing water conductivity, the insulator configuration and material.
     As for the rime-ice, the effect of the electrical field mainly reflected the polarization, the electric suction, the weak corona and spark discharge. The polarization effect would accelerate the droplets speed and increase the collision chances to improve the icing strength. Moreover, the corona discharge and the spark discharge would lead to dispersion and morphological change of the droplets. All the effects would accelerate the icing velocity and increase the ice quality as the increasing of applied voltage. Whereas, the ice density would be first increased and then decreased. As for glaze-ice, the main function of the electrical field was reflected in the ice-melting effect of Joule heating. Combined with other discharge activities, the whole effect weakened or restrained the ice bridged insulator to make the glaze-ice quality decreasing as the increasing of applied voltage. At the same time, the ice density was firstly decreased and then increased. Among the four insulators in the paper, the discharge was the most severe on the surface of the ordinary glass insulator, the second was ordinary porcelain insulator, the three-sheds insulator and the last one the composite insulator.
     The results showed that the results of electrical field calculation could explain the effect of electrical field on the insulator icing and flashover characteristics very well. In the icing regime, the variation of local electrical field strength and the existence of water film with high conductivity on the ice surface would lead to the discharge, which was the main reason influencing the insulator icing properties.
     As for the glaze-ice, the flashover voltage of iced insulator with voltage was lower than one without voltage in the same experimental condition. This was because the icing process changed the ice aspect, reduced the ice quality and increased the air gap and effective leakage distance. Also, the influence of the icing process was related with the applied voltage and the freezing water conductivity. In order to provide the experiment with and without voltage with valuable references, the paper put forward the power function relation between flashover voltage and applied voltage. Considering the applied voltage as an important parameter, unit number,the ice quality, freezing water conductivity and ice sewage were combined to put forward comprehensive correction formula of minimum AC voltage of the insulators in a complex environment.
引文
[1]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社,2002.
    [2]蒋兴良,舒立春,孙才新.电力系统污秽绝缘[M].北京:中国电力出版社,2009.
    [3] I. Imai. Studies on Ice Accretion [J]. Res. Snow Ice, 1953, Vol.1: 35-44.
    [4] D. Kuroiwa. Icing and Snow Accretion [J]. Monograph series of the Research Institute of Applied Electricity, 1958, 6:1-30.
    [5] M.Farzaneh, O.T.Melo. Properties and Effect of Freezing and Winter Fog on Outline Insulators [J]. Journal of Cold Regions Science and Technology, No. 19, February. 1990:33-46.
    [6]滕中林.电线结冰厚度随高度的变化[J].天气月报, 1959,11.
    [7] X.Jiang, L.Shu. Chinese transmission lines’icing characteristics and analysis of severe ice accidents [J]. International Journal of Offshore and Polar Engineering. Vol.14, No.3, September 2004, ISSN1053-5381.
    [8]蒋兴良,马俊,王少华等.输电线路冰害事故及原因分析[J].中国电力,2005(11),Vol.38. No.27-30.
    [9] Q. Li, Z. Fan, Q. Wu, J. Gao, Z. Su and W. Zhou,”Investigation of Ice-Covered Transmission Lines and Analysis on Transmission Line Failures Caused by Ice-Coating in China”, Power System Technology. Vol. 32:33-36, 2008.
    [10] M. Farzaneh and J. Kiernicki,“Flashover problems caused by ice build-up on insulators”, IEEE Electr. Insul. Mag., Vol. 11, No.2: 5-17, 1995.
    [11] L. C. Phan and H. Matsuo,“Minimum flashover voltage of iced insulators”, IEEE Trans. Electr. Insul., Vol. 18: 605–618, 1983.
    [12] M. Farzaneh and J.F. Drapearu,“AC Flashover performance of insulators covered with artificial ice”, IEEE Trans. Power Del., Vol. 10:1038-1051, 1995.
    [13] M. Farzaneh, J. Kiernicki and J.-L. Laforte,“Ice accretion on energized line insulators”, Intern. J. Offshore and Polar Eng., Vol. 2:228-233, 1992.
    [14] X. Jiang, L. Shu Wenxia Sima, Shujiao Xie, Jianlin Hu and Zhijin Zhang,“Chinese transmission line’s icing characteristics and analysis of severe ice accidents”, 14th Intern. J. Offshore and Polar Eng. Conf., Toulon, France:921-926, 2004.
