金属氧化物及其复合体系的气相光电性能与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源短缺与环境污染已经成为全球发展所面临的重大难题,因而,开发新能源与保护环境成为当前科学研究的热点。在太阳光的照射下,利用半导体进行光催化降解污染物,是一条既能利用新能源又能实现环境净化的重要途径。半导体光催化的基本原理是,半导体光催化剂吸收太阳能,产生具有氧化还原能力的电子空穴对,进而将有害污染物降解为无毒无害的CO2和H2O。半导体的光电响应过程是指半导体材料在一定光源的照射下,产生电子与空穴对,电子在外加电场的驱动下定向移动,进而在外电路中形成光电流的过程。因而,考虑到在实验室进行光催化实验耗时长、费用高等特点,也考虑到光催化过程涉及半导体内部载流子的产生与转移等基本过程,所以,研究半导体材料的光电响应过程,对于指导光催化材料的设计与探讨光催化反应的机理有重要的意义。因此,本文致力于研究金属氧化物及其复合体系的气相光电性能,进而探讨载流子的产生、分离、复合、捕获等基本过程。
     本文首先从金属氧化物复合体系出发,基于组合材料学的思想,设计了由66个成分点组成的Ti02/WO3/MnO2三元复合体系的材料库。并通过球磨和丝网印刷的方法并行制备了相应的66个光电器件。借助自行搭建的光电性能综合测试平台,我们高通量表征了所有器件的光电性能。结果表明,在66个成分点中,TiO2/WO3/MnO2摩尔比例为2:8:0的成分点,在白光、紫外、蓝光与绿光照射下均有最好的光电性能,这要归因于W03本身的特性与TiO2/WO3复合体系的能带匹配模式,错开型的能带匹配有效地促进了载流子的分离。靠近TiO2角没有明显光电响应的原因要归结于所施加的偏压0.2V过低,因为当偏压为10V时,TiO2表现出相对较为明显的光电响应。而靠近MnO2角没有明显光电响应的原因,可能是由于MnO2相在烧结过程中向Mn2O3相转变,当Mn2O3的量过多时,Mn2O3可能会加剧载流子的复合,从而导致载流子的复合率大大的增加,进而导致外电路中光电流不明显。
     鉴于TiO2在过低的偏压条件下没有明显的光电响应,因而,为了进一步研究TiO2及其复合体系的光电性能,我们引入了敏化剂CdS对TiO2进行敏化改性。我们首先制备了纯TiO2器件,并通过连续离子层吸附反应法制备了CdS/TiO2复合体系的器件。之后,我们研究了CdS/TiO2复合体系的气相光电性能,并与纯的Ti02进行了对比。结果表明,CdS/TiO2复合体系无论是在紫外还是在白光照射的条件下,均表现出更加优异的光电性能。
     在研究了由敏化剂CdS与金属氧化物Ti02组成的复合体系的气相光电性能的基础上,我们扩展了复合体系的形式,制备了CdS/ZnO复合体系,并测试了CdS/ZnO复合体系与纯ZnO分别在紫外与白光照射下的气相光电性能。结果表明,在白光照射的条件下,纯ZnO也有较为明显的光电响应;同时,特别的是,在仅仅施加0.01V的偏压时,CdS/ZnO复合体系就能展现出非常明显的光电流响应,且其光电流幅值相对于纯ZnO而言提高了153倍。由于很多文献报道,ZnO基材料的光电性能的获取都是在几十伏的偏压下进行的,因此,该研究结果对于节约能源和实际应用有着非常重要的意义。
     因为纯ZnO在白光照射下,也有光电响应,且断光后,光电流不能较快地恢复到基线水平,所以这说明了断光后,ZnO内部还残余了大量的电子;通过分析,我们知道这是由于ZnO内部存在缺陷所导致的。那么,为了研究残余电子对光电流曲线的影响,最后,我们还分别测试了ZnO在紫外与白光照射下的光电流循环曲线。结果表明,紫外条件下,断光后每个循环对应的光电流都能够恢复到基线附近,且每个循环的光电流幅值能基本保持一致;而在白光条件下,出现了截然不同的现象,随着循环次数的增加,光电流不仅不能恢复到基线附近,而且光电流幅值随着循环次数的增加,也逐步增加。为了说明测试结果的差异性,我们定义了三个与光电流有关的参数,这些参数很好的说明了光电流产生量、被捕获的光电流量以及残余光电流量之间的关系。
Energy shortage and environmental pollution have become the significant challenge for the global development, thus, the exploitation of new energy and protection of the environmental has become one of the most active research directions. With the irradiation of sunlight, using photocatalytic technology to degrade pollutants is an important pathway for solving both of the problems of energy shortage and environmental pollution. The basic principle of photocatalytic technology is as follows, the semiconductor as a photocatalyst can absorb solar energy to generate electron-hole pairs, which are with powerful redox ability, then, through a series of degradation reactions initiated by the electrons and holes, the harmful pollutants can be decomposed into harmless carbon dioxide and water.
     The photoelectric response process refers to the fundamental process that the semiconductor as photoelectric material can generate electrons and holes with the irradiation of a light source, and by application of a bias voltage, the photogenerated electrons can move directionally, which induced the forming of photocurrent in the external circuit. Taking into account the carrying out of the degradation experiments in laboratory always consumes tremendous amounts time and project cost but without substantial progress, and also taking into account that the photocatalytic process involves the generation and recombination of carriers within the semiconductor, thus, study of the photoelectric response process is of great significance for guiding of photocatalysts designment and exploring of the photocatalytic reaction mechanism. Therefore, in this paper, the research focuses on the photoelectric response in gas phase based on the metal oxide semiconductor materials and their composites, and then to investigate the fundamental process of the generation, separation, recombination and trapping of the carriers in semiconductor materials.
