抗碱盐生植物虎尾草和甜土植物棉花应对各种盐碱胁迫时DNA甲基化调节的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐碱化是一个世界性的环境问题,越来越受到人们的重视。在自然界中,土壤的盐化和碱化常常相伴而生,同时存在。许多研究证明盐胁迫和碱胁迫是两种性质不同的胁迫,这两种胁迫对植物的生长及生理都有不同的影响,并且植物对这两种胁迫的反应机制也不完全相同。前期虽然有关于虎尾草和棉花的抗盐碱机制报道,但大多集中在生理响应机制方面。目前还没有关于盐、碱胁迫对植物DNA甲基化影响的研究。虎尾草(Chloris virgata Swartz)是一种较为抗碱的盐生植物,棉花(Gossypium spp)是一种重要的非盐生经济作物。本文利用两种处理方式,从叶和根两种器官水平,从生理响应及DNA甲基化响应两方面来探讨虎尾草和棉花的抗盐、碱机制,其主要实验结果及结论如下:
     1.盐、碱胁迫在不同的处理时间长度下,对虎尾草体内离子平衡和渗透调节影响各有不同。
     采用两种中性盐(NaCl和Na_2SO_4)的复合盐和两种碱性盐(NaHCO_3和Na_2CO_3)的复合盐分别处理虎尾草幼苗,通过比较两种胁迫在不同的处理时间长度下,虎尾草体内光合色素、离子含量和有机酸含量的差异,发现随着盐、碱胁迫时间的增加,虎尾草叶片Na~+含量逐渐上升,并且碱胁迫下的上升幅度更大。K+含量并没有随着盐、碱胁迫时间的增长而出现明显变化。碱胁迫下随着时间的增长无机阴离子含量逐步降低。虎尾草主要靠琥珀酸的积累来调节长期的盐胁迫,而主要靠积累柠檬酸来调节长期的碱胁迫。总体而言,碱性盐胁迫的影响显著大于中性盐胁迫,并且随着胁迫时间的延长,这种影响差异性越来越显著。
     2.与盐胁迫相比,碱胁迫对虎尾草、棉花甲基化的影响更为显著。
     采用两种中性盐(NaCl和Na_2SO_4)的复合盐和两种碱性盐(NaHCO_3和Na_2CO_3)的复合盐分别处理虎尾草幼苗,利用MSAP(甲基化敏感扩增多态性)技术,检测到在中性复合盐胁迫后的叶中,DNA甲基化变异频率为0-0.24%,根中为0.09-1.85%,而在碱性复合盐胁迫后的叶中,DNA甲基化变异频率为0-0.41%,根中为0.09-5.48%。在棉花中也发现,盐胁迫对甲基化水平没有影响,而碱胁迫显著降低了棉花的总体甲基化水平。盐胁迫下叶的总甲基化变异频率为1.38%,根的甲基化变异频率为2.20%;碱胁迫下叶的总甲基化变异频率为2.59%,根的总甲基化变异频率为11.44%。
     本实验从DNA甲基化的角度证实了盐胁迫和碱胁迫是两种性质截然不同的胁迫,因为高pH值的影响,碱胁迫对植物DNA甲基化的影响更为严重。由此说明,在长期的盐碱环境中生长,植物可能通过DNA甲基化的方式来调节相关基因的表达,从而在不影响DNA序列和基因组稳定性的前提下,来适应和抵抗外界盐、碱环境,这也是一种快速的应对胁迫并对植物体基因组影响较小的进化模式。
     3.四种单盐及混合盐对虎尾草DNA甲基化的影响明显不同。
     采用四种单盐(NaCl、Na_2SO_4、NaHCO_3、Na_2CO_3)及这四种单盐的混合盐(摩尔数比1:1:1:1)分别处理虎尾草幼苗,利用MSAP技术,检测到碱性盐(NaHCO_3、Na_2CO_3)的影响显著大于中性盐的影响(NaCl、Na_2SO_4);四种单盐混合后对DNA甲基化的影响,在叶中显著大于中性盐和碱性盐的影响,而在根中却表现出了一定的缓解作用。根据不同阴离子的作用机制不同,可将所有的甲基化变异条带分为8种类型:Na~+特异的条带;Cl-特异的条带;SO42-特异的条带;HCO_3-特异的条带;CO_32-特异的条带;Mix特异的条带;高pH特异的条带;SS(中性盐特异的条带)。在叶中以Mix特异的条带为主,而在根中以高pH特异的条带为主。本文从DNA甲基化的角度证实四种单盐虽然均为Na盐,但因为其特异阴离子的存在,对DNA甲基化的影响也有其特异性,四种单盐混合后作用机制复杂,存在一定的缓解效应,而土壤的高pH环境对根的影响较为显著。
     4.盐、碱胁迫下,植物根的DNA甲基化变异更为显著。
     分析盐、碱胁迫下虎尾草和棉花的根和叶中发生的DNA甲基化变异情况可以得知,无论在中性复合盐胁迫、碱性复合盐胁迫、单盐单独胁迫还是在单盐混合胁迫下, DNA甲基化变异在根中发生的更为频繁。并且在甲基化的变异中,基本都以甲基化降低为主。在盐、碱环境中,根是直接接触离子毒害和渗透压力的器官,它对外界胁迫的响应更为直接和迅速,根中DNA的低甲基化和在胁迫下较高的变异率恰恰说明了根在调节碱胁迫的过程中可能起着非常重要的作用。
Soil salinization and alkalization is a worldwide environmental problem, and isdrawing more and more people’s attentions. Soil salinization and alkalization is oftenco-occurred in nature. Many studies have proved that salt stress and alkali stress aretwo different stresses with different properties, they have different effects on plantgrowth and physiology, and the mechanisms that plants reacted to them are alsodifferent. Although there were many reports about the resistance mechanism of C.virgata and cotton, most of them concentrated in the physiological response. Therewas still no study about the effects on plant DNA methylation of salt stress and alkalistress. Chloris virgata is a kind of alkali-resistant halophyte, while cotton is a kind ofimportant economic glycophyte. Two kinds of salt and alkali stresses were used in thispaper, and we discussed the resistance mechanisms of C. virgata and cotton fromphysiological response and DNA methylation response, and the experiments werebased on two organ levels that were leaf and root. The main results and conclusionswere as follows:
     1. Salt stress and alkali stress have different effects on ionic balance and osmoticregulation of C. virgata under different treated time.
