强烈地震作用下钢框架的损伤退化行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在强烈地震作用下,传统的杆系模型对于钢框架的构件、节点发生承载力和刚度退化特征无法准确模拟和预测,往往会低估结构变形、高估结构抗倒塌能力,存在一定的安全隐患。本文对钢框架的损伤退化机理、关键影响参数及损伤退化过程进行了深入研究,提出了能够更准确模拟整体结构损伤退化行为的理论模型。通过程序开发,实现了钢框架杆系模型考虑损伤退化全过程的弹塑性动力时程分析,发展了一种有效的强震分析手段。论文的工作主要包含以下六个方面:
     (1)对比研究十种损伤指数模型对参考文献中两批节点试验损伤退化过程的描述,探讨不同损伤指数模型对结构破坏预测的准确性,并分析不同模型的适用范围(第2章)。
     (2)完成50个Q235B和Q345B钢材在10种加载制度下的循环加载试验,提出了考虑循环强化作用的钢材滞回本构模型SHCM(Steel Hysteretic ConstitutiveModel)。利用有限元软件ABAQUS,二次开发了相应计算程序,并得到大量试验验证,为后续提出考虑损伤退化的等效本构模型提供了基础理论框架(第3章)。
     (3)结合已有构件和节点试验,在第3章模型研究的基础上,提出了能够准确模拟累积损伤退化现象、预测损伤退化全过程的数值分析方法(第4章)。
     (4)基于第4章研究成果,对构件、节点进行参数分析,深入剖析损伤退化控制因子及其影响程度、损伤退化过程及“三折线”退化曲线分布规律(第5章)。
     (5)建立了考虑损伤退化行为的“等效本构模型”,利用定义损伤退化控制因子对结构地震响应进行深度描述。利用ABAQUS软件平台二次开发了能够进行损伤退化全过程分析的用户材料子程序DDAP (Damage and DegradationApplication Program)。模型得到了已有钢框架静力试验和振动台试验的充分验证,并应用于北岭地震实际破坏的钢框架变形以及损伤预测中(第6章)。
     (6)通过与壳单元模型、多尺度模型及传统杆系模型进行比较,证明本文提出的考虑损伤退化的等效本构模型提高了钢框架杆系模型在强烈地震作用下动力时程分析和破坏预测的准确性,兼顾计算效率,为强震分析提供技术支持。在此基础上,得到了累积损伤退化对不同层数钢框架抗震评价指标的影响程度和规律,并提出了用于损伤破坏控制的退化指数预测曲线(第7章)。
     本论文在国家自然科学基金项目(编号:90815004和51038006)资助下完成。
For members and connections in steel frames, the damage and degradationcharacteristics of strength and stiffness could not be efficiently simulated and predictedby traditional beam element model subjected to strong earthquakes. The deformation ofstructural system would be underestimated and the collapse performance would beoverrated, leading to potentially unsafe structures. In this thesis, the critical parameters,including damage and degradation mechanism, that influence damage evolution processof steel frames were firstly studied in depth. Then,a theoretical model was proposed tosimulate the damage and degradation behaviors of full frame structures more accurately.By developing the algorithm based on ABAQUS platform, elastic-plastic time historyanalysis with beam element model was implemented for the complete process ofdamage and degradation. An effective analysis approach of steel frames under strongearthquake was developed.
     The main work of this thesis consisted of six parts:
     (1) Damage and degradation properties of two series tests with ten damage indexmodels were compared. The accuracy of different damage index models for predictingstructural damage were investigated. The application scopes of different models werealso discussed.(Chapter2).
     (2)50specimens of Q235B and Q345B grade steel under10cyclic loadingpatterns were tested. A steel constitutive theoretical model, Steel Hysteretic ConstitutiveModel (SHCM), considering cyclic hardening characteristics was proposed. Based onthe finite element program ABAQUS, a corresponding calculative program wasdeveloped. Then the model was verified by available material and component tests,which provided the basic theoretical framework for equivalent constitutive modelconsidering damage and degradation behaviors.(Chapter3).
     (3) According to the referred component and connection tests results, using thesteel skeleton curve model considering cyclic hardening in Chapter3, the numericalanalysis method was proposed for accurately simulating the cumulative damage anddegradation phenomenon and efficiently predicting the complete process of damage.(Chapter4).