     This paper started from the mental oxide composite. On the basis of the equilateral ingredient triangle, a material library of the TiO2/WO3/MnO2composite material system was designed, which consisted of66ingredient points. To fabricate the66devices, the ball milling and the technology of screen printing were used. The photocurrent of each device was measured using a self-designed high-throughput screening system. The testing results showed that the largest photocurrent of the device under the irradiation of white light, ultraviolet, blue and green is the one when the mole ratio of TiO2/WO3/MnO2is2/8/0in the66ingredient points, this might be ascribed to the characteristic of WO3itself and the energy band matching type between TiO2and WO3, the staggered type of matched potentials effectively enhanced the charge carriers separation. For these devices in the TiO2corner, no obvious photoelectric response was observed under the irradiation of the four kinds of light source, it might be attributed to the small application of the bias voltage (0.2V), as we increased the bias voltage to10V, pure TiO2showed relatively obvious photoelectric response. While for these devices in the MnO2corner, no distinct photoelectric response was observed under any light source or at any bias voltage. Then this might be attributed to the phase transition from the MnO2phase to the Mn2O3phase during the sintering process. When the amount of Mn2O3is excessive, it might accelerate the recombination of the carriers, then, it resulted in the largely increased recombination rate and in turn it leaded to the photocurrent in the external circuit was not obvious.
     In view of TiO2showed no obvious photoelectric response by application of the low bias, thus, in order to further study the photoelectric properties of TiO2and its composite, we introduced CdS sensitizer to modify TiO2. Firstly, the pure TiO2device was fabricated by the technology of screen printing, and then the porous CdS/TiO2composite device was prepared by the successive ionic layer adsorption and reaction process. After that, we studied the photoelectric properties of TiO2device and CdS/TiO2composite device in the gas phase, the final results displayed that the CdS/TiO2composite showed an enhanced and excellent photoelectric properties either under the irradiation of ultraviolet or under the irradiation of white light in comparison with that of the pure TiO2device.
     After the study of the gas phase photoelectric properties of the composite system composed by the CdS sensitizer and the metal oxide semiconductor TiO2, the form of the composite system was extended, we prepared the CdS/ZnO composite system. The photoelectric properties of ZnO device and CdS/ZnO composite device were then tested under the irradiation of ultraviolet and white light in the gas phase, respectively. The results showed that the pure ZnO device displayed obvious photoelectric response under the irradiation of white light, in the meanwhile, the CdS/ZnO composite device exhibited an obvious photoelectric response and a typical photocurrent curve when applying a very low bias voltage of just0.01V, and the photocurrent amplitude of it is153times higher than that of the pure ZnO device. As a lot of literature reported that the obtaining of the photoelectric response of ZnO-based materials were often tested by application of tens of bias voltages, therefore, these results of this chapter has a very great significance for energy-saving and practical application.
     Owing to the pure ZnO device showed obvious photoelectric response under the irradiation of white light, and the photocurrent of it could not rapidly recover to the baseline levels after the light source was turned off, so all of these results illustrated that a large number of electrons was remained within ZnO when the light off. Through analysis, we knew that this phenomenon was caused by the defects within ZnO. Thus, to study the impact of the remained electrons to the photocurrent testing curves, we tested the photoelectric responses of ZnO under the irradiation of ultraviolet and white light in gas phase via the light-on and light-off measurement, respectively. The results showed that under the irradiation of ultraviolet, the photocurrent with almost the same amplitude can recover to the baseline levels. While for white light, distinctively different photocurrent curves were obtained, with the increasing of the cycle number, the photocurrent just partially recovered and it could not recover to the baseline levels when the light was off, what is more, the photocurrent amplitude also gradually increased with the cycle number increased. To illustrate the differences of the testing results, three different parameters related to photocurrent were defined. These defined parameters well illustrated the relationship among the amount of the generated photocurrent, the amount of the trapped photocurrent and the amount of the remained photocurrent.
引文
[1]韩世同,习海玲,史瑞雪等.半导体光催化研究进展与展望.化学物理学报,2003,16:339-349.
    [2]Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:37-38.
    [3]Xu, Q. C.; Wellia, D. V.; Ng, Y. H. et al. Synthesis of porous and visible-light absorbing Bi2WO6/TiO2 heterojunction films with improved photoelectrochemical and photocatalytic performances. Journal of Physical Chemistry C,2011,115(15): 7419-7428.
    [4]Ren, J.; Wang, W. Z.; Shang, M. et al. Heterostructured bismuth molybdate composite:preparation and improved photocatalytic activity under visible-light irradiation. ACS Applied Materials & Interfaces,2011,3(7):2529-2533.
    [5]Zhang, P. L.; Yin, S.; Sato, T. Synthesis of high-activity TiO2 photocatalyst via environmentally friendly and novel microwave assisted hydrothermal process. Applied Catalysis B-Environmental,2009,89(1-2):118-122.
    [6]Xu, S. P.; Ng, J. W.; Du, A. J. et al. Highly efficient TiO2 nanotube photocatalyst for simultaneous hydrogen production and copper removal from water. International Journal of Hydrogen Energy,2011,36(11):6538-6545.
    [7]Sayama, K.; Hayashi, H.; Arai, T. et al. Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds. Applied Catalysis B-Environmental,2010,94(1-2): 150-157.
    [8]Kim, J. W.; Lee C. W.; Choi, W. Y. et al. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environmental Science & Technology,2010,44(17):6849-6854.
    [9]Faisal, M.; Khan, S. B.; Rahman, M. M. et al. Fabrication of ZnO nanoparticles based sensitive methanol sensor and efficient photocatalyst. Applied Surface Science,2012,258(19):7517-7522.
    [10]Qin, H. C; Li, W. Y; Xia, Y. J. et al. Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO. ACS Applied Materials & Interfaces,2011,3(8): 3152-3156.
    [11]Jana, S.; Pande, S.; Sinha, A. K. et al. Synthesis of super-paramagnetic β-organosol:a photocatalyst for the oxidative phenol coupling reaction. Inorganic chemistry,2008,47(13):5558-5560.
    [12]Li, L. L.; Chu, Y.; Liu, Y. et al. Template-free synthesis and photocatalytic properties of novel, Fe2O3 hollow spheres. Journal of Physical Chemistry C,2007, 111(5):2123-2127.
    [13]Liu, Z. Y.; Sun, D. D. L.; Guo, P. et al. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Letters,2007,7(4):1081-1085.
    [14]Jing, D. W.; Guo, L. J. A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure. Journal of Physical Chemistry B,2006,110(23):11139-11145.
    [15]Meng, Z. D.; Zhu, L.; Oh, W. C. Preparation and high visible-light-induced photocatalytic activity of CdSe and CdSe-C60 nanoparticles. Journal of Industrial and Engineering Chemistry,2012,18(6):2004-2009.