     Two kinds of neutral salts (NaCl and Na_2SO_4) and alkaline salts (NaHCO_3andNa_2CO_3) were used to treat C. virgata seedlings. By comparing the different effects onphotosynthetic pigment, ion content and organic acids content, we found that Na~+increased with the increased treated time of both stresses, and the increasment underalkali stress was more obvious. K+content didn’t change under both stresses. Thecontents of anions were decreased with the increament of treated time of alkali stress.The mainly accumulated organic acid was succinic acid to adjust the long-term saltstress, and was citric acid to adjust long-term alkali stress. Overall, alkali stress hadmore significant influence on C. virgata than salt stress, and the effects were more andmore significant along with the extension of the treated time.
     2. Compared with salt stress, alkali stress had more significant influence on DNAmethylation of C. virgata and cotton.
     Two kinds of neutral salts (NaCl and Na_2SO_4) and alkaline salts (NaHCO_3andNa_2CO_3) were used to treat C. virgata seedlings, and through the analysis of MSAP(methylation sensitive amplified polymorphism) technology, we found that DNAmethylation variation frequency was0-0.24%in leaf and0.09-1.85%in roots undersalt stress, while DNA methylation variation frequency was0-0.41%in leaf and0.09-5.48%in roots under alkali stress. In cotton we also found that salt stress had noeffect on the overall level of methylation, while alkali stress significantly decreasedthe overall methylation level. The total variation frequency was1.38%in leaf undersalt stress, and the frequencies were2.20%in root respectively. Meanwhile, the total variation frequency was2.59%in leaf under alkali stress, and the frequencies were11.44%respectively.
     Therefore, this experiment confirmed that salt stress and alkali stress are reallytwo different stresses from the point of DNA methylation. The effect of the alkalistress on plant DNA methylation was more serious with higher pH value. Under thelong-term salt and alkali stress, plants could regulate stress-related gene expressionthrough DNA methylation, which has no impact on the DNA sequence and genomestability. It was also a quick response to stress and a kind of evolution model with theleast effect on plant genome.
     3. Four kinds of single salt and their mixed salt had significantly different effectson C. virgata DNA methylation.
     Using four kinds of single salt (NaCl, Na_2SO_4, NaHCO_3, Na_2CO_3) and the mixedfour salts (molar ration was1:1) to treat C. virgata seedlings, and through theanalysis of MSAP technology, we found that alkaline salts (NaHCO_3and Na_2CO_3),had more significant effect than neutral salts (NaCl, Na_2SO_4). After the treatment ofthe mixed four salts, the influence in the leaves was much more serious than neutralsalts and alkaline salts, while in root it showed a soothing effect. According to thedifferent properties of different anions, all the methylation variation were classifiedinto8types: Na~+specific bands; Cl-specific bands; SO42-specific bands;HCO_3-specific bands; CO_32-specific bands; Mix specific bands; Higher pH specificbands; SS (neutral salts specific) bands. The main variation bands were Mix specificbands in leaf, while that were high pH specific bands in roots. This article showed thatalthough four kinds of single salt were sodium salts, but they had different influenceon DNA methylation because of its specific anion, and the mixed four salts hadcomplex effects on plants, there were some alleviation effects, and the impact ofhigher pH in the soil surrounding root was significant.