    [15] X. Jiang and H. Yi, Ice Accretion on Transmission Lines and Protection,Beijing, China, China Power, 2002. (Monograph in Chinese)
    [16] Q. Li, Z. Fan, Q. Wu, J. Gao, Z. Su and W. Zhou,”Investigation of Ice-CoveredTransmission Lines and Analysis on Transmission Line Failures Caused by Ice-Coating in China”, Power System Technology. Vol. 32:33-36, 2008.
    [17] T. Fujimura, K. Naito, Y. Hasegara, and T. Kawaguchi,“Performance of insulators covered with snow or ice”, IEEE Trans. Power App. Syst., Vol. 98:1621-1631, 1979.
    [18] H. Matsuoka, S. Ito, K. Sakanishi, and K. Takasu,“Withstand voltage characteristics of insulator string covered with snow”, IEEE Trans. Power Del., Vol. 3:828-838, 1988.
    [19] M. Kawai,“AC flashover test at project UHV on ice-coated insulators”, IEEE Trans. Power App. Syst., Vol. 89:1800–1804, 1970.
    [20] E.A. Cherney,“Flashover performance of artificial contaminated and iced long-rod transmission line insulators”, IEEE Trans. Power App. Syst., Vol. 99:46-52, 1980.
    [21] S.M. Fikke, J.E. Hanssen, and L. Rolfseng,“Long range transported pollution and conductivity on atmospheric ice on insulators”, IEEE Trans. Power Del., Vol. 8: 1311–1321, 1993.
    [22] D. Wu, R. Hartins,“Correlation between the AC withstand voltage and insulator lengths under icing tests”, 9th Intern. Workshop on Atmospheric Icing Structures, Chester, UK, p.8, 2000.
    [23] Z. Vuckovic and Z. Zdravkivic,“Effect of polluted snow and ice accretion on high voltage transmission line insulators”, 5th Intern. Workshop on Atmospheric Icing Structures, Tokyo, Japan, Paper B4-3, 1990.
    [24] K. Kannus and K. Lahti,“Electrical behavior of high voltage insulator strings under rime ice”, 9th Intern. Workshop Atmospheric Icing Structures, Chester, UK, p. 8.S, 2000.
    [25] H.M. Schneider,“Artificial Ice Tests on Transmission Line Insulators– A Progress Report”, IEEE/PES Summer Meeting, San Francisco, USA, Paper A75-491-1:347-353, 1975.
    [26] International Electrotech. Commission: Loading and Strength of Overhead Transmission Lines. Tech. Rep. 826, 1991.
    [27] D.Kuroiwa. Icing and Snow accretion on electric wires [J]. U.S. Army Cold Regions Research and Engineering Laboratory, 1965, Research Report 123:1-10.
    [28]蒋兴良.输电线路导线覆冰机理和三峡地区覆冰规律及影响因素研究[M]:[博士学位论文].四川:重庆大学,1997.
    [29] M.Farzaneh, J.Zhang. Behavior of DC Arc on Ice Surfaces [J]. The 8th IWAIS1998. Iceland:193-197. 1998.
    [30]孙才新,蒋兴良等.导线覆冰及其干湿增长临界条件分析[J].中国电机工程学报. 2003, No.3, Vol.23:141-145.
    [31] M.D.Charneski, G.L.Gaibrois, B.F.Whitney. Flashover tests on artificially iced insulators.IEEE Trans on Power Apparatus&Systems, Vol.PAS-101, No.8:2429-2433, 1982.
    [32] H. Matsuda. H. Komuro and K. Takasu,“Withstand Voltaze Characteristics of Insulator Strings Covered with Snow or Ice,”IEEE Transktions on Power Delivery,Vol. 6:1243-1250, July 1991.
    [33] International Electrotechnical Commission, Artificial pollution tests on high voltage insulators to be used on AC systems[S], International Standard IEC 507,1991.
    [34]孙才新,蒋兴良,舒立春等.高海拔、污秽、覆冰环境下超高压线路绝缘子交直流放电特性及闪络电压校正[J].中国电机工程学报, 2002, 22(11): 115-120.
    [35]舒立春,蒋兴良,田玉春等.海拔4000m以上4中合成绝缘子覆冰交流闪络特性及电压校正[J].中国电机工程学报, 2004,24(1): 97-101.
    [36]田玉春,蒋兴良,舒立春等.高海拔地区10kV合成绝缘子覆冰闪络特性[J].高电压技术, 2002,28(6): 13-15.
    [37]蒋兴良,谢述教,舒立春等.低气压下三种直流绝缘子覆冰闪络特性及比较[J].中国电机工程学报, 2004, 24(9): 158-162.