    [16]胡冬娜.可见光响应型光催化剂的制备及其降解有机污染物的研究:[硕士学位论文].北京:北京交通大学环境工程系,2007.
    [17]Linsebigler, A. L.; Lu, G.; Yates, J. T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results, Chemical Reviews,1995,95(3):735-758.
    [18]Cao, T. P.; Li, Y. J.; Wang, C. H. et al. A Facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir, 2011,27(6):2946-2952.
    [19]Fu, H. B.; Pan, C. S.; Yao, W. Q. et al. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. Journal of Physical Chemistry B,2005, 109(47):22432-22439.
    [20]Zhai, Y.; Zhang, S.; Pang, H. Preparation, characterization and photocatalytic activity of CeO2 nanocrystalline using ammonium bicarbonate as precipitant. Materials Letters,2007,61(8-9):1863-1866.
    [21]Brezesinski, K.; Ostermann, R.; Hartmann, P. et al. Exceptional photocatalytic activity of ordered mesoporous β-Bi2O3 thin films and electrospun nanofiber mats. Chemistry of Materials,2010,22(10):3079-3085.
    [22]Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. Journal of the American Chemical Society,1999,121(49):11459-11467.
    [23]Leghari, S.A. K.; Sajjad, S.; Chen, F. et al. WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chemical Engineering Journal,2011,166(3):906-915.
    [24]Pan, X.; Zhao, Y.; Liu, S. et al. Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Applied Materials & Interfaces,2012,4(8):3944-3950.
    [25]Li, G. S.; Zhang, D. Q.; Yu, J. C. A new visible-light photocatalyst:CdS quantum dots embedded mesoporous TiO2 Environmental Science & Technology,2009, 43(18):7079-7085.
    [26]Zhang, H.; Zong, R. L.; Zhao, J. C. et al. Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environmental Science & Technology,2008,42(10):3803-3807.
    [27]Tada, H.; Mitsui, T.; Kiyonaga, T.; et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nature Materials,2006,5(10):782-786.
    [28]Hoffmann, M. R.; Martin, S. T.; Choi, W. Y. et al. Environmental applications of semiconductor photocatalysis. Chemical Reviews,1995,95(1):69-96.
    [29]刘恩科,朱秉升,罗晋升.半导体物理学[M].北京:电子工业出版社,2011,pp288.
    [30]Zhuang, J. D.; Weng, S. X.; Dai, W. X. et al. Effects of interface defects on charge transfer and photoinduced properties of TiO2 bilayer films. Journal of Physical Chemistry C,2012,116(48):25354-25361.
    [31]Gao, F. F.; Chino, N.; Naik, S. P. et al. Photoelectric properties of nano-ZnO fabricated in mesoporous silica film. Materials Letters,2007,61(14-15): 3179-3184.
    [32]Chen, X. Q.; Ye, J. H.; Ouyang, S. X. et al. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano,2011,5(6):4310-4318.
    [33]Ho, C. H.; Chan, C. H.; Tien, L. C. et al. Direct optical observation of band-edge excitons, band gap, and Fermi level in degenerate semiconducting oxide nanowires In2O3. Journal of Physical Chemistry C,2011,115(50):25088-25096.
    [34]Peng, L. L.; Xie, T. F.; Fan, Z. Y. et al. Surface photovoltage characterization of an oriented a-Fe2O3 nanorod array. Chemical Physics Letters,2008,459(1-6): 159-163.
    [35]Liu, X. Y.; Liu, J.; Zheng, H. W. et al. Separation mechanism of photogenerated charges for p-type a-Bi2O3 nanoparticles with surface states. Applied Surface Science,2012,258(10):4240-4245.
    [36]Asahi, R.; Morikawa, T.; Ohwaki, T. et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293(5528):269-271.
    [37]Premkumar, J. Development of super-hydrophilicity on nitrogen-doped TiO2 thin film surface by photoelectrochemical method under visible light. Chemistry of Materials,2004,16(21):3980-3981.
    [38]Milad, A. M. H.; Minggu, L. J.; Kassim, M. B.et al. Carbon doped TiO2 nanotubes photoanodes prepared by in-situ anodic oxidation of Ti-foil in acidic and organic medium with photocurrent enhancement. Ceramics International,2013,39(4): 3731-3739.
    [39]Yang, S. M.; Guo, S. P.; Xu, D. L. et al. Improved efficiency of dye-sensitized solar cells applied with F-doped TiO2 electrodes. Journal of Fluorine Chemistry,2013, 150:78-84.
    [40]Kim, D. Y.; Kang, M. Diversification of photoelectric efficiency on DSSCs assembled according to the change of coating layers of Px-TiO2 films. Materials Chemistry and Physics,2012,136(2-3):947-953.
    [41]Lu, N.; Quan, X.; Li, J. Y. et al. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. Journal of Physical Chemistry C,2007,111(32):11836-11842.
    [42]Zhang, Y.; Wang, L. L.; Liu, B. K. et al. Synthesis of Zn-doped TiO2 microspheres with enhanced photovoltaic performance and application for dye-sensitized solar cells. Electrochimica Acta,2007,56(18):6517-6523.
    [43]Han, L.; Wang, D. J.; Lu, Y. C. et al. Influence of annealing temperature on the photoelectric gas sensing of Fe-doped ZnO under visible light irradiation. Sensors and Actuators B-Chemical,2013,177:34-40.
    [44]Zhang, X.; Liu, Fang.; Huang, Q. L. et al. Dye-sensitized W-doped TiO2 solar cells with a tunable conduction band and suppressed charge recombination. Journal of Physical Chemistry C,2011,115(25):12665-12671.
    [45]Hasin, P.; Alpuche-Aviles, M. A.; Li, Y. G. et al. Mesoporous Nb-Doped TiO2 as Pt Support for Counter Electrode in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C,2009,113(17):7456-7460.
    [46]Sene, J. J.; Zeltner, W. A.; Anderson, M. A. Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and V-doped TiO2 thin-film electrode materials. Journal of Physical Chemistry,2003,107(7):1597-1603.
    [47]Liu, J.; Yang, H. T.; Tan, W. W. et al. Photovoltaic performance improvement of dye-sensitized solar cells based on tantalum-doped TiO2 thin films. Electrochimica Acta,2010,56(1):396-400.