     (4) Based on the research results of Chapter4, a large number of parametricanalysis were carried out for components and connections. The influencing factors andimpact degrees of damage and degradation, the damage evolution process, as well as thedistribution law of the "tri-linear" degradation curve were analyzed in depth.(Chapter5).
     (5) An equivalent steel constitutive model considering damage and degradationbehaviors was established, and damage factors was defined to describe the seismicbehaviors of steel frame in details. Based on the ABAQUS software platform, auser-defined material program, Damage and Degradation Application Program (DDAP),was developed for analyzing the whole process of damage and degradation. The DDAPwas verified by available steel frame tests, including static cyclic tests and shaking tabletests. The model was also used for predicting the deformation and damage of a real steelframe damaged under Northridge earthquake.(Chapter6).
     (6) By comparing with shell element model, multi-scale model and the traditionalbeam element model, the proposed model considering damage and degradation wasproved to improve the precision of time history analysis and failure prediction of steelframe under strong earthquake significantly. The model was also a balanced solution inboth computational accuracy and efficiency, which provided technical assistance fordynamic analysis under severe earthquake. Based on this analysis method, the effectsand properties of cumulative damage and degradation on seismic evaluation indicatorsof multi-storey steel frames were obtained, and the predicting curve of the degradationindex was proposed for damage and failure control.(Chapter7).
     This dissertation was sponsored by the National Natural Science Foundation ofChina (NSFC) program (No.90815004and No.51038006).
引文
[1] Duane K M. Lessons learned from the Northridge earthquake. Engineering Structures,1998,20(4-6):249-260.
    [2]国家自然科学基金委员会.学科发展战略研究报告-建筑、环境与土木工程Ⅱ,北京:科学出版社,2006年.
    [3] Federal Emergency Management Agency. State of the art report on system performance ofsteel moment-frame subject to earthquake ground shaking.2000, Report No. FEMA-355C,September,2000.
    [4]熊俊.强震作用下钢框架焊接节点损伤性能和计算模型研究[博士学位论文].北京:清华大学,2011.
    [5]李杰.地震循环载荷下钢结构梁柱焊接节点耗能与损伤行为的研究[博士学位论文].天津:天津大学,2002.
    [6]贲庆国.钢框架结构地震作用下累积损伤分析及试验研究[硕士学位论文].南京:南京工业大学,2003.
    [7]刘超.非线性系统随机振动响应分析方法与损伤计算的改进[硕士学位论文].北京:北京建筑工程学院,2005.
    [8]汪大绥,周建龙,王建,李青,李婷.建筑结构非线性时程分析进展.建筑结构,2006,36(增刊):84-87.
    [9] Ibarra L F, Krawinkler H. Global collapse of frame structures under seismic excitations.Report2005/06, Pacific Earthquake Engineering Research Center, September,2005.
    [10] Suita K, Yamada S, Tada N, Kasai K, Matsuoka Y, Sato E. E-Defense tests on full-scale steelbuildings: Part2-collapse experiments on moment frames. ASCE Structures Congress, LongBeach, CA, May16-19,2007.
    [11] Chung Y L, Nagae T, Hitaka T, Nakashima M. Seismic resistance capacity of high-risebuildings subjected to long-period ground motions: E-Defense shaking table test. ASCE,Journal of Structural Engineering,2010,136(6):637–644.
    [12]李志山,容柏生.高层建筑结构在罕遇地震影响下的弹塑性时程分析研究.建筑结构,2006,36(增刊):142-149.
    [13]汪梦甫,周锡元.高层建筑弹塑性分析方法及抗震性能评估的研究.土木工程学报,2003,36(11):44-49.
    [14] Saatcioglu M, Humar J. Dynamic analysis of buildings for earthquake resistant design.Canadian Journal of Civil Engineering,2003,30(2):338–359.
    [15]李国强,冯健.罕遇地震下多高层建筑钢结构弹塑性位移的实用计算.建筑结构学报,2000,21(1):77-83.
    [16]刘永华,张耀春.空间钢框架精细塑性铰法高等分析.工程力学,2006,23(增刊I):108-116.
    [17]王萌,石永久,施刚,王元清.高层钢框架构件与节点滞回模型及损伤退化分析.工业建筑,2009(增刊):973-981.
    [18] Motohide T, Makoto O, Satoshi Y, Shojiro M, Kazuhiko K. E-Defense tests on full-scale steelbuildings Part3-analytical simulation of collapse. ASCE Structures Congress, Long Beach,CA, May16-19,2007.