     4. Under salt stress and alkali stress, DNA methylation variation was moremarked in roots.
     The variation frequencies occurred in C. virgata and cotton showed that nomatter in a neutral salt stress or in alkaline salt stress or in single salt stress or inmixed salt stress, the phenomenon of DNA methylation variations was more markedin root than in leaf. And among all the methylation variations, the hypomethylationwas the main type. In salt and alkali environment, roots was the primary organ whichcontacted directly with ion poison and osmotic pressure, it’s responses to the outsidestresses were more directly and quickly than other organs. The lower DNAmethylation level and the higher variation frequencies in root justified the importantrole of root in the process of adjusting alkali stress.
引文
[1]Madlung A, Comai L. The effect of stress on genome regulation and structure[J].Ann Botany,2004,94:481-495.
    [2]Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extremetemperatures: towards genetic engineering for stress tolerance[J]. Planta,2003,218:1-4.
    [3]利荣千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社.2002,188-278.
    [4]Shi D C, Wang D L. Effects of various salt–alkali mixed stresses onAneurolepidium chinense (Trin.) Kitag[J]. Plant Soil,2005,271:15-26.
    [5]Munns R. Comparative physiology of salt and water stress [J]. Plant Cell Environ,2002,25:239-250.
    [6]Shi D C, Zhao K F. Effects of NaCl and Na2CO3on growth of Puccinelliatenuiflora and on present state of mineral elements in nutrient solution [J]. ActaPratacu Sin,1997,6(2):51-61.
    [7]刘杰.向日葵对碱胁迫和盐胁迫适应机制比较[D].[博士学位论文].长春:东北师范大学,2011.
    [8]李长有.盐碱地四种主要致害盐分对虎尾草胁迫作用的混合效应与机制[D].
    [博士学位论文].长春:东北师范大学,2009.
    [9]颜宏,石德成,尹尚军.外施Ca2+、ABA及H3PO4对盐碱胁迫的缓解效应[J].应用生态学报,2000,11(6):889-892.
    [10]朱庭芸,何守成.滨海盐渍土的改良和利用[M].北京:农业出版社,1985.34-38.
    [11]孙小芳,刘友良,陈沁.棉花耐盐性研究进展[J].棉花学报,1998,10(3):118-124.
    [12]杨科,张保军,胡银岗,等.混合盐碱胁迫对燕麦种子萌发及幼苗胜利生活特性的影响[J].干旱地区农业研究,2009,27(3):188-191.
    [13]赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社,2005.36-46.
    [14]张建锋.盐碱地生态修复原理与技术[M].北京:中国林业出版社,2008,85-94.
    [15]杨春武,李长有,尹红娟,等.小冰麦(Triticum aestivum-Agropyronintermedium)对盐胁迫和碱胁迫的生理响应[J].作物学报,2007,33(8):1255-1261.
    [16]Maas E V, Grieve C M. Spike and Leaf Development of Sal-Stressed Wheat[J].Crop Science,1989,30(6):1309-1313.
    [17]高战武.紫花苜蓿对复合盐碱胁迫的适应性响应[D].[博士学位论文].长春:东北师范大学,2006.
    [18]赵可夫,王韶唐.作物抗性生理[M].北京:农业出版社,1990.
    [19]Shi D C, Sheng Y M. Effect of various salt–alkaline mixed stress conditions onsunflower seedlings and analysis of their stress factors[J]. Environ Exp Bo,2005,54:8-21.
    [20]Plamgren M G. Plant plasma membrane H+-ATPase: powerhouses for nutrientuptake[J]. Ann Rev Plant Physiol Plant Mol Bio,2001,52:817-845.
    [21]刘爱平.盐碱胁迫下星星草幼苗离子平衡的调节机制研究[D].[硕士学位论文].扬州:扬州大学,2007.
    [22]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379-387.
    [23]朱新广,张其德. NaCl对光合作用影响的研究进展[J].植物学通报,1999,16(4):332-338.
    [24]赵可夫,冯立田.黄河三角洲不同生态型芦苇对盐度适应生理的研究:Ⅰ.渗透调节物质及其贡献[J].生态学报,18(5):8-14.