    [48]Zhu, H.; Tao, Jie.; Dong, X.; Preparation and photoelectrochemical activity of Cr-doped TiO2 nanorods with nanocavities. Journal of Physical Chemistry C,2010, 114(7):2873-2879.
    [49]Luo, S. Y; Yan, B. X.; Shen, J. Enhancement of photoelectric and photocatalytic activities:Mo doped TiO2 thin films deposited by sputtering. Thin Solid Films, 2012,552:361-365.
    [50]Zhang, J.; Peng, W. Q.; Chen, Z. H. et al. Effect of cerium doping in the TiO2 photoanode on the electron transport of dye-sensitized solar cells. Journal of Physical Chemistry C,2012,116(36):19182-19190.
    [51]Zalas, M.; Walkowiak, M. Schroeder, G. Increase in efficiency of dye-sensitized solar cells by porous TiO2 layer modification with gadolinium-containing thin layer. Journal of Rare Earths,2011,29(8):783-786.
    [52]Zhang, J. C.; Han, Z. Y.; Li, Q. Y. et al. N, S-doped TiO2 anode effect on performance of dye-sensitized solar cells Journal of Physics and Chemistry of Solids,2011,72(11):1239-1244.
    [53]Yang, S. M.; Xue, H. B.; Wang, H. J. et al. Improved efficiency of dye-sensitized solar cells applied with nanostructured N-F doped TiO2 electrode. Journal of Physics and Chemistry of Solids,2011,73(7):911-916.
    [54]Liu, Q. P.; Zhou, Y.; Duan, Y D. et al. Improved photovoltaic performance of dye-sensitized solar cells (DSSCs) by Zn+Mg co-doped TiO2 electrode. Electrochimica Acta,2013,95:48-53.
    [55]Wang, H.; Bai, Y. S.; Zhang, H. et al. CdS quantum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes. Journal of Physical Chemistry C,2010,114(39):16451-16455.
    [56]Lai, C. W.; Sreekantan, S.; E., S. P.; et al. Preparation and photoelectrochemical characterization of WO3-loaded TiO2 nanotube arrays via radio frequency sputtering. Electrochimica Acta,2012,77:128-136.
    [57]Hossain, M. E.; Biswas, S.; Zhang, Z. H. et al. Bubble-like CdSe nanoclusters sensitized TiO2 nanotube arrays for improvement in solar cell. Journal of Photochemistry and Photobiology A-Chemistry,2011,217(1):68-75.
    [58]Luo, B. W.; Deng, Y.; Wang, Y et al. Heterogeneous flammulina velutipes-like CdTe/TiO2 nanorod array:A promising composite nanostructure for solar cell application. Journal of Alloys and Compounds,2012,517(1):192-197.
    [59]Zhai, J. L.; Wang, D. J; Peng, L. et al. Visible-light-induced photoelectric gas sensing to formaldehyde based on CdS nanoparticles/ZnO heterostructures. Sensors and Actuators B-Chemical,2010,147(1):234-240.
    [60]Kathalingam, A.; Valanarasu, S.; Senthilkumar, V. et al. Piezo and photoelectric coupled nanogenerator using CdSe quantum dots incorporated ZnO nanowires in ITO/ZnO NW/Si structure. Materials Chemistry and Physics,2013,138(1): 262-269.
    [61]Mane, R. S.; Lee, W. J.; Pathan, H. M. et al. Nanocrystalline TiO2/ZnO Thin Films: Fabrication and Application to Dye-Sensitized Solar Cells. Journal of Physical Chemistry B,2005,109(51):24254-24259.
    [62]Li, H. Y.; Xie, C. S.; Liao, Y. C. et al. Characterization of Incidental Photon-to-electron Conversion Efficiency (IPCE) of porous TiO2SnO2 composite film. Journal of Alloys and Compounds,2013,569(1):88-94.
    [63]Kim, D. H.; Lee, S. W.; Park, J. H. et al. Transmittance optimized Nb-doped TiO2/Sn-doped In2O3 multilayered photoelectrodes for dye-sensitized solar cells. Solar Energy Materials and Solar Cells,2012,96(1):276-280.
    [64]Lai, Y. K.; Gong, J. J.; Lin. C. J. et al. Self-organized TiO2 nanotube arrays with uniform platinum nanoparticles for highly efficient water splitting. International Journal of Hydrogen Energy,2012,37(8):6438-6446.
    [65]Wang, H.; You, T. T.; Shi, W. W. et al. Au/TiO2/Au as a Plasmonic Coupling Photocatalyst. Journal of Physical Chemistry C,2012,116(10):6490-6494.
    [66]Jeong, N. C.; Prasittichai, C.; Hupp, J. T. Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells. Langmuir,2011,27(23):14609-14614.
    [67]Zhang, Z. H.; Yu, Y. J.; Wang, P. et al. Hierarchical top-porous/bottom-tubular TiO2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants. ACS Applied Materials & Interfaces,2012, 4(2):990-996.
    [68]Li, G.; Wang, T.; Zhu, Y. et al. Preparation and photoelectrochemical performance of Ag/graphene/TiO2 composite film. Applied Surface Science,2011,257(15): 6568-6572.
    [69]Bang, J. H.; Kamat, P. V. CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion:electron transfer and photoelectrochemistry. ACS Nano, 2011,5(12):9421-9427.
    [70]Lin, W. J.; Hsu, C. T.; Tsai, Y. C.; Dye-sensitized solar cells based on multiwalled carbon nanotube-titania/titania bilayer structure photoelectrode. Journal of Colloid and Interface Science,2011,358(2):562-566.
    [71]An, W. J.; Wang, W. N.; Ramalingam, B. et al. Enhanced Water Photolysis with Pt Metal Nanoparticles on Single Crystal TiO2 Surfaces. Langmuir,2012,28(19): 7528-7534.
    [72]Luo, Q. P.; Yu, X. Y.; Lei, B. X.; et al. Reduced Graphene Oxide-Hierarchical ZnO Hollow Sphere Composites with Enhanced Photocurrent and Photocatalytic Activity. Journal of Physical Chemistry C,2012,116(10):8111-8117.
    [73]Wang, Z. R; Xiao, P.; Qiao, L. et al. Polypyrrole sensitized ZnO nanorod arrays for efficient photo-electrochemical splitting of water. Physica B:Condensed Matter, 2013,419:51-56.