    [19]李兆霞,孙正华,郭力,陈鸿天,余洋.结构损伤一致多尺度模拟和分析方法.东南大学学报,2007,37(2):251-260.
    [20]赵岩,林家浩,唐光武.复杂结构局部非线性地震反应精细时程分析.大连理工大学学报,2004,44(2):190-194.
    [21] Krawinkler H, Zareian F. Predication of collapse-how realistic and practical is it and what canwe learn from it? The Structural Design of Tall and Special Buildings,2007,16:633-653.
    [22] Fernandez-Davila V I, Cruz E F. Parametric study of the non-linear seismic response ofthree-dimensional building models. Engineering Structures,2006,28(5):756–770.
    [23] Liao K W, Wen Y K, Foutch D A. Evaluation of3D steel moment frames under earthquakeexcitations I: modeling. Journal of Structural Engineering,2007,133(3):462-470.
    [24] Rodgers J E, Mahin S A. Effects of connection fractures on global behavior of steel momentframes subjected to earthquakes. Journal of Structural Engineering,2006,132(1):78-88.
    [25]王学民.锈蚀钢筋混凝土构件抗震性能试验与恢复力模型研究[硕士学位论文].西安:西安建筑科技大学,2003.
    [26] Laura N L, Nilanjan M, Arash A. A beam-column joint model for simulating the earthquakeresponse of reinforced concrete frames. Pacific Earthquake Engineering Research Center,University of California, Berkeley August,2003.
    [27] Chang H Y, Kawakami H. Effects of ground motion parameters and cyclic degradationbehavior on collapse response of steel moment-resisting frames. Journal of StructuralEngineering,2006,132(10):1553-1562.
    [28] Farzad N, Konstantinos S, Andrei M. Influence of hysteretic deteriorations in seismicresponse of multistory steel frame buildings.12WCEE,2000.
    [29] Mostaghel N, Byrd R A. Analytical description of multidegree bilinear hysteretic system.Journal of Engineering Mechanics,2000,126(6):588-598.
    [30] Mostaghel N. Analytical description of pinching, degrading hysteretic systems. Journal ofEngineering Mechanics,1999,125(2):216-224.
    [31]陈宏,李兆凡,石永久,王元清.钢框架梁柱节点恢复力模型的研究.工业建筑,2002,32(6):64-66.
    [32] Sucuoglu H, Erberik A. Energy-based hysteresis and damage models for deteriorating systems.Earthquake Engineering and Structural Dynamics,2004,33(1):69-88.
    [33]李洪泉,贲庆国,于之绰,张跃强,吕西林.钢框架结构在地震作用下累积损伤分析及试验研究.建筑结构学报,2004,25(3):69-74.
    [34] Ibarra L F, Medina R A, Krawinkler H. Hysteretic models that incorporate strength andstiffness deterioration. Earthquake Engineering and Structural Dynamics,2005,34(12):1489–1511.
    [35]施刚.钢框架半刚性端板连接的静力和抗震性能研究[博士学位论文].北京:清华大学,2004.
    [36]石永久,苏迪,王元清.考虑组合效应的钢框架梁柱节点恢复力模型研究.世界地震工程,2008,24(2):15-20.
    [37] Lignos D G. Sidesway collapse of deteriorating structural system under seismic excitations[Doctoral Dissertation]. Stanford University,2008.
    [38]石文龙.平端板连接半刚性梁柱组合节点的试验与理论研究[博士学位论文].上海:同济大学,2006.
    [39]陈以一,沈祖炎.反复变动轴力作用下钢柱的数值分析模型.同济大学学报,1994,22(4):499-504.
    [40]宋晓光,申成军,郭兵.钢框架梁柱T型钢连接滞回性能研究.建筑钢结构进展,2008,10(4):18-25.
    [41] Song J K, Pincheira J A. Spectral displacement demands of stiffness and strength degradingsystems. Earthquake Spectra,2000,16(6):817-851.
    [42] Della C G, De Matteis G, Landolfo R. Seismic analysis of MR steel frames based on refinedhysteretic models of connections. Journal of Constructional Steel Research,2002,58(10):1331–1345.
    [43] Ramberg W, Osgood W R. Description of stress-strain curves by three parameters. NACA,Technical Note902,1943.
    [44] Charalampakis A E, Koumousis V K. Identification of Bouc–Wen hysteretic systems by ahybrid evolutionary algorithm. Journal of Sound and Vibration,2008,314(3-5):571–585.
