网壳结构基于损伤累积本构强震失效机理及抗震性能评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以网壳为代表的大跨空间结构由于其受力合理、重量轻、刚度大以及形式活泼新颖等优点,在近三十年取得了飞速发展。我国是世界上地震灾害最为严重的国家之一,地震区域广阔分散,地震频繁强烈。由于网壳结构的重要性和特殊性,遭遇地震发生破坏所带来的影响以及修复费用都相当巨大,这些都对该类结构的抗震设计理论提出了更高的要求。然而,目前对于网壳结构强震下失效机理的研究仍存在欠缺,也还没有形成合理高效的抗震设计理论。正是基于这些问题,本文基于损伤累积材料本构模型的研究,对网壳结构强震下失效机理进行了讨论;在此基础上了开展网壳结构抗震性能评估的理论研究工作,主要研究内容和成果如下:
     1、圆钢管空间滞回性能试验和考虑材料损伤累积本构模型
     设计了适用于圆钢管试件空间三维加载的试验装置,通过对比试验验证了该装置的稳定性。考虑10组加载方案,系统考察了50根网壳结构常用圆钢管杆件的空间滞回性能;通过有限元软件ABAQUS编制了能够考虑材料损伤累积效应的用户子程序,实现对试验的数值模拟,并以数值曲线和试验曲线在峰值点的吻合程度来得到材料考虑损伤累积本构模型中的各个参数;对50组参数结果进行最小二乘法拟合,得到了圆钢管考虑损伤累积的材料本构模型。通过不同的本构模型对试验试件进行模拟比较可以发现,理想弹塑性本构模型仅能较为精确地模拟试件在弹性阶段内的力学行为,考虑材料损伤累积效应后,随着构件塑性发展的不断深入,其影响逐渐增大,并且采用本文获得的考虑材料损伤累积本构模型得到的数值模拟曲线与试验曲线拟合最好,说明该模型具有较好的精度,这为后续研究奠定了基础。
     2、基于损伤累积本构的强震失效模式及强度破坏振动台试验
     应用本文提出的材料本构模型和开发的用户材料子程序,利用有限元软件ABAQUS,对单层网壳结构在动力荷载作用下的失效模式进行了分析,详细描述了网壳结构在动力荷载作用下存在的两种可能的失效模式,即由于几何非线性起主要作用导致的动力失稳和由于材料非线性起主要作用导致的动力强度破坏;考虑损伤累积后,网壳结构的地震响应发生了明显变化,结构的失效极限荷载显著降低。为验证单层球面网壳的动力强度破坏,开展了单层球面网壳缩尺模型的振动台试验,试验同时测定网壳结构的动力特性及结构在弹性阶段的动力响应。强震试验结果表明:在1500cm s2的地震作用下,模型中的塑性得到了充分发展,结构的受力性能已经严重削弱,结构变形较大,表明结构在此时应已发生了材料塑性充分发展的动力强度破坏。在对该试验进行数值模拟重现的过程中也能发现,采用本文本构模型获得的数值模拟曲线与试验曲线吻合程度最好。
     3、网壳结构强震失效机理参数分析及结构损伤模型
     通过本文提出的材料本构模型和基于荷载域的全过程分析方法对网壳结构在强震下的响应进行了大规模的参数分析;考察了单层球面网壳、单层柱面网壳在不同的矢跨比、杆件截面、屋面质量、长宽比、初始缺陷下结构响应的变化规律,分析了地震变异性对结构响应的影响。通过对这些算例在失效极限状态时的响应进行统计,掌握了网壳结构在地震荷载下的失效特点和规律;在此基础上,拟合获得了基于多项特征响应和基于变形能量的结构损伤模型,实现对结构强度破坏极限及不同损伤程度的判别。
     4、网壳结构地震易损性分析及抗震性能评估
     根据网壳结构的特殊特点,定义了它的性能水准,应用结构损伤因子对性能水准进行了量化。通过考虑地震动的差异性开展网壳结构基于不同性能水准的易损性分析;结合地震危险性分析和结构地震易损性分析,获得网壳结构地震下失效概率,讨论了结构失效概率与经济损失及人员伤亡之间的关系,开展了结构地震损失风险评估工作。
As a major form of large span space structures, reticulated shells developed fastin last30years for its excellent shape and mechanical behavior. China spans Circum-Pacific seismic zone and Eurasia seismic zone with frequent strong earthquakes.Huge amount of money needed for building or repairing before or after earthquakejustify the great necessity to evaluation the anti-seismic performance of reticulatedshells. However, the failure mechanism of reticulated shells under seismic motion, isnot well understood. Based on the mentioned above, this paper take a deeplyinvestigation on the failure mechanism of reticulated shells under seismic motionsbased on the damage cumulative constitutive model. And then the evaluation of anti-seismic performance of reticulated shells is completed. The main contents in thispaper are shown as following.