    [74]Bulakhe, R. N.; Patil, S. V.; Deshmukh, P. R. et al. Fabrication and performance of polypyrrole (Ppy)/TiO2 heterojunction for room temperature operated LPG sensor. Sensors and Actuators B-Chemical,2013,181:417-423.
    [75]Zhu, S. B.; Wei, W.; Chen, X. N. et al. Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement. Journal of Solid State Chemistry,2012,190:174-179.
    [76]Yang, S. T.; Ishikawa, Y.; Itoh, H. et al. Fabrication and characterization of core/shell structured TiO2/polyaniline nanocomposite. Journal of Colloid and Interface Science,2011,356(2):734-740.
    [77]Jia, Y. C.; Xiao, P.; He, H. C. et al. Photoelectrochemical properties of polypyrrole/TiO2 nanotube arrays nanocomposite under visible light. Applied Surface Science 2012,258:6627-6631.
    [78]Kim, Y. J.; Kim, K. H.; Kang, P. et al. Effect of layer-by-layer assembled SnO2 interfacial layers in photovoltaic properties of dye-sensitized solar cells. Langmuir, 2012,28(28):10620-10626.
    [79]Guo, L.; Zhang, H.; Zhao, D. X. et al. High responsivity ZnO nanowires based UV detector fabricated by the dielectrophoresis method. Sensors and Actuators B-Chemical,2012,166-167:12-16.
    [80]Kim, J. Y; Kang, S. H.; Kim H. S. et al. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells. Langmuir,2010,16(4): 2864-2870.
    [81]Bera, A.; Basak, D. Photoluminescence and Photoconductivity of ZnS-Coated ZnO Nanowires. ACS Applied Materials & Interfaces,2010,2(2):408-412.
    [82]Choi, S. K.; Kim, S.; Lim, S. K. et al. Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers:effects of mesoporosity and interparticle charge transfer. Journal of Physical Chemistry C,2010,114(39): 16475-16480.
    [83]Lu, Y. C.; Wang, L. L.; Wang, D. J. et al. A comparative study on plate-like and flower-like ZnO nanocrystals surface photovoltage property and photocatalytic activity. Materials Chemistry and Physics,2011,129(1-2):281-287.
    [84]Sun, W. T.; Yu, Y.; Pan, H. Y. et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. Journal of the American Chemical Society,2008, 130(4):1124-1125.
    [85]Bera, A.; Basak, D. Effect of surface capping with Poly(vinyl alcohol) on the photocarrier relaxation of ZnO nanowires. ACS Applied Materials & Interfaces, 2009,1(9):2066-2070.
    [86]Yang, S. W.; Gao, L. Photocatalytic activity of nitrogen doped rutile TiO2 nanoparticles under visible light irradiation. Materials Research Bulletin,2008,43: 1872-1876.
    [87]Li, F. B.; Li, X. Z.; Ao, C. H. et al. Enhanced photocatalytic degradation of VOCs using Ln3+-Ti02 catalysts for indoor air purification. Chemosphere,2005,59(6): 787-800.
    [88]Xiao, G. C.; Wang, X. C.; Li, D. Z. et al. InVO4-sensitized TiO2 photocatalysts for efficient air purification with visible light. Journal of Photochemistry and Photobiology A-Chemistry,2008,193(2-3):213-221.
    [89]Nakanishi, Y.; Imae, T. Synthesis of dendrimer-protected TiO2 nanoparticles and photodegradation of organic molecules in an aqueous nanoparticle suspension. Journal of Colloid and Interface Science,2005,285(1):158-162.
    [90]Inaba, R.; Fukahori, T.; Hamamoto, M.; et al. Synthesis of nanosized TiO2 particles in reverse micelle systems and their photocatalytic activity for degradation of toluene in gas phase. Journal of Molecular Catalysis A-Chemical,2006,260(1-2): 247-254.
    [91]Wu, L.; Yu, J. C; Fu, X. Z. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. Journal of Molecular Catalysis A-Chemical,2006,244(1-2):25-32.
    [92]Ohno, T.; Murakami, N.; Tsubota, T. et al. Development of metal cation compound-loaded S-doped TiO2 photocatalysts having a rutile phase under visible light. Applied Catalysis A-General,2008,349(1-2):70-75.
    [93]Sasikala, R.; Shirole, A.; Sudarsan, V. et al. Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route:Photocatalytic activity for hydrogen generation. International Journal of Hydrogen Energy,2009,34(9): 3621-3630.
    [94]Wang, Z. Y.; Chen, C.; Wu, F. Q. et al. Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals. Journal of Hazardous Materials, 2009,164(2-3):615-620.
    [95]Potyrailo, R. A.; Mirsky, V. M. Combinatorial and high-throughput development of sensing materials:The First 10 Years. Chemical Reviews 2008,108:770-813.
    [96]Jaramillo, T. R.; Baeck, S-H.; Kleiman-Shwarsctein, A. et al. Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCoxO thin films for solar hydrogen production. Journal of Combinatorial Chemistry,2005, 7(2),264-271.
    [97]Sanders, D.; Simon, U. High-Throughput Gas Sensing Screening of Surface-Doped In2O3. Journal of Combinatorial Chemistry,2007,9(1),53-61.
    [98]Dai, Q. X.; Xiao, H. Y.; Li, W. S. et al. Photodegradation catalyst discovery by high-throughput experiment. Journal of Combinatorial Chemistry,2005,7(4): 539-545.
    [99]Dai, Q. X.; Xiao, H. Y.; Li, W. S. et al. Photodegradation catalyst screening by combinatorial methodology. Applied Catalysis A-General,2005,290(1-2):25-35.
    [100]Xiao, H. Y.; Dai, Q. X.; Li, W. S. et al. Photo-degradation catalyst screening by high throughput experiments. Journal of Molecular Catalysis A-Chemical,2006, 245(1-2),17-25.
    [101]Chin, S. S.; Chiang, K.; Fane, A. G The stability of polymeric membranes in a TiO2 photocatalysis process. Journal of Membrane Science,2006,275(1-2): 202-211.
    [102]Reyes, C.; Fernandez, J.; Freer, J. et al. Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of Photochemistry and Photobiology A-Chemistry, 2006,184(1-2):141-146.