    [45] Menegotto M, Pinto P E. Method of analysis for cyclically loaded reinforced concrete planeframes including changes in geometry and non-elastic behavior of elements under combinednormal force and bending. Proceedings, IABSE, Symposium on Resistance and UltimateDeformability of Structures Acted on by Well Defined Repeated Loads, Lisbon,1973,15-22.
    [46] Fabio F T, Enrico S, Filip C F. A fiber beam-column element for seismic response analysis ofreinforced concrete structures. Report No. UCB/EERC-91/17,1991, Earthquake EngineeringResearch Center College of Engineering University of California, Berkeley.
    [47]王秀丽.多层钢框架梁柱连接节点抗震性能研究[博士学位论文].哈尔滨:哈尔滨工业大学,2004.
    [48]李国强,沈祖炎.考虑节点剪切变形的钢框架弹塑性地震反应分析.同济大学学报,1990,18(1):1-9.
    [49]董宝,沈祖炎.考虑损伤累积影响的钢柱空间滞回过程的仿真.同济大学学报,1999,27(1):11-15.
    [50] Shen Z Y, Dong B, Cao W X. A hysteresis model for plane steel members with damagecumulation effects. Journal of Constructional Steel Research,1998,48(2-3):79-87.
    [51] Amde A M, Mirmiran A. A new hysteresis model for steel members. International Journal forNumerical Methods in Engineering,1999,45(8):1007-1023.
    [52] Sivaselvan M V, Reinhorn A M. Hysteretic models for deteriorating inelastic structures.Journal of Engineering Mechanics,2000,126(6):633–640.
    [53] SAC Joint Venture. Prestandard and commentary for the seismic rehabilitation of buildings.2000, FEMA365, Federal Emergency Management Agency, Washington, D.C.
    [54] British Standards Institution. BS EN1993-1. Eurocode: Design of steel structure: Part1-8:Design of joint. London: BSI,2005.
    [55] Shen Z Y, Dong B. An experiment-based cumulative damage mechanics model of steel undercyclic loading. Advances in Structural Engineering,1997,1(1):79-87.
    [56] Darwin D, Nmai C K. Energy dissipation in RC beams under cyclic load. Journal ofStructural Engineering,1986,112(8):1829-1846.
    [57] Gosain N K, Brown R H, Jirsa J O. Shear requirement for load reversals on RC members.Journal of Structural Engineering,1977,103(7):1461-1476.
    [58] Rahnama M. and Krawinkler H. Effect of soft soils and hysteresis models on seismic designspectra. Blume Earthquake Engineering Research Center Report No.108,1993, Departmentof Civil Engineering, Stanford University.
    [59] Ibarra L F, Medina R A, Krawinkler, H. Hysteretic models that incorporate strength andstiffness deterioration. Earthquake Engineering and Structural Dynamics,2005,34(12):1489–1511.
    [60] Krawinkler H, Zohrei M. Cumulative damage in steel structures subjected to earthquakeground motion. Computers and Structures,1983,16(1-4):531-541.
    [61] Powell G H, Allchabadi R.Seismic damage prediction by deterministic methods: Concept andprocedures. Earthquake Engineering and Structural Dynamics,1988,16(5):719-734.
    [62]沈祖炎,董宝,曹文衔.结构损伤累积分析的研究现状和存在的问题.同济大学学报(自然科学版),1997,25(2):135-140.
    [63] Castiglioni C A, Pucinotti R. Failure criteria and cumulative damage models for steelcomponents under cyclic loading. Journal of Constructional Steel Research,2009,65(4):751-765.
    [64] Park Y J, Ang A H-S. Mechanistic seismic damage model for reinforced concrete. Journal ofStructural Engineering,1985,111(4):722-739.
    [65] Kumar S,Usami T. A note on evaluation of damage in steel structures under cyclic loading.JSCE, Journal of Structure Engineering,1994,40A:177-188.
    [66] Banon H, Biggs J, Irvine H. Seismic damage in reinforced concrete frames. Journal ofStructural Engineering,1981,107(9):1713-1728.
    [67]欧进萍,牛荻涛,王光远.多层非线性抗震钢结构的模糊动力可靠性分析与设计.地震工程与工程震动,1990,10(4):27-37.
    [68] Hwang T H, Scribner C F. R/C member cyclic responses during various loadings. Journal ofStructural Engineering,1984,110(3):477-489.