    [25]Yang C W, Xu H H, Wang L L, et al. Comparative effects of salt-stress andalkali-stress on the growth, photosynthesis, solute accumulation, and ion balanceof barley plants[J]. Photosynthetica,2009,47(1):79-86.
    [26]王玉珍,冯学赞,罗景兰,等.珠美海棠耐盐植物材料筛选的研究[C].见:盐生植物利用与区域农业可持续发展,2001.175-178.
    [27]Fougère F, Rudulier D L, Streeter J G. Effects of Salt Stress on Amino Acid,Organic Acid, and Carbohydrate Composition of Roots, Bacteroids, and Cytosolof Alfalfa (Medicago sativa L.)[J]. Plant Physiol,1991,96(4):1228-1236.
    [28]Sharma P K, Hall D O. Interaction of salt stress and photoinhibition onphotosynthesis in barley and sorghum[J]. J plant physiol,1991,138(5):614-619.
    [29]Strogonov B P. Structure and function of plant cells in saline habitats[C]. In:Gollek B, eds. New trends in the study of salt tolerance. New York.: Halsted Press,1973.284.
    [30]王萍,殷立娟,李建东.松嫩平原盐碱化草地羊草的生长适应性及耐盐生理特性的研究[J].生态学报,1994,14(3):306-311.
    [31]鞠淼.盐及盐碱混合条件对燕麦胁迫作用的比较[D].[硕士学位论文].长春:东北师范大学,2008.
    [32]王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学通报,1997,14(增刊):25-30.
    [33]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994,85-89.
    [34]江苏农学院.植物生理学[M].北京:农业出版社,1984,89-92.
    [35]Ma J F, Zheng S J, Hiradate S, et al. Detoxifying aluminum with buckwheat[J].Nature,1997,390:569-570.
    [36]Shi D C, Yin S J, Yang G H, et al. Citric acid accumulation in an alkali-tolerantplant Puccinellia tenuiflora under alkaline stress[J]. Acta Botanica Sinica,2002,44:537-540.
    [37]颜宏,石德成,尹尚军,等.盐碱胁迫对羊草体内N及几种有机代谢产物积累的影响[J].东北师大学报(自然科学版),2000,32(3):47-52.
    [38]麻莹.盐碱混合胁迫下抗碱盐生植物碱地肤的渗透调节及其离子平衡特点[D].[硕士学位论文].长春:东北师范大学,2007.
    [39]Wyatt G R. Occurrence of5-methylcytosine in nucleic acids[J]. Nature,1950,166:237–238.
    [40]Gold M, Hurwitz J. The Enzymatic Methylation of Ribonucleic Acid andDeoxyribonucleic Acid. V. Purification and Properties of the DeoxyribonucleicAcid-Methylating Activity of Escherichia coli[J]. J Biol Chem,1964,239:3858–3865.
    [41]Tariq M, Paszkowski J. DNA and histone methylation in plants[J]. Trends ingenetics,2004,20(6):244–251.
    [42]Wassenegger M. RNA-directed DNA methylation[J]. Plant Mol Biol,2000,43:203–220.
    [43]Kakutani T, Munakata K, Richards E J, et al. Meiotically and mitotically stableinheritance of DNA hypomethylation induced by ddm1mutation of Arabidopsisthaliana[J]. Genetics,1999,151:831-838.
    [44]Papa C M, Springer N M, Muszynski M G, et al. Maize chromomethylase Zeamethyltransferase2is required for CpNpG methylation[J]. Plant Cell,2001,13:1919-1928.
    [45]Law J A, Jacobsen S E. Dynamic DNA methylation[J]. Science,2009,323(5921):1568–1569.
    [46]Cubas P, Vincent C,Coen E. An epigenetic mutation responsible for naturalvariation in floral symmetry[J]. Nature,1999,401(6749):157-161.
    [47]Manning K, Tor M, Poole M, et al. A naturally occurring epigenetic mutation in agene encoding an SBP-box transcription factor inhibits tomato fruit ripening[J].Nature Genetics,2006,38(8):948-952.
    [48]Sano H, Kamada I, Youssefian S, et al. A single treatment of rice seedling with5-azacytidine induces heritable dwarfism and undermethylation of genomicDNA[J]. Molecular Genetics and Genomics,1990,220:441-447.
    [49]吴刚. cry1Ab基因在转基因水稻中的遗传、表达与沉默[D].[博士学位论文].杭州:浙江大学,2000.
    [50]Paszkowski J, Whitham S A. Gene silencing and DNA methylation processes[J].Curr Opin Plant Biol,2001,4:123-129.
    [51]Ng H H, Bird A. DNA methylation and chromatin modification[J]. Curr OpinGenet Dev,1999,9:158-163.