    [38]蒋兴良,舒立春,张志劲等.覆冰绝缘子长串交流闪络特性和放电过程研究[J].中国电机工程学报, 2005, 25(7): 158-163.
    [39] International Electrotechnical Commission, Alternating Current Disconnectors and Earthing Switches. , International Standard IEC 60129, 1984.
    [40] IEEE Standard Techniques for High Voltage Testing, IEEE Std4, IEEE Publication, October 1995:129.
    [41] M.Farzaneh, Insulator Icing Test Methods and Procedures: A position paper prepared by the IEEE Task Force on Insulator Icing Test Methods. IEEE Transactions on Power Delivery, Vol.18, No.4, 2003:1503-1515.
    [42]梁瑜.带电条件下输电线路导线和绝缘子覆冰电气特性研究[M].硕士学位论文.重庆:重庆大学, 2005.
    [43] C.Volat, M.Farzaneh. Three-Dimensional Modeling of Potential and Electric-field Distributions Along an EHV Ceramic Post Insulator Covered With Ice - PartⅠ: Simulations of a Melting Period. IEEE Transaction on Power Delivery. Vol.20, No.3. July2005:2006-2013.
    [44] C.Volat, M.Farzaneh. Three-Dimensional Modeling of Potential and Electric-field Distributions Along an EHV Ceramic Post Insulator Covered With Ice-PartⅡ: Effect of Air Gaps and Partial Arcs. IEEE Transaction on Power Delivery. Vol.20, No.3. July2005:2014-2021.
    [45] M.Farzaneh, C.Volat, Electric Field Modelling Around an Iced-Covered Insulator UsingBoundary Element Method. Conference Record of the 2000 IEEE International Symposium on Electrical Insulation. P:349-355.
    [46] V.Jaiswal, M.Farzaneh. Calculation of Potential Distribution along Semiconducting Glazed Insulator for Impulse Voltage under Icing Conditions. IEEE CCECE 2003. Canadian Conference on Volume 1, May 2003: 631– 634.
    [47] V.Jaiswal, M.Farzaneh. Flashover Performance of a Semi-Conducting Glazed Post Station Insulator Under Icing Conditions Based on Electric Field Distribution. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. P:10-13.
    [48]杨庆.覆冰绝缘子沿面电场特性和放电模型研究[M].博士学位论文.重庆:重庆大学, 2006.
    [49] M.Farzaneh, J.L.Laforte. Ice Accretion on Conductors Energized by AC or DC--A Laboratory Investigation of Ice Treeing. International Journal of Offshore and Polar Engineering,1994, Vol.4, No.1.
    [50] M.Farzaneh, J.Kienicki. Ice Accretion on Energized Line Insulators. International of Offshore and Polar Engineering, Vol.2, No.3, September 1992:228-233.
    [51]杨世铭,陶文栓.传热学(第四版)[M].高等教育出版社. 2006.8.
    [52]张兆顺,崔桂香.流体力学[M].清华大学出版社, 2006,09.
    [53]汪金刚.高压设备放电紫外检测技术及其应用研究[M].博士学位论文. 2008.4.
    [54] M.Farzaneh. Vibration of high voltage conductors induced by corona-induced vibration of hanging metal points[J]. IEEE trans on power Appl.&Syst., 1984. 103(9):105-116.
    [55] M.M. Khalifa, R.M. Morris. Performance of Line Insulators under Rime Ice [J]. IEEE Transactions on Power Apparatus &Systems, Vol. PAS-86, No.6: 692-698, June 1968.
    [56] N. Sugawara, T. Takayama, K. Hokari, K. Yoshida and S. Ito,“Withstand Voltage and Flashover Performance of Iced Insulators Depending on the Density of Accreted Ice,”6th International Workshop on Atmospheric Icing of Structures, Budapest, Hungary:23 1-235, September 1993.
    [57]粟福珩,贾逸梅,王均谭等. 500kV绝缘子串的人工雾淞覆冰和放电试验[J].中国电机工程学报, 1999, 19(2): 75-78.
    [58] T. Fujimura, K. Naito, Y. Hasegawa and K. Kawagushi,“Performance of Insulators Covered with Snow or Ice,”IEEE Transactions on Power Apparatus&Systems, Vol. PAS-98:1621.1631, October 1979.
    [59] M.Farzaneh, J.F.Drapeau. AC flashover performance of insulators covered with artificial ice. IEEE Transaction on Power Delivery, Vol.10, No.2, April 1995:1038-1046.