     1. Test on the hysteretic behavior of circular steel pipe and materialconstitutive model considering material damage cumulation
     The setup applicable for three-dimensional loading is designed and then itsstability is verified by comparing test. Test is conducted on fifty circular steel tubeswith10groups of load schemes and their hysteretic behavior is investigated. Finite-element model is developed using a user-defined material sub-routine UMATencoded incorporating ABAQUS to consider material damage cumulation. Then, theparameters in the constitutive model is developed using the goodness of fit betweennumerical simulation and test results. Finally, a generalized constitutive modelconsidering damage cumulation is developed using the least square method with50groups of results. The numerical simulation using different material constitutivemodels is conducted. It is found through comparison that the perfect elasto-plasticcan only simulate the mechanics behavior in the range of elastic. Effect of damagecumulation becomes more and more obvious with increase of plasticity. The simulatecurves using the damage cumulative constitutive model are in good agreement withtest curves which proves not only the constitutive model is accurate but also the user-defined material sub-routine is applicable for theoretical analysis.
     2. Failure pattern of reticulated shells under severe seismic motion and ashaking table test on dynamic strength failure
     The failure mechanism of single-layer reticulated shells considering damagecumulation under dynamic load is investigated by the material constitutive model and the UMAT using finite element software ABAQUS.The failure mechanism of single-layer reticulated shells considering damage cumulation under dynamic load isinvestigated. It is found that two failure patterns of the structure, dynamic instabilitydue to geometrical non-linearity and dynamic strength failure due to material non-linearity under dynamic load, are described. What is more, the performance ofstructure changes obviously especially its failure load decreases obviously whenconsider material damage cumulation. A shaking table test of single-layer reticulateddome is conducted to understand dynamic strength failure of single-layer reticulateddome under seismic motion. The free vibration property and the dynamic responsesof the single-layer reticulated dome under small or strong seismic motions areobtained; the performance of this model presents large deformation and obviousmaterial plasticity under seismic motion with an amplitude of1500cm s2whichindicates dynamic strength failure is appeared due to severe plastic development. Thenumerical simulation using different material constitutive models are conducted,the results show that the simulate curves using the damage cumulative constitutivemodel are in good agreement with test curves.
     3. The parametric analysis of failure mechanism of reticulated shells andstructrue damage model
     The vast scale parametric analysis of the failure mechanism of reticulated shellsis conducted by whole-course analysis method using the damage cumulative materialdamage model. The responses regularity of reticulated shells is investigated underdifferent ratio of rise to span, member cross-section, roof mass, length-width ratioand seismic motions. And then the failure characteristic and regularity of reticulatedshells under seismic motion is investigated by statistic analysis of the responsesunder different damage level. Based on the mention above, the damage state of thestructures under seismic motions is quantified using two structural damage models,one is based on multiple structural responses and another is based on deformationand energy.