    [52]Lukens L W, Zhan S H. The plant genome’s methylation status and response tostress: implications for plant improvement[J]. Curr Opin Plant Biol,2007,10:317-322.
    [53]Mazzucotelli E, Mastrangelo A M, Crosatti C, et al. Abiotic stress response inplants: When post-transcriptional and post-translational regulations controltranscription[J]. Plant Sci,2008,174:420-431.
    [54]Boyko A, Kovalchuk I. Epigenetic Control of Plant Stress Response[J]. EnvironMol Mutagen,2008,49:61-72.
    [55]Chen M, Lv S L, Meng Y J. Epigenetic performers in plants[J]. Dev GrowthDiffer,2010,52:555-566.
    [56]Lu G Y, Wu X M, Chen B Y, et al. Evaluation of genetic and epigeneticmodification in rapeseed (Brassica napus)induced by salt stress[J]. J Integr PlantBiol,2007,49(11):1599-607.
    [57]Kovarik A, Koukalov’a B, Bezd’ek M, et al. Hypermethylation of tobaccoheterochromatic loci in response to osmotic stress[J]. Theor Appl Genet,1997,95:301-06.
    [58]Lira-Medeiros C F, Parisod C, Fernandes R A, et al. Epigenetic Variation inMangrove Plants Occurring in Contrasting Natural Environment[J]. PLoS ONE,2010,5(4): e10326.
    [59]冯奇志.盐碱胁迫诱导的水稻DNA甲基化变异[D].[硕士学位论文].长春:东北师范大学,2008.
    [60]Nivas D, Gaikwad D K, Chavan P D. Physiological responses of two Morindaspecies under saline conditions[J]. American journal of plant physiology,2011,DOI:10.3923/ajpp.2011.
    [61]Sabirov R Z, Azimov R R, Ando-Akastuka, et al. Na+sensitivity of ROMK1K+channel: role of the Na+/K+antiporter[J]. J Membr Biol,1999,172:67-76.
    [62]Zhu J K, Liu J P, Xiong LM. Genetic Analysis of Salt Tolerance in Arabidopsis:Evidence for a Critical Role of Potassium Nutrition[J]. Plant Cell,1998,10:1181-1192.
    [63]张建锋,李吉跃,宋玉民,等.植物耐盐机理与耐盐植物选育研究进展[J].世界林业研究,2003,2:16-22.
    [64]Guo R, Shi L X, Ding X M, et al. Effects of Saline and Alkaline Stress onGermination, Seedling Growth, and Ion Balance in Wheat[J]. Agron J,2010,102(4):1252-1260.
    [65]Yang C, Chong J, Kim C, et al. Osmotic adjustment and ion balance traits of analkali resistant halophyte Kochia sieversiana during adaptation to salt and alkaliconditions[J]. Plant Soil,2007,294:263-276.
    [66]Falkenberg P, Str m A R. Purification and characterization of osmoregulatorybetaine aldehyde dehydrogenase of Escherichiacoli[J]. Biochimica et BiophysicaActa (BBA)-General Subjects,1990,1034(3):253-259.
    [67]Posas F, Chambers J R, Heyman J A, et al. The transcriptional response of yeastto saline stress[J]. J Biol Chem,2000,275(23):17249-17255.
    [68]Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of7000Arabidopsis genes under drought, cold and high-salinity stresses using afull-length cDNA microarray[J]. Plant J,2002,31(3):279-292.
    [69]Chao D Y, Luo Y H, Shi M, et al. Salt-responsive genes in rice revealed by cDNAmicroarray analysis[J]. Cell Res,2005,15(10):796-810.
    [70]Wang H, Miyazaki S, Kawai K, et al. Temporal progression of gene expressionresponses to salt shock in maize roots[J]. Plant Mol Biol,2003,52(4):873-891.
    [71]Jin H, Kima H R, Plahaet P, et al. Expression profiling of the genes induced byNa2CO3and NaCl stresses in leaves and roots of Leymus chinensis[J]. Plant Sci,2008,175(6):784-792.
    [72]Nishiuchi S, Fujihara K, Liu S, et al. Analysis of expressed sequence tags from aNaHCO3-treated alkali-tolerant plant, Chloris virgata[J]. Plant Physiol Bioch,2010,48(4):247-255.
    [73]Nishiuchi S, Liu S K, Takano T. Isolation and characterization of ametallothionein-1protein in Chloris virgata Swartz that enhances stress tolerancesto oxidative, salinity and carbonate stress in Saccharomyces cerevisiae[J].Biotechnol Lett,2007,29:1301-1305.