    [69]曲哲.摇摆墙-框架结构抗震损伤机制控制及设计方法研究[博士学位论文].北京:清华大学,2010.
    [70] Ballio G, Castiglioni C A. Seismic behavior of steel sections. Journal of Constructional SteelResearch,1994,29(1-3):21-54.
    [71] Hearn G, Testa R B. Model analysis for damage detection in structures. ASCE, Journal ofStructural Engineering,1991,117(10):3042-3063.
    [72]董宝,高层钢框架结构在多维地震作用下考虑损伤累积效应的弹塑性反应分析[博士学位论文].上海:同济大学,1997.
    [73] J.勒迈特(法)著,倪金刚,陶春虎译.损伤力学教程.北京:科学出版社,1996.
    [74] Toshiki I, Masashi I. Analysis of tubular steel bridge piers. Earthquake Engineering andStructural Dynamics,2005,34(8):985–1004.
    [75] Mettupalayam V. Sivaselvan and Andrei M. Reinhorn. Hysteretic models for deterioratinginelastic structures. Journal of Engineering Mechanics,2000,126(6):633-640.
    [76] Mehanny S S F, Deierlein G G. Seismic damage and collapse assessment of compositemoment frames. Journal of Structural Engineering,2001,127(9):1045-1053.
    [77]沈祖炎,沈苏.高层钢结构考虑损伤累积及裂纹效应的抗震分析.同济大学学报,2002,30(4):393-398.
    [78]刘永明,陈以一,陈扬骥.考虑钢框架节点局部断裂的滞回模型.同济大学学报,2003,31(5):525-529.
    [79]陈宏.高层钢结构节点地震脆断机理及抗震性能研究[博士学位论文].徐州:中国矿业大学,2001.
    [80]熊俊,石永久,王元清.强震下钢框架节点损伤机理研究——Ⅰ:试验研究.土木工程学报.(已投稿)
    [81]中华人民共和国建设部,中华人民共和国国家质量监督检验检疫总局. GB50011-2001.中华人民共和国国家标准—建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    [82] Egor P, Yang T, Chang S. Design of steel MRF connections before and after1994Northridgeearthquake. Engineering Structures,1998,20(12):1030-1038.
    [83] Li F X, Kanao I, Li J, et al. Local buckling of RBS beams subjected to cyclic loading. Journalof Structural Engineering,2009,135(12):1491-1498.
    [84] Zhang X F, Ricles J M. Seismic behavior of reduced beam section moment connections todeep columns. Journal of Structural Engineering,2006,132(3):358-367.
    [85] Zhang X F, Ricles J M. Experimental evaluation of reduced beam section connections to deepcolumns. Journal of Structural Engineering,2006,132(3):346-357.
    [86] Mirghaderi S R, Orabian S, Imanpour A. Seismic performance of the accordion-web RBSconnection. Journal of Constructional Steel Research,2010,66(2):277-288.
    [87]中华人民共和国建设部. JGJ101-96.建筑抗震试验方法规程.北京:中国建筑工业出版社,1991.
    [88] Coffin L F, A study of the effects of cyclic thermal stresses on a ductile metal, Transaction ofthe ASME,76,1954.
    [89] Manson S S. Behavior of materials under conditions of thermal stress, heat transfersymposium. University of Michigan Engineering Research Institute,1953.
    [90] Castiglioni C A. Effects of the loading history on the local buckling behavior and failuremode of welded beam-to-column joints in moment-resisting steel frames. Journal ofEngineering Mechanics-ASCE,2005,131(6):568-585.
    [91] Nathaniel G C, Krawinkler H. Uniaxial cyclic stress-strain behavior of structural steel. Journalof Engineering Mechanics,1985,111(9):1105-1120.
    [92]董永涛,张耀春.建筑用钢循环塑性本构模型.哈尔滨建筑工程学院学报,1993,26(5):106-112.
    [93] Xue L. A unified expression for low cycle fatigue and extremely low cycle fatigue and itsimplication for monotonic loading. International Journal of Fatigue,2008,30(10-11):1691-1698.
    [94] Nip K H, Gardner L, Davies C M, et al. Extremely low cycle fatigue tests on structural carbonsteel and stainless steel. Journal of Constructional Steel Research,2010,66(1):96-110.
    [95] Kuroda M. Extremely low cycle fatigue life prediction based on a new cumulative fatiguedamage model. International Journal of Fatigue,2001,24(6):699–703.