     4. The seismic vulnerablity analysis of reticulated shells and anti-seismicperformance evaluation method
     The performance levels of reticulated shells are defined by its characteristic.And then the graded performance levels are quantified using structural damagemodel. The seismic vulnerability of the graded performance levels is conducted byconsidering the variance of different seismic motions. The exceeded probability ofearthquake with different intensities in a given design period is calculated using seismic hazard analysis. The failure probability of reticulated shells under earthquakeis calculated using the seismic hazard analysis and seismic vulnerability analysis.The anti-seismic performance evaluation of reticulated shells is completed using therelationship between structural failure probability and economic loss as well ascasualty loss.
引文
[1]沈世钊.中国空间结构理论研究20年进展[C].第十届空间结构学术会议论文集,北京,2002:38~52.
    [2]张其林, U. Peil.任意激励下弹性结构的动力稳定分析[J].土木工程学报.1998,33(6):26~32.
    [3]王娜,陈昕,沈世钊.网壳结构弹塑性大位移全过程分析[J].土木工程学报.1993,26(2):19~28.
    [4]王策,沈世钊.单层球面网壳动力稳定性[J].土木工程学报.2001,33(6):17~24.
    [5]郭海山,王林安,沈世钊.水平阶跃荷载作用下单层球面网壳结构的动力稳定性[J].哈尔滨建筑大学学报.2002,35(5):17-22.
    [6]郭海山,钱宏亮,沈世钊.地震作用下单层球面网壳结构的动力稳定性[J].地震工程与工程震动.2003,23(1):31-37.
    [7]郭海山,沈世钊,蒋晓莹等.弹性支承单层柱面网壳稳定性[J].2002,8(2):26-30.
    [8]范峰,钱宏亮,邢佶慧等.网壳结构高烈度强震下的动力强度破坏研究[J].哈尔滨工业大学.2004,36(6):722~725.
    [9]叶继红,沈祖炎.初始缺陷对网壳结构动力稳定性能的影响[J].土木工程学报.1997,30(1):37-42.
    [10]支旭东,范峰,沈世钊.强震下单层柱面网壳损伤及失效机理研究[J].土木工程学报.2007,40(8):29-34.
    [11]杨卫.基于延性撕裂过程的缺陷评定方法[J].力学学报.1987,19(6):516~523.
    [12] W. Yang, Y. G. Wei. Progressive Damage along Link Bands in Fibre-reinforcedComposite Blocks under Compression[J]. International of Damage Mechanics.1992,1:80~101.
    [13] Yang W, Shih C. F. Fracture along an Interlarer[J]. International Journal ofSolids and Strucures.1994,31:985~1002.
    [14]周储伟,杨卫,方岱宁.金属基复合材料的强度与损伤分析[J].固体力学学报.2000,21(2):161~165.
    [15]杨卫,孙庆平,黄克智.固体的宏细观本构理论与断裂[J].自然科学进展.1993,3(6):515~524.
    [16]杨卫.细观力学和细观损伤力学[J].力学进展.1992,22(1):1~9.
    [17]杨庆生,杨卫.断裂过程的有限元模拟[J].计算力学学报.1997,14(4):407~412.
    [18] Y. J. Park, A. H. S. Ang. Mechanistic Seismic Damage Model for ReinforcedConcrete[J]. Journal of structural engeering, ASCE.1985,111(4):722~739.
    [19] Y. J. Park, A. H. S. Ang, Y. W.Wen. Seismic Damage Analysis of ReinforcedConcrete Buildings[J]. Journal of structural engeering, ASCE.1985,111(4):740~757.
    [20]朱伯龙,董振祥.钢筋混凝土非线性分析[M].同济大学出版社,1985
    [21] S. S. Lai, G. T. Will. R/C Space Frames with Column Axial Force and BiaxialBending Monment Interaction[J]. Journal of Structure Engineering, ASCE.1986,(7):1553~1572.
    [22] M. Saiidi, G. E. Ghusn, Y. Jiang. A Five-spring Element for Biaxially Bent R/CColumns[J]. Journal of Structure Engineering, ASCE.1989,(2):398~416.
    [23] S. B. Gao, T. Usami, H. B. GE. Ductility Evaluation of Steel Bridge Piers withTubes Sections[J]. Journal of Structural Mechanism, ASCE,1998,124(3):260~267.