    [74]Ye W W, Zhao Y L, Wang J J, et al. Construction of SSH library on root system ofsalinity-tolerance variety (G. hirsutum L.) under the stress of salinity[J]. CottonSci,2009,21(5):339-45.
    [75]Salekdeh G H, Siopongco J, Wade L J, et al. Proteomic analysis of rice leavesduring drought stress and recovery[J]. Proteomics,2002,2(9):1131-145.
    [76]Abbasi F M, Komatsu S. A proteomic approach to analyze salt-responsiveproteins in rice leaf sheath[J]. Proteomics,2004,4(7):2072-2081.
    [77]Yu J J, Chen S C, Zhao Q, et al. Physiological and Proteomic Analysis of SalinityTolerance in Puccinellia tenuiflora[J]. J Proteome Res,2011,10:3852-3870.
    [78]谢莉楠.盐碱胁迫下羊草相关基因及蛋白质表达谱研究[D].[博士学位论文].哈尔滨:东北林业大学,2007.
    [79]Liu J, Shi D C. Photosynthesis, chlorophyll fluorescence, inorganic ion andorganic acid accumulations of sunflower in responses to salt and salt-alkalinemixed stresses[J]. Photosynthetica,2010,48(1):127-134.
    [80]Li R L, Shi F C, Fukuda K J, et al. Effects of salt and alkali stresses ongermination, growth, photosynthesis and ion accumulation in alfalfa (Medicagosativa L.)[J]. Soil Sci Plant Nutr,2010,56:725-733.
    [81]Zhao Y L, Yu S X, Ye W W, et al. Study on DNA Cytosine Methylation of Cotton(Gossypium hirsutum L.) Genome and Its Implication for Salt Tolerance[J].Agricultural Sciences in China,2010,9(6):783-791.
    [82]Wang Y C, Chu Y G, Liu G F, et al. Identification of expressed sequence tags inan alkali grass (Puccinellia tenuiflora) cDNA library[J]. J Plant Physiol,2007,164:78-89.
    [83]Wang Y C, Yang C P, Liu G F, et al. Microarray and suppression subtractivehybridization analyses of gene expression in Puccinellia tenuiflora after exposureto NaHCO3[J]. Plant Sci,2007,173:309-320.
    [84]Wang Y C, Yang C P, Liu G F, et al. Development of a cDNA microarray toidentify gene expression of Puccinellia tenuiflora under saline alkali stress[J].Plant Physiol Bioch,2007,45:567-576.
    [85]Wang Y C, Ma H, Liu G F, et al. Analysis of Gene Expression Profile ofLimonium bicolor under NaHCO3Stress Using cDNA Microarray[J]. Plant MolBiol Rep,2008,26(3):241-254.
    [86]Jin H, Plaha P, Park J Y, et al. Comparative EST profiles of leaf and root ofLeymus chinensis, a xerophilous grass adapted to high pH sodic soil[J]. Plant Sci,2006,170:1081-1086.
    [87]Jin H, Kim H, Plaha R P, et al. Expression profiling of the genes induced byNa2CO3and NaCl stresses in leaves and roots of Leymus chinensis[J]. Plant Sci,2008,175:784-792.
    [88]Liu S, Zhang X, Jin Z, et al. Illustrated book of the wild plants in the alkaline soilareas of Northeast China[M]. Harbin: Northeast Forestry Univ. publisher,2006.
    [89]Zheng H Y, Li J D. Form and dynamic trait of halophyte community[C]. In:Zheng H Y, Li J D, eds. Saline Plants in Songnen Plain and Restoration ofAlkaline-saline Grass. Beijing: Science Press,1999.137-138.
    [90]Crawford N M, Glass A D M. Molecular and physiological aspects of nitrateuptake in plants[J]. Trends Plant Sci,1998,3:389-395.
    [91]Piperi C, Papavassiliou A G. Strategies for DNA methylation analysis indevelopmental studies[J]. Develop Growth Differ,2011,53:287–299.
    [92]Korch C, Hagblom P. In-vivo-modified gonococcal plasmid pJD1. A modelsystem for analysis of restriction enzyme sensitivity to DNA modifications[J]. EurJ Biochem,1986,161:519-524.
    [93]McClelland M, Nelson M, Raschke E. Effect of site-specific modification onrestriction endonucleases and DNA modification methyltransferases[J]. NucleicAcids Res,1994,22:3640-3659.
    [94]Xu M L, Li X Q, Korban S S. AFLP-based detection of DNA methylation[J].Plant Mol Biol Rep,2000,18:361-368.
    [95]Xiong L Z, Xu C G, Saghai Maroof MA, et al. Patterns of cytosine methylation inan elite rice hybrid and its parental lines, detected by a methylation-sensitiveamplification polymorphism technique[J]. Mol Gen Genet,1999,261:439-446.