    [60] L.Shu, C.Sun. AC flashover performance of iced insulators under pressure and pollutioncondition [J]. Proceedings of the 8th International Symposium on High Voltage Engineering, Yokohama, Japan, Paper46.03:1-4, August,1993.
    [61] J.Zhang, M.Farzaneh. Variation of ice surface conductivity during flashover. Electrical Insulation and Dielectric Phenomena, 1995. Annual Report.:479– 483。
    [62]清华大学,西安交通大学.高电压绝缘北京:电力工业出版社, 1980.
    [63]何为,陈涛,刘晓明等.基于紫外脉冲法的非接触式低值(零值)绝缘子在线监测系统.电力系统自动化. 2006(10), vol.30:69-74[J].
    [64]陈涛,何为,刘晓明等.高压输电线路紫外在线检测系统.电力系统自动化. 2005(7), vol.29:88-92[J].
    [65]滕中林.电线结冰厚度随高度的变化.天气月报. 1959.
    [66]谭冠日.电线结冰的若干小气候特征的探讨.气象学报, 1982.
    [67] G.F.Naterer. Coupled Liquid Film and Solidified Layer Growth with Impinging Supercooled Droplets and Joule Heating. International Journal of Heat and Fluid Flow 24, 2003:223-235.
    [68] Jean Laflamme. Spatial Distribution of Ice Accretion within Ice Storms and Within Transmission Lines Routes. Proceedings of 5th IWAIS’90, Japan, 1990:A3-4.
    [69]滕中林.架空线路的结冰及冰厚计算.电力技术, 1978, 3.
    [70]贵州省电力工业局,贵州省气象科研所编著.覆冰文集.贵州:贵州电力技术, 1992年.
    [71] T. Fujimura, K. Naito, Y. Hasegawa and K. Kawagushi,“Performance of Insulators Covered with Snow or Ice,”IEEE Transactions on Power Apparatus&Systems, Vol. PAS-98:1621.1631, October 1979.
    [72] M. Farzaneh and J.F. Drapeau,‘AC Flashover Performance of Insulators Covered with Artificial Ice,”IEEE Transactions on Power Delivery, 1994, in press.
    [73] M. Farzaneh, J. Kiernicki and R. Martin,‘A Laboratory Investigation of Flashover Performance of Outdoor Insulators Covered with Ice,”Proceedings of the 4th International Conference on Properties and Applications of DielectricMaterials, Brisbane, Australia:483-486, July 1994.
    [74] S. Asai, H. Oura, S. Matsui, S. Torimoto and D. Usami,“Design andApplication of Phase-to-Phase Spacers for Overhead Transmission Lines inSnowy Areas,’’Proceedings of the 5th lntemational Workshop on AtmosphericIcing of Structures, Tokyo, Japan, Paper B4-11: 1-5, October / November 1990.
    [75] A.E. Boyer and J.R. Meale,“Insulation Flashover under Icing Conditions on the Ontario-Hydro 500 kV Transmission Line System,”CEA Spring Meeting, Montreal, Canada, March 1988.3.
    [76] J.E. Brown, C.L. Nellis and L.Y. Lee,“Switching Inpulse and 60 HZ Performance of Iced 500 kV Insulator Strings,”Bonneville Power Administration Technical Report PIU No. 75-9, July 1975.
    [77] EG. Buchan,“Electrical Conductivity of Insulator Surface Ices,”Ontario-Hydro Research Division, Electrical Research Department, Report 86-31-K:1-17, May 1986.
    [78] H.T. Bui, L.C. Phan, C. Huraux and J. Pissolato,“HVDC Flashover on the Surface of Conductive Ice,”IEEE International Symposium on Electrical Insulation, 84CH1984-6, Montreal: 85-88, June 1984.
    [79] M.D. Charneski, G.L. Gaibrois and B.F. Whitney,“Flashover Tests on Artificially Iced Insulators,”IEEE Transactions PowerApparatus 6 Systems, Vol. 7.
    [80] E.A. Cherney,“Flashover Performance of Artificially Contaminated and Iced Long-Rod Transmission Line Insulators,”IEEE Trunsactions on Power Apparatus &Systems, Vol. PAS-99: 46-52, February 1980.
    [81] E.A. Cherney et al.,“The AC Clean Fog Test For Contaminated Insulators,”IEEE Trunsactions on Power Apparatus & Systems, Vol. PAS-102, No. 3:604-613, March 1983.
    [82] XA. Chisholm and Y.T. Tam,“Outdoor Insulation Studies Under CIFT Conditions, 1988-89 Season Summary,”Ontario-Hydro Research Division Report 89-217-H.