    [24] S. Kumar, T. Usami. Damage Evaluation in Steel Box Columns by CyclicLoading Tests[J]. Journal of Structure Engineering, ASCE.1996,122(6):626~634.
    [25] S. Kumar, T. Usami. A note on the evaluation of damage in steel structuresunder cyclic loading[J]. Journal of Structure Engineering, Tokyo, Japan,1994,40A,177~188.
    [26]郑宏,顾强.循环荷载作用下工型截面压弯构件考虑损伤的稳定承载力[J].土木工程学报.2002,35(5):7~10.
    [27]沈祖炎,董宝,曹文衔.结构损伤累积分析的现状和研究的问题[J].同济大学学报.1997,25(2):135~140.
    [28]董宝,沈祖炎.空间钢构件考虑损伤累积效应的恢复力模型及试验验证[J].上海力学.1999,20(4):341-347.
    [29]陈荣毅,沈祖炎.地震作用下考虑损伤累积效应平面钢杆件截面内力与变形的协调关系[J].四川建筑科学研究.20002,28(4):64-68.
    [30]董宝,沈祖炎,孙飞飞.考虑损伤累积影响的钢柱空间滞回过程的仿真[J].同济大学学报.1999,27(1):11~15.
    [31]支旭东.网壳结构在强震下的失效机理[D].哈尔滨工业大学工学博士学位论文.2006.
    [32]丁阳,郭峰.地震作用下空间网架结构考虑损伤累积效应的弹塑性分析[J].工程力学,2005,22(1):54~58.
    [33]中华人民共和国行业标准:《网壳结构技术规程》(JGJ61-2003).北京:中国建筑工业出版社,2003.
    [34]郭海山,沈世钊.单层网壳结构动力稳定性分析方法[J].建筑结构学报.2003,24(3):1~9.
    [35] S. Z. Shen. The Dynamic Stability Problem of Reticular Shells[C]. invitedLecture, IASS-APCS Symposium, Taibei, China,2003:44~46.
    [36] K. Ishikawa, S. kato. Dynamic Buckling Behavior of Single and Double LayerLatticed Domes due to Vertical Earthquake Motion[C]. Space Structures4.Thomas Telford, London,1993, l12:466~475.
    [37] T. Saka, Y. Taniguchi. Damage to Spatial Structures by the1995Hyogoken-Nanbu Earthquake in Japan[J]. International Journal of Space Structures.1997,(3&4):125~133.
    [38] S. Yamada. Vibration Behaviour of Single-Layer Latticed Cylindrical Roofs[J].International Journal of Space Structures.1997,(3&4):181~190.
    [39] H. Kunieda, K. Kitamura. Response Analysis of Cylindrical Roof shells Subjectto Kobe Earthquake by Mathematically Analysia Method[C]. Proc. of Asia-Pacific Conference on Shell and Spatial Structures. Beijing, China,1996:712~719.
    [40] K. Kitamura, H. Kunieda. FEM Analysis of Cylindrical Roof shells Subjectedto Kobe Earthquake[C]. Proc. of Asia-Pacific Conference on Shell and SpatialStructures, Beijing, China,1996:720~727.
    [41] S. Kato. Dynamic Response and Collapse Acceleration of Single LayerReticular Domes under Earthquake Motions[C]. Proc. of Asia-PacificConference on Shell and Spatial Structures, Beijing, China,1996:704~711.
    [42] H. Kunieda. Earthquake Response of Roof Shells[J]. International Journal ofSpace Structures.1997,(3&4):149~159.
    [43] S. Kato, T. Ueki, Y. Mukaiyama. Study of Dynamic Collapse of Single LayerReticular Domes Subjected to Earthquake Motion and the Eastimation ofStatically Equivalent Seismic Forces[J]. International Journal of SpaceStructures.1997,(3&4):191~204.