    [96] Krawinkler H, Zohrei M, Bahman L I, et al. Recommendations For Experimental Studies OnThe Seismic Behavior of Steel Components And Materials. Earthquake Engineering Center.Department of Civil and Environmental Engineering, Stanford University, Stanford, CA.1983,61.
    [97]王娴明,徐波,沈聚敏.反复荷载作用下钢筋的本构关系.建筑结构学报,1992,13(6):41-47.
    [98] Chaboche J L. Time independent constitutive theories for cyclic plasticity. InternationalJournal of Plasticity,1986,2(2):149-188.
    [99] Atkan A E, Karlson B I, Sozen M A. Stress-strain relationships of reinforceing bars subjectedto large strain reversals. Civil Engineering Studies, SRS No.397, University of Illinois,Urbana-Champaign, Ill,1973.
    [100] Shen C, Tanaka Y, Mizuno E, Usami T. A two-surface model for steels with yield plateau. JStruct Engng/Earthquake Engng, JSCE,1992,8(4):179–188.
    [101] Usami T, Gao S, Ge H. Elastoplastic analysis of steel members and frames subjected to cyclicloading. Engineering Structures,2000,22(2):135-145.
    [102] Dafalias Y F, Popov E P. A model of nonlinear hardening materials for complex loading. ActaMechanica,1975,21:173-192.
    [103] Dafalias Y F, Popov E P. Plastic interval variables formalism of cyclic plasticity. Journal ofApplied Mechanics, Transactions ASME,1976,43:645-651.
    [104] ASTM, Annual Book of ASTM Standards. American society for testing and materials,Philadelphia (PA),1998.
    [105] Lee G C, Lee E T. Local buckling of steel sections under cyclic loading. Journal ofConstructional Steel Research,1994,29(1-3):55-70.
    [106] Hull D. Fractography: observing, measuring, and interpreting fracture surface topography.Cambridge University Press,1999.
    [107] ABAQUS. Analysis user's manual I_V. Version6.9. USA: ABAQUS, Inc., Dassault Systèmes,2009.
    [108] Esmaeily A, Xiao Y. Behavior of reinforced concrete columns under variable axial loads:analysis. ACI Structural Journal,2005,102(5):736-744.
    [109]聂建国,陶慕轩.采用纤维梁单元分析钢-混凝土组合结构地震反应的原理.建筑结构学报,2011,32(10):1-10.
    [110] Légeron F, Paultre P, Mazars J. Damage mechanics modeling of nonlinear seismic behavior ofconcrete structures. Journal of Structural Engineering, ASCE,2005,131(6):946-955.
    [111]庒茁,张帆,岑松,等. ABAQUS非线性有限元分析与实例.北京:科学出版社,2005.
    [112]聂建国,王宇航.基于ABAQUS的钢-混凝土组合结构纤维梁模型的开发及应用.工程力学,2012,29(1):70-80.
    [113] Peter D, Ahmad M I, Ian G B. Cyclic response of plate steels under large inelastic strains.Journal of Constructional Steel Research,2007,63(2):156-164.
    [114] Gang Shi, Meng Wang, Yu Bai. Experimental and modeling study of high-strength structuralsteel under cyclic loading. Engineering Structures,2012,37:1-13.
    [115]施刚,王飞,戴国欣,王元清,石永久. Q460C高强度钢材循环加载试验研究.东南大学学报(自然科学版),2011,41(6):1259-1265.
    [116]施刚,王飞,戴国欣,王元清,石永久. Q460C高强度钢材焊缝连接循环加载试验研究.建筑结构学报,2012,33(3):15-21.
    [117]石永久,苏迪,王元清.混凝土楼板对钢框架梁柱节点抗震性能影响的试验研究.土木工程学报,2006,39(9):26-31.
    [118]中华人民共和国建设部,中华人民共和国国家质量监督检验检疫总局. GB50009-2001.中华人民共和国国家标准—建筑结构荷载规范.北京:中国建筑工业出版社,2001.
    [119] Hodge P G. The theory of piecewise linear isotropic plasticity. Proceedings, Colloquium onDeformation and Flow of Soild. Madrid, Spain,1955:147-169.
    [120] Prager W. The Theory of Plasticity: a survey of recent achievement. Proceedings of theinstitute of Mechanical Engineers. London, England,1955,169:41-57.
    [121]邓椿森,施刚,张勇等.高强度钢材压弯构件循环荷载作用下受力性能的有限元分析.建筑结构学报,2010(增刊1):28-34.