    [103]Xie, Y. B.; Li, X. Z. Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2-Ti mesh and reticulated vitreous carbon electrodes. Materials Chemistry and Physics,2006,95(1):39-50.
    [104]Liu, B. S.; Wen, L. P.; Zhao, X. J. Efficient degradation of aqueous methyl orange over TiO2 and CdS electrodes using photoelectrocatalysis under UV and visible light irradiation. Progress in Organic Coatings,2009,64(2-3):120-123.
    [105]Cheng, X. F.; Leng, W. H.; Liu, D. P. et al. Enhanced photoelectrocatalytic performance of Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light. Chemosphere,2007,68(10):1976-1984.
    [106]Arai, T.; Yanagida, M.; Konishi, Y. et al. Utilization of Fe3+/Fe2+Redox for the Photodegradation of Organic Substances over WO3 Photocatalyst and for H2 Production from the Electrolysis of Water. Electrochemistry 2008,76(2):128-131.
    [107]Akurati, K. K.; Vital, A.; Dellemann, J.-P. et al. Flame-made WO3/TiO2 nanoparticles:Relation between surface acidity, structure and photocatalytic activity. Applied Catalysis B-Environmental,2008,79(1):53-62.
    [108]Zhang, L. F.; He, D. P.; Jiang, P. MnO2-doped anatase TiO2:An excellent photocatalyst for degradation of organic contaminants in aqueous solution. Catalysis Communications,2009,10(10):1414-1416.
    [109]刘源.金属氧化物复合体系气相光电催化性能与表征:[博士学位论文].武汉:华中科技大学材料科学与工程,2012.
    [110]Ghorai, T. K.; Pramanik, S.; Pramanik, P. Synthesis and photocatalytic oxidation of different organic dyes by using Mn2O3/TiO2 solid solution and visible light. Applied Surface Science,2009,255:9026-9031.
    [111]Gerischer, H.; Luebke, M. A particle size effect in the sensitization of TiO2 electrodes by a CdS deposit. Journal of Electroanalytical Chemistry,1986,204: 225-7.
    [112]Chi, C. F.; Chen, P.; Lee,Y. L. et al. Surface modifications of CdS/CdSe co-sensitized TiO2 photoelectrodes for solid-state quantum-dot-sensitized solar cells. Journal of Materials Chemistry,2011,21:17534-17540.
    [113]Zhu, G.; Cheng, Z. J.; Lv, T. et al. Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells. Nanoscale.2010,2:1229-1232.
    [114]Xiong, C. R.; Ratanatawanate, C.; Balkus, K. J. et al. Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano,2008,2(8):1682-1688.
    [115]Guchhait, A.; Rath, A. K.; Pal, A. J. To make polymer:Quantum dot hybrid solar cells NIR-active by increasing diameter of PbS nanoparticles. Solar Energy Materials & Solar Cells,2011,95(2):651-656.
    [116]Peter, L. M.; Upul Wijayantha, K. G.; Jason Riley, D. et al. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. Journal of Physical Chemistry B,2003,107(33):8378-8381.
    [117]Bessekhouad, Y.; Robert, D.; Weber, J. V. Bi2S3/Ti02 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. Journal of Photochemistry and Photobiology A-Chemistry,2004,163(3):569-580.
    [118]Herzog, C.; Belaidi, A.; Ogachoab, A. et al. Inorganic solid state solar cell with ultra-thin nanocomposite absorber based on nanoporous TiO2 and In2S3. Energy & Environmental science,2009,2:962-964.
    [119]Dittrich, T.; Belaidi, A.; Ennaoui, A. Concepts of inorganic solid-state nanostructured solar cells. Solar Energy Materials & Solar Cells,2011,95(6): 1527-1536.
    [120]Lee, Y. L.; Huang, B. M.; Chien, H. T. Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chemistry of Materials,2008,20(22):6903-6905.
    [121]Nozik, A. J. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Inorganic Chemistry, 2005,44(20):6893-6899.
    [122]Banerjee, S.; Mohapatra, S. K.; Das, P. P. et al. Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chemistry of Materials,2008,20(21): 6784-6491.
    [123]Hayden, S. C.; Allam, N. K.; El-Sayed, M. A. TiO2 nanotube/CdS hybrid electrodes: extraordinary enhancement in the inactivation of escherichia coli. Journal of the American Chemical Society,2010,132(41):14406-14408.
    [124]Shengyuan, Y.; Nair, A. S.; Jose, R. et al. Electrospun TiO2 nanorods assembly sensitized by CdS quantum dots:a low-cost photovoltaic material. Energy & Environmental science,2010,3:2010-2014.
    [125]Zhu, G.; Pan, L. K.; Xu, T. et al. One-step synthesis of CdS sensitized TiO2 photoanodes for quantum dot-sensitized solar cells by microwave assisted chemical bath deposition method. ACS Applied Materials & Interfaces,2011,3(5): 1472-1478.
    [126]Zhu, K.; Neale, N. R.; Miedaner, A. et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters,2007,7(1):69-74.
    [127]Zhu, W.; Liu, X.;Liu, H. Q. et al. Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition. Journal of the American Chemical Society,2010,132(36): 12619-12626.
    [128]Lin, C. J.; Yu, Y. H.; Liou, Y. H. Free-standing TiO2 nanotube array films sensitized with CdS as highly active solar light-driven photocatalysts. Applied Catalysis B: Environmental,2009,93:119-125.
    [129]Shin, K.; Seok, S. I.; Im, S. H. et al. CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition:use in photoelectrochemical cells. Chemical Communications,2010,46:2385-2387.
    [130]Baker, D. R.; Kamat, P. V. Disassembly, reassembly and photoelectrochemistry of Etched TiO2 Nanotubes. Journal of Physical Chemistry C.2009,113(41): 17967-17972.
    [131]Shao, Z. B.; Zhu, W.; Li, Z. et al. One-step fabrication of CdS nanoparticle-sensitized TiO2 nanotube arrays via electrodeposition. Journal of Physical Chemistry C,2012,116:2438-2442.
    [132]Baker, D. R.; Kamat, P. V. Photosensitization of TiO2 nanostructures with CdS quantum dots:particulate versus tubular support architectures. Advanced Functional Materials,2009,19:805-811.
    [133]Yang, S. M.; Huang, C. H.; Zhai, J. et al. High photostability and quantum yield of nanoporous TiO2 thin film electrodes co-sensitized with capped sulfides. Journal of Materials Chemistry,2002,12:1459-1464.