    [44] K. Ishikawa, S. Kato. Elastic-plastic Dynamic Buckling Analysis of ReticularDomes Subjected to Earthquake Motion[J]. International Journal of SpaceStructures.1997,(3&4):205~215.
    [45] K. Ishikawa. Evaluation Method for Predicting Dynamic Collapse of DoubleLayer Latticed Space Truss Structures Due to Earthquake Motion[J].International Journal of Space Structures.2000,(3&4):249~258.
    [46] A. Hassan, Moghaddam. Seismic Behaviour of Space Structures[J].International Journal of Space Structures.2000,(2):119~136.
    [47] M. Murata, M. Hirata. Nonlinear Dynamic Analysis System for Large-scaleSpace Structures under Multiple Loadings[C]. Proc. of IASS Symposium2001,Nagoya, Japan.
    [48] N. Hagiwara. Stuy on Nonlinear Vibration and Deformation of SimpleReticulated Dome[C]. Proc. of IASS Symposium2001, Nagoya, Japan.
    [49] S. Kato, S. Nakazawa, T. Minegishi, et al. Dynamic Collapse Mechanism ofSingle Layer Reticular Domes with Braces Subjected to Severe EarthquakeMotions[C]. Proc. Of IASS Symposium. Istanbul, Turky,2000:319~326.
    [50] S. Kato. Seismic Design Method of Single Layer Reticular Domes with BracesSubjected to Severe Earthquake Motions[C]. The Sixth Pacific Conference onShell and Spatial Structures, Seoul, Korea,2000(10):131~140.
    [51] J. Liu, S.T. Xue, Y. Motohiko. Comparison between Experimental Result andNumerical Analysis for Dynamic Response of a Single-layer Latticed Dome[C].Proc. of Asia-Pacific Conference on Shell and Spatial Structures, Beijing,China,1996:668~673.
    [52] I. Tatemichi. A Study on the Damping of Vibrations in Space Structures[C].Proc. of IASS Symposium2001, Nagoya, Japan.
    [53] H. Kunieda. Role of Each Mode in Response of Cylindrical Roofs Subjected toEarthquake[C]. the Sixth Asian Pacific Conference on Shell and SpatialStructures, Seoul, Korea,2000:565~572.
    [54] F. Fan, S. Z. Shen, G. R. Parke. Study of the Dynamic Strength of ReticulatedDomes under Severe Earthquake Loading[J]. International journal of SpaceStructures.2005,(4):235~244.
    [55]支旭东,范峰,沈世钊.简谐荷载下单层球面网壳动力失效机理研究[J].地震工程与工程振动.2005,25(4):76~84.
    [56]支旭东,范峰,周峰等.阶跃荷载作用下单层球面网壳动力破坏研究[J].空间结构.2006,12(2):18~21.
    [57]沈世钊,支旭东.球面网壳在强震下的失效机理[J].土木工程学报.2005,38(1):11~20.
    [58]邢佶慧.网壳结构抗震性能研究[D].哈尔滨工业大学工学博士学位论文.2004
    [59]杜文风.一种判定杆系结构动力稳定的新方法—应力变化率法[J].浙江大学学报.2006,40(3):506~510.
    [60]杜文风.单层球面网壳结构动力强度破坏的双控原则[J].浙江大学学报.2007,41(11):1916~1921.
    [61] X. D. Zhi, F. Fan, S. Z. Shen. Failure Mechanism of Single-layer ReticulatedDomes subjected to Earthquakes[J]. Journal of the International Association forShell and Spatial Structures.2007,(1):29~44.
    [62]叶继红,沈祖炎.单层网壳结构的动力稳定试验研究[J].空间结构.1997,3(2):34~39.
    [63]李忠学,沈祖炎,邓长根等.钢网壳模型的动力稳定性振动台试验研究[J].试验力学.1999,14(4):484~491.
    [64]范峰,沈世钊.单层球壳模拟地震振动台试验及结构减震试验研究[J].哈尔滨建筑大学学报.2000,33(3),18~22.