    [83] WA. Chisholm and Y.T. Tam,“Outdoor Insulation Studies Under CIFT Conditions, December 30-3 1,1989 Storm Event,”Ontario-Hydro Research Division Report 90-131-H.
    [84] WA. Chisholm, Y.T. Tam, C.C. Erven and T.O. Melo,“500 kV Insulator Performance under Contamination Ice, Fog and fising Temperature-Operating Experience and Field Studies,”IEEE Power Engineering Summer Meeting:1-8, 1993.
    [85] WA. Chisholm, Y.T. Tam, T.O. Melo, I.K. Pavasars and C.C. Erven,“60 Hz Performance of 500 kV Insulators under Light ontamination, Ice, Fog and hsing Temperature: Operating Experience and Field Studies,”IEEE Transactions on Power Delivery, (1 994 in press).
    [86] J.F. Drapeau,“Etat de I’art concernant les essais et le comportement sous glace des isolateurs,”Rapport scientifique, Hydro-Quebec, No. IREQ-4490:1-46, novembre 1989.
    [87] J.F. Drapeau,“Statistiques preliminaires concernant les defauts associes auxconditions hivernales sur le reseau &Hydro-Quebec,”Rapport interne Hydro-Quebec, No. IREQ-4499:1-25, dicembre 1989.
    [88]蒋兴良,周仿荣,胡建林,等.预染污方式对复合绝缘子人工覆冰直流闪络电压的影响[J].高电压技术, 2009,(03):551-556.
    [89]姚涛,胡毅,邬雄,等.超特高压输变电设备的覆冰试验技术[J].高电压技术, 2009,(03):574-578.
    [90]石岩,蒋兴良,苑吉河.基于RBF网络的覆冰绝缘子闪络电压预测模型[J].高电压技术, 2009,(03):591-596.
    [91]张志劲,蒋兴良,孙才新等.低气压下特高压直流污秽复合绝缘子覆冰闪络特性[J].中国电机工程学报, 2008,(06):7-12.
    [92]张志劲,蒋兴良,孙才新,污秽绝缘子闪络特性研究现状及展望[J].电网技术,2006,30(2):35-40.
    [93]顾乐观,孙才新等.高海拔外绝缘及电晕特性的研究——覆冰绝缘子的交流放电特性及放电过程的研究.“七.五”国家重大技术装备科技攻关项目报告,1989.
    [94]蒋兴良.覆冰绝缘子工频放电特性及放电过程的研究[D].重庆大学硕士学位论文.重庆:重庆大学,1988.
    [95]舒立春.复杂环境下绝缘子交流闪络特性及校正方法研究[D].重庆大学博士学位论文. 2002.
    [96]胡红春.冰害、冰闪和舞动的防治措施.电力建设, 2005, 26(9): 31-33.
    [97]关志成,贾志东.硅橡胶涂层耐污闪性能及憎水迁移特性.高电压技术, 1993, 19(4).
    [98]郭应龙等.输电导线覆冰试验.超高压输变电运行技术. 1990(8): 79-94.
    [99]龙小乐,鲍务均等输电导线覆冰研究武汉水利电力大学学报1996 29(5): 102-107.
    [100]顾乐观,孙才新.电力系统污秽绝缘.四川:重庆人学出版社,1990年
    [101] Wu D, Hartings Ralf, Fikke S M. The performance of vertically installed insulator strings under ice and snow conditions[C]. 8th International Workshop on Atmospheric Icing on Structures, Reykjavik, Iceland, 1998, 205-208.
    [102] W. A. Chisholm, J. Kuffel, and M. Farzaneh. The icing stress product:a measure for testing and design of outdoor insulators in freezing conditions[C], Proc. 2nd Int.Workshop on High Voltage Engineering, Tottori, Japan, 2000.
    [103]中华人民共和国国家标准《交流系统用高压绝缘子人工污秽试验方法-盐雾法》GB/T4585.1-91.北京:中国标准出版社出版, 1991.
    [104]廖祥林.导线覆冰性质分类和密度浅析[J].中国电力, 1993, vol.15, No.9:17-25.
    [105] Chen Xing. Modeling of Electrical Arc on Polluted Ice Surface[C]. Canada: PH.D Dissertation, 2000.
    [106] Cherney, E.A., et al. The AC clean-fog Test for contaminated insulators[J]. IEEE Transactions on Power Apparatus and systems, 102(3), 1983, 604-613.
    [107]武利会,蒋兴良,司马文霞等. XZP-160直流绝缘子低气压下覆冰闪络特性[J].高电压技术, 2002, 28(10): 5-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700