    [134]Jang, J. S.; Ji, S. M.; Bae, S. W. et al. Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ≥420nm). Journal of Photochemistry and Photobiology A:Chemistry,2007,188:112-119.
    [135]Yin, Y. X.; Jin, Z. G.; Hou, F. Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays. Nanotechnology,2007,18: 495608.
    [136]Seabold, J. A.; Shankar, K. Wilke, R. H. T. et al. Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chemistry of Materials,2008,20(16):5266-5273.
    [137]Varpula, A.; Novikov, S.; Sinkkonen, J. et al. Bias dependent sensitivity in metal-oxide gas sensors. Sensors and Actuators B-Chemical,2008,131:134-142.
    [138]Guo, X.; Pithan, C; Only, C. et al. Enhancement of p-type conductivity in nanocrystalline BaTiO3 ceramics. Applied Physics Letters,2005,86:082110.
    [139]Vasheghani Farahani, S. K.; Veal, T. D.; King, P. D. C. et al. Electron mobility in CdO films. Journal of Applied Physics,2011,109:073712.
    [140]Rana, F. Electron-hole generation and recombination rates for coulomb scattering in graphene. Physical Review B:Condensed Matter and Materials Physics,2007, 76:155431.
    [141]Alexe, M. Local mapping of generation and recombination lifetime in BiFeO3 single crystals by scanning probe photoinduced transient spectroscopy. Nano Letters,2012,12(5):2193-2198.
    [142]Cuculescu, E.; Evtodiev, I.; Caraman, I. et al. Transport and generation-recombination mechanisms of nonequilibrium charge carriers in ZnO/In2O3/InSe:Cd heterojunctions. Thin Solid Films,2011,519(21):7356-7359.
    [143]Peng, S. M.; Su, Y. K.; Ji, L. W. et al. ZnO Nanobridge Array UV Photodetectors. Journal of Physical Chemistry C,2010,114(7):3204-3208.
    [144]Shinde, S. S.; Bhosale, C. H.; Rajpure, K. Y. N-doped ZnO based fast response ultraviolet photoconductive detector. Solid-State Electronics,2012,68:22-26.
    [145]Xu, Z. Q.; Deng, H.; Xie, J. et al. Ultraviolet photoconductive detector based on Al doped ZnO films prepared by sol-gel method. Applied Surface Science,2006,253: 476-479.
    [146]Choopun, S.; Vispute, R. D.; Noch, W. et al. Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire. Applied Physics Letters,1999,75:3947-3949.
    [147]Peng, L.; Zhai, J. L.; Wang, D. J. et al. Size-and photoelectric characteristics-dependent formaldehyde sensitivity of ZnO irradiated with UV light. Sensors and Actuators B-Chemical,2010,148:66-73.
    [148]He, Y. N. Zhang, W.; Zhang, S. C. et al. Study of the photoconductive ZnO UV detector based on the electrically floated nanowire array. Sensors and Actuators A-Physical,2012,181:6-12.
    [149]Angwafor, N. G N.; Riler, D. J. Synthesis of ZnO nanorod/nanotube arrays formed by hydrothermal growth at a constant zinc ion concentration. Physica Status Solidi A,2008,205:2351-2354.
    [150]Gao, P. X.; Ding, Y.; Mai, W. J. et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science,2005,309:1700-1704.
    [151]Kim, Y. J.; Yoo, J.; Kwon, B. H. et al. Position-controlled ZnO nanoflower arrays grown on glass substrates for electron emitter application. Nanotechnology,2008, 19:315202.
    [152]Shinde, S. S.; Rajpure, K. Y. Fabrication and performance of N-doped ZnO UV photoconductive detector. Journal of Alloys and Compounds,2012,522:118-122.
    [153]Li, Y. H.; Gong, J.; Deng, Y. L. Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights. Sensors and Actuators A-Physical,2010,158:176-182.
    [154]Afsal, M.; Wang, C. Y.; Chu, L. W. et al. Highly sensitive metal-insulator-semiconductor UV photodetectors based on ZnO/SiO2 core-shell nanowires. Journal of Materials Chemistry,2012,22:8420-8425.
    [155]Chen, X. Y.; Ling, T.; Du, X. W. Low-temperature synthesis of ZnO/CdS hierarchical nanostructure for photovoltaic application. Nanoscale,2012,4: 5602-5607.
    [156]Lee, W.; Min, S. K.; Dhas, V. et al. Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells. Electrochemistry Communications,2009,11:103-106.
    [157]Zhu, G.; Lv, T.; Pan, L. K. et al. All spray pyrolysis deposited CdS sensitized ZnO films for quantum dot-sensitized solar cells. Journal of Alloys and Compounds, 2011,509(2):362-365.
    [158]Deng, J. P.; Wang, M. Q.; Song, X. H. et al. CdS and CdSe quantum dots subsectionally sensitized solar cells using a novel double-layer ZnO nanorod arrays. Journal of Colloid and Interface Science,2012,388(1):118-122.
    [159]Joo, J.; Kim, D. Yun, D. J. et al. The fabrication of highly uniform ZnO/CdS core/shell structures using a spin-coating-based successive ion layer adsorption and reaction method. Nanotechnology,2010,21:325604.
    [160]Kim, M. S.; Han, J. H.; Lee, D. H. et al. Laterally grown ZnO nanorod arrays on an obliquely deposited seed layer and its UV photocurrent response. Microelectronic Engineering,2012,97:130-133.
    [161]Amos, F. F.; Morin, S. A.; Streifer, J. A. et al. Photodetector arrays directly assembled onto polymer substrates from aqueous solution. Journal of the American Chemical Society,2007,129(46):14296-14302.
    [162]Chen, H. N.; Li, W. P.; Liu, H. C. et al. A suitable deposition method of CdS for high performance CdS-sensitized ZnO electrodes:Sequential chemical bath deposition. Solar Energy,2010,84(7):1201-1207.
    [163]Lin, H. T.; Wu, Y. S.; Cao, X. Q. et al. Engineering of interfacial electron transfer from donor-acceptor type organic semiconductor to ZnO nanorod for visible-light detection. Journal of Physical Chemistry C,2012,116(41):21657-21663.