    [65]张毅刚,曹资等.替换可控制杆件的双层柱面网壳减震控制研究[M].国家自然科学基金重大项目专题研究总结报告(2003年)(下册).
    [66]秦乃兵,张毅刚,茹洋.采用新型阻尼杆的双层柱面网壳结构减震分析与试验研究[J].建筑结构学报.2005,26(6):108~112.
    [67]梁海彤.双层柱面网壳减震控制理论和振动台试验研究[D].北京工业大学,2003.
    [68]庄鹏,薛素铎. SMA-橡胶支座双层柱面网壳模型地震模拟振动台试验研究[C].第五届全国现代结构工程学术研讨会,2005.
    [69]邢佶慧,支旭东,范峰等.单层柱面网壳结构地震模拟振动台试验研究[J].建筑结构学报.2004,25(6):1~8.
    [70]张良兰.大跨度单层椭球面网壳的抗震性能试验研究[D].同济大学,2007.
    [71] J. Liu, S. T. Xue, Y. Motohiko. Comparison Between Experimental Result andNumerical Analysis For Dynamic Response of A Single-layer LattieedDome[C]. Prof. of Asia-Pacific Conference on Shl and Spatial Structures.Beijing, China.1996:668~673.
    [72] FEMA273. NEHRP Guidelines for the Seismic Rehabilitation of Buildings[C];
    [R] FEMA274. Commentary. Washington (DC): Federal EmergencyManagement Agency,1996.
    [73][Applied Technology Council (ATC). Seismic evaluation and retrofit of existingconcrete buildings (ATC40)[C]. Redwood City:[sn],1996.
    [74] Vision2000Committee. Performance-Based Engineering of Building[C].Miranda E. Seismology Committee of the Structure Engineer Association ofCalifornia, Oakland: Wiley lnc,1995.
    [75]小谷俊介,叶列平.日本基于性能结构抗震设计方法的发展[J].建筑结构.2000,30(6):3~9.
    [76]尹之潜.地震灾害及损失预测方法[M].北京:地震出版社,1996.
    [77]胡聿贤.地震工程学[M].第2版.北京:地震出版社,2006.
    [78] C. A. Cornell. Engineering Seismic Hazard Analysis[J]. Bulletin of theSeismological Society of America.1968,59(5):1583~1606.
    [79] C. A. Cornell, S. R. Wintersein. Teamporal and Magnitude Dependence inEarthquake Recurrence Models[J]. Bulletin of the Seismological Society ofAmerica.1988,78(4):1522~1537.
    [80] P. Bazzurro, C. A. Cornell. Disaggregation of Seismic Hazard[J]. Bulletin of theSeismological Society of America1999,89(2):501~520.
    [81]高小旺,鲍霭斌.地震作用的概率模型及其统计参数[J].地震工程与工程振动.1985,5(1):13~22.
    [82]高小旺,鲍霭斌.抗震设防标准及各类建筑物抗震设计中“小震”与“大震”的取值[J].地震工程与工程振动.1989,9(1):58~66.
    [83]鲍霭斌,李中锡,高小旺,周锡元.我国部分地区基本烈度的概率标定[J].地震学报.1985,7(1):100~108.
    [84] X. Zhang, K. F. Wong, Y. Wang. Performance Assessment of Moment ResistingFrames during Earthquakes based on the Force Analogy Method[J].Engineering Structures.2007,(29):2792~2802.
    [85] J. Song, B. R. Ellingwood. Seismic Reliability of Special Moment Steel Frameswith Welded Connections:II [J]. Journal of Structural Engeering.1999,125(4):372~384.
    [86] F. Zareian, H. Krawinkler. Assessment of Probability and Design for CollapseSafety[J]. Earthquake Engineering Structural Dynamic.2007,36(13):1901~1914.
    [87]刘艳辉,赵世春,强士中.城市高架桥抗震性能水准的量化[J].西南交通大学学报.2010,45(1):54~58.
    [88]邓雪松,汤统壁,周云等.耗能减震钢结构性能水准与目标的初步研究[J].防灾减灾工程学报.2008,28(1):104~108.