    [96]Liu B, Brubaker C L, Mergeai G, et al. Polyploid formation in cotton is notaccompanied by rapid genomic changes[J]. Genome,2001,44:321-330.
    [97]Cervera M T, Ruiz-Garcia L, Martinez-Zapater J M. Analysis of DNAmethylation in Arabidopsis thaliana based on methylation-sensitive AFLPmarkers[J]. Mol Genet Genomics,2002,268:543-552.
    [98]Zhao Y, Yu S, Xing C, et al. Analysis of DNA Methylation in Cotton Hybrids andTheir Parents[J]. Mol Biol,2008,42(2):169-178.
    [99]Sha A H, Lin X H, Huang J B, et al. Analysis of DNA methylation related to riceadult plant resistance to bacterial blight based on methylation-sensitive AFLP(MSAP) analysis[J]. Mol Genet Genomics,2005,273:484-490.
    [100]Labra M, Ghiani A, Citterio S, et al. Analysisi of cytosine methylation pattern inresponse to water deficit in pea root tips[J]. Plant biology,2002,4:694-699.
    [101]Pan Y J, Wang W S, Zhao X Q, et al. DNA methylation alterations of rice inresponse to cold stress[J]. Plant omics journal,2011,4(7):364-369.
    [102]Roberta A, Sergio S, Angela S, et al. Specific hypomethylation of DNA isinduced by heavy metals in white clover and industrial hemp[J]. PhysiolPlantarum2004,121:472-480.
    [103]Kou H P, Li Y, Song X X, et al. Heritable alteration in DNA methylation inducedby nitrogen-deficiency stress accompanies enhanced tolerance by progenies to thestress in rice (Oryza sativa L.)[J]. J Plant Physiol,2011,168(14):1685-1693.
    [104]Verhoeven K J F, Jansen J J, van Dijk P J, et al. Stress-induced DNA methylationchanges and their heritability in asexual dandelions[J]. New Phytol,2010,185:1108-1118.
    [105]Gao X, Yang D, Cao D H, et al. In Vitro Micropropagation of Freesia hybridaand the Assessment of Genetic and Epigenetic Stability in RegeneratedPlantlets[J]. J Plant Growth Regul,2010,29:257-267.
    [106]Kimatu J N, Diarso M, Song C D, et al. DNA cytosine methylation alterationsassociated with aluminium toxicity and low pH in Sorghum bicolor[J]. Afr J AgrRes,2011,6(19):4579-4593.
    [107]Tani E, Polidoros A N, Nianiou-Obeidat I, et al. DNA methylation patterns aredifferentially affected by planting density in maize inbreeds and their hybrids[J].Maydica,2005,50:19-23.
    [108]Lu Y L, Rong T Z, Cao M J. Analysis of DNA methylation in different maizetissues[J]. J Genet Genomics,2008,35:41-48.
    [109]Finnegan E J, Genger R K, Peacock W J. DNA methylation in plants[J]. AnnualReview of Plant Physiology and Plant Molecular Biology,1998,49:223-247.
    [110]Xiong L Z, Xu C G. Patterns of cytosine methylation in an elite rice hybrid andits parentallines, detected by a methylation-sensitive amplication polymorphismtechnique[J]. Mol Gen Genet,1999,261:439-446.
    [111]Zhang X, Zhen J B, Li Z H, et al. Expression Profile of Early Responsive GenesUnder Salt Stress in Upland Cotton (Gossypium hirsutum L.)[J]. Plant Mol BiolRep,2011,29:626-637.
    [112]Zhu J K. Plant salt tolerance [J]. Trends Plant Sci,2001,6(2):66-71.
    [113]高辉远,李卫军,何永革,等. Na2SO4胁迫对四种抗盐性不同牧草膜脂过氧化和活性氧清系统的影响[J].植物生态学报,1995,19(2):192-196.
    [114]许卉.盐碱地对植树造林的影响及耐盐树种的选择[J].滨州教育学院学报,1998,(1):55-56.
    [115]Landgraf D, Klose S. Mobile and readily available C and N fractions and theirrelationship to microbial biomass and selected enzyme activities in a sandy soilunder different management systems[J]. Journal of Plant Nutrition and SoilScience,2002,165(1):9-16.
    [116]戈敢.盐碱地改良[M].北京:水利电力出版社.1987.
    [117]Steward N, Kusano T, Sano H. Expression of ZmMET1, a gene encoding a DNAmethyltransferase from maize, is associated not only with DNA replication inactively proliferating cells, but also with altered DNA methylation status incold-stressed quiescent cells[J]. Nucleic Acids Res,2000,28:3250-3259.