    [164]Panda, S. K.; Jacob, C. Preparation of transparent ZnO thin films and their application in UV sensor devices. Solid-State Electronics,2012,73:44-50.
    [165]Cao, B. Q.; Matsumoto, T.; Matsumoto, M. et al. ZnO nanowalls grown with high-pressure PLD and their applications as field emitters and UV detectors. Journal of Physical Chemistry C,2009,113(25):10975-10980.
    [166]Sarkar, D.; Khan, G. G.; Singh, A. K. et al. Enhanced electrical, optical, and magnetic properties in multifunctional ZnO/a-Fe2O3 semiconductor nanoheterostructures by heterojunction engineering. Journal of Physical Chemistry C,2012,116(44):23540-23546.
    [167]Wu, J.; Li, H. Y.; Liu, Y. et al. Photoconductivity and trap-related decay in porous TiO2/ZnO nanocomposites. Journal of Applied Physics,2011,110:123513.
    [168]Pan, J. H.; Zhang, X. W.; Du, A. J. et al. A hierarchically assembled mesoporous ZnO hemisphere array and hollow microspheres for photocatalytic membrane water filtration. Physical Chemistry Chemical Physics,2012,14:7481-7489.
    [169]Guerin, V.-M. Elias, J. Nguyen, T. T. et al. Ordered networks of ZnO-nanowire hierarchical urchin-like structures for improved dye-sensitized solar cells. Physical Chemistry Chemical Physics,2012,14:12948-12955.
    [170]Li, C.; Zhang, S. P.; Hu M. L. et al. Nanostructural ZnO based coplanar gas sensor arrays from the injection of metal chloride solutions:Device processing, gas-sensing properties and selectivity in liquors applications. Sensors and Actuators B-Chemical,2011,153(2):415-420.
    [171]Liang, Z. W.; Cai, X.; Tan,S. Z. et al. Fabrication of n-type ZnO nanowire/graphene/p-type silicon hybrid structures and electrical properties of heterojunctions. Physical Chemistry Chemical Physics,2012,14:16111-16114.
    [172]Yang, Q. C.; Li, H. Y.; Xie, C. S. et al. A study of photocurrent spectrum of porous ZnO film sensitized by metal chloride solutions. Applied Surface Science,2012, 263:465-470.
    [173]Li, Y. B.; Paulsen, A.; Yamada, I. et al. Bascule nanobridges self-assembled with ZnO nanowires as double Schottky barrier UV switches. Nanotechnology.2010,21: 295502.
    [174]Sharma, P.; Sreenivas, K. Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering. Journal of Applied Physics,2003, 93(7) 3963-3970.
    [175]Luo, Q. P.; Yu, X. Y.; Lei, B. X. Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. Journal of Physical Chemistry C 2012,116(14):8111-8117.
    [176]Peng, L.; Zhao, Q. D.; Wang, D. J. et al. Ultraviolet-assisted gas sensing:A potential formaldehyde detection approach at room temperature based on zinc oxide nanorods. Sensors and Actuators B-Chemical,2009,136:80-85.
    [177]Sarkar, D.; Khan, G. G; Singh, A. K. et al. Enhanced Electrical, Optical, and Magnetic Properties in Multifunctional ZnO/a-Fe2O3 Semiconductor Nanoheterostructures by Heteroj unction Engineering. Journal of Physical Chemistry C,2012,116(44):23540-23546.
    [178]Ahn, C. H.; Kim, Y. Y; Kim, D. C. et al. A comparative analysis of deep level emission in ZnO layers deposited by various methods. Journal of Applied Physics, 2009,105,013502.
    [179]Djurisic, A. B.; Leung, Y. H.; Tam, K. H. et al. Defect Emissions in ZnO Nanostructures. Nanotechnology,2007,18:095702-095709.
    [180]Tam, K. M.; Cheung, C. K.; Leung, Y. H. et al. Defects in ZnO Nanorods Prepared by a Hydrothermal Method. Journal of Physical Chemistry B,2006,110(42): 20865-20871.
    [181]Wang, J. P.; Wang, Z. Y.; Huang, B. B. et al. Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO. ACS Applied Materials & Interfaces,2012,4(8):4024-4030.
    [182]Jiang, J.; Zhang, X.; Sun, P. B. et al. ZnO/BiOI Heterostructures:Photoinduced Charge-Transfer Property and Enhanced Visible-Light Photocatalytic Activity. Journal of Physical Chemistry C,2011,115(42):20555-20564.
    [183]Guo, M. Y.; Ng, A. M. C.; Liu, F. et al. Effect of Native Defects on Photocatalytic Properties of ZnO. Journal of Physical Chemistry C,2011,115(22):11095-11101.
    [184]Cao, B. Q.; Cai, W. P.; Zeng, H. B. Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays. Applied Physics Letters,2006,88(16):161101.
    [185]Cao, B. Q.; Matsumoto, T.; Matsumoto, M. ZnO Nanowalls Grown with High-Pressure PLD and Their Applications as Field Emitters and UV Detectors. Journal of Physical Chemistry C,2009,113(25):10975-10980.
    [186]Wu, J.; Li, H. Y.; Liu, Y. et al. Photoconductivity and trap-related decay in porous TiO2/ZnO nanocomposites. Journal of Applied Physics,2011,110(12):123513.
    [187]Zeng, H. B.; Duan, G T.; Li, Y. et al. Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes:Defect Origins and Emission Controls. Advanced Functional Materials,2010,20(4):561-572.
    [188]Djurisic, A. B.; Leung, Y. H.; Tarn, K. H. Defect emissions in ZnO nanostructures. Applied Physics Letters,2006,88(10):103107.
    [189]Zhang, S. S.; Xie, C. S.; Zou, Z. J. et al. High Photoconductive Response of Gas-Sensitized Porous Nanocrystalline TiO2 Film in Formaldehyde Ambience and Carrier Transport Kinetics. Journal of Physical Chemistry C,2012,116: 19673-19681.
    [190]Liu, B.; Wang, Z. R.; Dong, Y. et al. ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts. Journal of Materials Chemistry,2012, 22:9379-9384.
    [191]M, Kevin.; W, H. Tho.; G, W. Ho. Transferability of solution processed epitaxial Ga: ZnO films; tailored for gas sensor and transparent conducting oxide applications. Journal of Materials Chemistry,2012,22:16442-16447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700