    [89]卜一,吕西林,周颖等.采用增量动力分析方法确定高层混合结构的性能水准[J].结构工程师.2009,25(2):77~84.
    [90]周云,王烨华,邓雪松等.高层钢结构性能目标的建立[J].钢结构施工.2007,22(96):1~6.
    [91] G. H. Powell, R. Allahabadi. Seismic Damage Prediction by DeterministicMethods: Concepts and Procedures[J]. Earthquake Engineering and StructuralDynamics.1988,(16):719~734.
    [92] M. A. Sozen. Review of Earthquake Response of Reinforced ConcreteBuildings with a View to Drift Control. In: State-of-the-Art in EarthquakeEngineering[C]. Istanbul (Turkey): Turkish National Committee on EarthquakeEngineering.1981,383~418.
    [93] Y. H. Chai, P. Fajfar, K. M. Romstad. Formulation of Duration DependentInelastic Seismic Design Spectrum[J]. Journal of Structural Engineering, ASCE.1998,124(8):913~921.
    [94] A. Ghobarah, H. Abou-Elfath, A. Biddah. Response-based Damage Assessmentof Structures[J]. Earthquake Engineering and Structural Dynamics.1999,(28):79~104.
    [95] S. L. McCabe, W. J. Hall. Assessment of Seismic Structural Damage[J]. Journalof Structural Engineering, ASCE.1989,115(9):2166~183.
    [96] A. Ghobarah. Performance-based Design in Earthquake Engineering: State ofDevelopment[J]. Engineering Structures.2001,(23):878~884.
    [97]邢燕,牛荻涛.基于结构性能的抗震设计与抗震评估方法综述[J].西安建筑科技大学学报.2005,37(1):24~34.
    [98]陈新孝,牛荻涛.在役钢筋混凝土结构的地震破坏评估[J].西安建筑科技大学学报.2002,34(4):305~308.
    [99]欧进萍,何政,吴斌等.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动.1999,19(1):21~30.
    [100] O. J. Dowrick. Earthquake Resistant Design for Engineers and Architects[J].John Wiley&Sons, Ltd, New York,1987.
    [101]李刚,程耿东.基于投资-效益准则的结构目标性能水平[J].大连理工大学学报.2005,45(2):166~171.
    [102] S. Mark. Risk Assessment and Cost-effectiveness of InfrastructureProtection[C].8th international conference on shock&impact loads onstructures. Adelaide,2009,12.
    [103] S. Mark. Acceptable Risk Criteria for Infrastructure Protection[J]. InternationalJournal of Protective Structures.2010,1(1):23~40.
    [104] G. D Cheng, L. Xu, L. Jiang. A Sequential Approximate Programming Strategyfor Reliability-based Structural Ooptimization[J]. Computers and Structures.2006,(84):1353~1367.
    [105] V. Piluso, G. Rizzano, I. Tolone. Seismic Reliability Assessment of a Two-storySteel-concrete Composite Frame Designed According to Eurocode8[J].Structural Safety.2009,(31):383~395.
    [106] O. Moller, R. O. Foschi, M. Rubinstein, et al. Seismic Structural ReliabilityUsing Different Nonlinear Dynamic Response Surface Approximations[J].Structural Safety.2009,(31):432~442.
    [107] B. A. Bradley, D. S. Lee. Accuracy of Approximate Methods of UncertaintyPropagation in Seismic Loss Estimation[J]. Structural Safety.2009,(04):1~12.
    [108] A. B. Liel, C. B. Haselton, G. G. Deierlein, et al. Incorporating ModelingUncertainties in the Assessment of Seismic Collapse Risk of Buildings[J].Structural Safety.2009,(31):197~211.
    [109] S. Saikat, C. S. Manohar. Inverse Reliability based Structural Design forSystem Dependent Critical Earthquake Loads[J]. Probabilistic EngineeringMechanics.2005,(20):19~31.