    [118]Wada Y, Miyamoto K, Kusano T, et al. Association between up-regulation ofstress-responsive genes and hypomethylation of genomic DNA in tobaccoplants[J]. Mol Gen Genomics,2004,271:658-666.
    [119]Steward N, Ito M, Yamaguchi Y, et al. Periodic DNA methylation in maizenucleosomes and demethylation by environmental stress[J]. J Biol Chem,2002,277:37741-37746.
    [120]Aina R, Sgorbati S, Santagostino A, et al. Specific hypomethylation of DNA isinduced by heavy metals in white clover and industrial hemp[J]. PhysiolPlantarum,2004,121(4):472-480.
    [121]Cerda S, Weitzman S A. Influence of oxygen radical injury on DNAmethylation[J]. Mutation Res-Rev Mutation Res,1997,386:141-152.
    [122]Tan M P. Analysis of DNA methylation of maize in response to osmotic and saltstress based on methylation-sensitive amplified polymorphism[J]. Plant PhysiolBioch,2010,48:21-26.
    [123]Wang W S, Zhao X Q, Pan Y J, et al. DNA methylation changes detected bymethylation-sensitive amplified polymorphism in two contrasting rice genotypesunder salt stress[J]. J Genet Genomics,2011,38(9):419-424.
    [124]Dyachenko O V, Zakharchenko N S, Shevchuk T V, et al. Effect ofhypermethylation of CCWGG sequences in DNA of Mesembryanthemumcrystallinum plants on their adaptation to salt stress[J]. Biochemistry (Mosc),2006,71:461-465.
    [125]Uren N C. Types, amounts, and possible functions of compounds released intothe rhizosphere by soil-grown plants[C]. In: Pinton R, Varanini Z, Nannipieri P,eds. The Rhizosphere: Biochemistry and Organic Substances at the Soil-PlantInterface. New York: Marcel Dekker Inc,2000.19-40.
    [126]Caldwell M M. Exploiting nutrients in fertile soil microsites[C]. In: Caldwell MM, Pearcy R W, eds. Exploitation of Environmental Heterogeneity by Plants. SanDiego: Acadmic Press,1994.325-347.
    [127]Bais H P, Weir T L, Perry L G, et al. The Role of Root Exudates in RhizosphereInteractions with Plants and Other Organisms[J]. Annu Rev Plant Biol,2006,57:233-266.
    [128]Somssich I E, Hahlbrock K. Pathogen defence in plants–a paradigm ofbiological complexity[J]. Trends Plant Sci,1998,3:86-90.
    [129]Schreiber L, Hartmann K, Skrabs M, et al. Apoplastic barriers in roots: chemicalcomposition of endodermal and hypodermal cell walls[J]. J Exp Bot,1999,50:1267-1280.
    [130]Guillermo E, Santa-Maria G E, Epstein E. Potassium/sodium selectivity inwheat and the amphiploid cross, wheat×Lophopyrum elongatum[J]. Plant Sci,2001,160:523-534.
    [131]Peng Y H, Zhu Y F, Mao Y Q, et al. Alkali grass resists salt stress through high[K+] and an endodermis barrier to Na+[J]. J Exp Bot,2004,55(398):939-949.
    [132]Munns R. Genes and salt tolerance: bringing them together[J]. New Phytol,2005,167:645-663.
    [133]Fan T W M, Lane A N, Shenker M, et al. Comprehensive chemical profiling ofgramineous plant root exudates using high-resolution NMR and MS[J].Phytochemistry,2001,57:209-221.
    [134]Welch R M. Micronutrient nutrition of plants[J]. Crit Rev Plant Sci.1995,14:49-82.
    [135]Romheld V, Marschner H. Evidence for a specific uptake system for ironphytosiderophores in roots of grasses[J]. Plant Physiol,1985,80:175-80.
    [136]Dakora F D, Phillips D A. Root exudates as mediators of mineral acquisition inlow-nutrient environments[J]. Plant Soil,2002,245:35-47.
    [137]Masaoka Y, Kojima M, Sugihara S, et al. Dissolution of ferric phosphate byalfalfa (Medicago sativa L.) root exudates[J]. Plant Soil,1993,155-156:75-78.
    [138]Hoffland E, Findenegg G, Nelemans J, et al. Biosynthesis and root exudation ofcitric and malic acids in phosphate-starved rape plants[J]. New Phytol,1992,122:675-680.
    [139]Neumann G, Romheld V. Root excretion of carboxylic acids and protons inphosphorus-deficient plants[J]. Plant Soil,1999,211:121-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700