    [110] H. C. Gea, K. Oza. Two-level Approximation Method for Reliability basedDesign Optimization[J]. Int J Mater Prod Eng.2006,25(1–3):99~111.
    [111] R. J. Yang, L. Gu. Experience with Approximate Reliability-based OptimizationMethods[J]. Structural Multidiscipal Optimization.2004,26(2):152~159.
    [112] X. Du, W. Chen. Sequential Optimization and Reliability Assessment Methodfor Efficient Probabilistic Design[J]. Journal Mechanics Design.2004,126(2):225~233.
    [113] VROUW ENV ELDER A C W M. Developments towards Full ProbabilisticDesign Code[J]. Structure Safety.2002.
    [114] K. A. Porter, J. L. Beck, R. V. Shaikhutdinov. Sensitivity of Building LossEstimates to Major Uncertain Variables[J]. Earthquake Spectra.2002,18(4):719~743.
    [115] T. H. Lee, K. M. Mosalam. Seismic Demand Sensitivity of Reinforced ConcreteShearwall Building Using FOSM Method[J]. Earthquake EngineeringStructural Dynamic2005,(34):1719~1736.
    [116] L. Ibarra, H. Krawinkler. Global Collapse of Frame Structures under SeismicExcitations[D]. Blume Center TR152, Stanford University,2003.
    [117] L. Esteva, S. E. Ruiz. Seismic Failure Rates of Multistory Frames[J]. Journal ofStructural Engineering, ASCE.1989,115(2):268~283.
    [118] H. Aslani. Probabilitistic Earthquake Loss Estimation and Loss Disaggregationin Buildings[D]. Ph.D. thesis, Stanford University,2005.
    [119] J. W. Baker, C. A. Cornell. Uncertainty Propagation in Probabilistic SeismicLoss Estimation[J]. Structure Safaty.2008,30(3):236~252.
    [120]周锡元.抗震性能设计与三水准设防[C].土木水利(台湾).2003,5
    [121]钱稼茹,罗文斌.建筑结构基于位移的抗震设计[J].建筑结构.2001,31(4):3~6
    [122]王光远.抗灾结构的最优设防荷载与最优可靠度[J].土木工程学报.1997,30(5):12~19.
    [123] D. Vamvatsikos, C. A. Cornell. Incremental Dynamic Analysis[J]. EarthquakeEngineering and Structure Dynamic.2002,31:491-514
    [124]玉军.钢筋混凝土高层建筑结构抗震弹塑性分析的研究及应用[D].湖南大学硕士学位论文.湖南大学.2007
    [125] N. E. Huang, Z. Shen, S. R. Long, et al.·The Empirical Mode Decompositionand the Hilbert Spectrum for Nonlinear and Non-stationary Time SeriesAnalysis[J]. The Royal Society.1998,(454):903~995·
    [126] J. N. Yang, Y. Lei. Identification of Natural Frequencies and Damping Ratios ofLinear Structures via Hilbert Transform and Empirical Mode Decomposition[C].IASTED/ACTA Press. Anaheim CA,1999,310~315
    [127] Y. L. Xu, S. W. Chen, R. C. Zhang. Modal Identifation of di Wang Buildingunder Typhoon York Using the Hilbert-huang Transform Method[J]. TheStructural Design of Tall and Special Buildings.2003,(12):21~47
    [128]支旭东,谢礼立.网壳结构损伤研究在性能抗震设计中的应用[C].第十六届全国结构工程学术会议论文集,太原.2007:293-296
    [129] L. Nicolas, C. A. Cornell. Effects of Connection Fractures on SMRF SeismicDrift Demand[J]. ASCE, Journal of Structure Engineering.2000,1:127-136
    [130] A. Barakat, A. H. Malkawi, R. H. Tahat. Reliability-based Optimization ofLaterally Loaded Piles[J]. Structural Safety.1999,21(5):45-64
    [131] L. Nicolas, C. A. Cornell. Effects of Connection Fractures on SMRF SeismicDrift Demand[J]. ASCE, Journal of Structure Engineering.2000,1:127-136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700