    [122] Stojadinovic B. Stability and low-cycle fatigue limits of moment connection rotation capacity.Engineering Structures,2003,25(5):691–700.
    [123]中华人民共和国建设部,中华人民共和国国家质量监督检验检疫总局. GB50205—2001.中华人民共和国国家标准—钢结构工程施工质量验收规范.北京:中国计划出版社,2001.
    [124]郝际平.钢结构在循环荷载作用下的局部屈曲、低周疲劳的试验与理论研究[博士学位论文].西安:西安建筑科技大学,1995.
    [125]郑宏.工形截面钢构件在循环荷载作用下平面外相关屈曲分析及抗震设计对策[博士学位论文].西安:西安建筑科技大学,2000.
    [126] Castiglioni C A, Paima D N. Experimental behavior of steel member under cyclic bending.Costruzioni Metalliche,1989,2(3):97-114.
    [127] Li F X, Kanao I, Li J, et al. Local buckling of RBS beams subjected to cyclic loading. Journalof Structural Engineering,2009,135(12):1491-1498.
    [128] Egor P, Yang T, Chang S. Design of steel MRF connections before and after1994Northridgeearthquake. Engineering Structures,1998,20(12):1030-1038.
    [129] Cheng C, Chun C, Cheng H. Ductile moment connections used in steel column-treemoment-resisting frames. Journal of Constructional Steel Research,2006,62(8):793-801.
    [130] Cheng C, Shuan W, Ming D, et al. Cyclic Behaviour of unreinforced and rib-reinforcedmoment connections. Journal of Constructional Steel Research,2005,61(1):1-21.
    [131] Lee C H, Jung J H, Oh M H, et al. Experimental study of cyclic seismic behavior of steelmoment connections reinforced with ribs. Journal of Structural Engineering,2005,131(1):108-118.
    [132] Yu Q S, Uang C M, Gross J, Seismic rehabilitation design of steel moment connection withwelded haunch. Journal of Structural Engineering,2000,126(1):69-78.
    [133] Li B, Yang Q S, Yang N. An investigation on aseismic connection with opening in beam webin steel moment frames. Advances in Structural Engineering,2011,14(3):575-587.
    [134] Chi B, Uang C M. Cyclic response and design recommendations of reduced beam sectionmoment connections with deep columns. Journal of Structural Engineering-ASCE,2002,128(4):464-473.
    [135] Uang C M, Yu Q S, Noel S. Cyclic testing of steel moment connections rehabilitated withRES or welded haunch. Journal of Structural Engineering-ASCE,2000,126(1):57-68.
    [136] Castiglioni C A. Effects of the loading history on the local buckling behavior and failuremode of welded beam-to-column Joints in moment-resisting steel frames. Journal ofEngineering Mechanics–ASCE,2005,131(6):568-585.
    [137] Castiglioni C A, Mouzakis H, Carydis P. Constant and variable amplitudecyclic behaviour ofwelded steel beam-to-column connections. Journal of Earthquake Engineering,2007,11(6):876-902.
    [138] Krawinkler H, Zohrei M, Bahman L I, et al. Recommendations for experimental studies onthe seismic behavior of steel components and materials. Earthquake Engineering Center.Department of Civil and Environmental Engineering, Stanford University, Stanford, CA.1983,61.
    [139] Ricles J M, Mao C S, Lu L W, et al. Inelastic cyclic testing of welded unreinforced momentconnections. Journal of Structural Engineering,2002,128(4):429-440.
    [140] Mele E, Calado L, De Luca A. Experimental investigation on European welded connections.Journal of Structural Engineering-ASCE,2003,129(10):1301-1311.
    [141] Ballio G, Calado L, Castiglioni C A. Low cycle fatigue behaviour of structural steel membersand connections. Fatigue and Fracture of Engineering Materials and Structures,1997,20(8):1129-1146.
    [142] Wang W, Zhang Y Y, Chen Y Y, Lu Z H, Yan P. Improving seismic performance of steelmoment connections with noncompact beam web. The6th International Symposium on SteelStructures, November3-5,2011, Seoul, Korea,517-522.
    [143]杨庆山,李波,杨娜.梁腹板开圆孔钢框架梁柱节点的性能研究.工程力学,2007,24(9):111-121.
    [144]郭兵,郭彦林,柳锋等.焊接及螺栓连接钢框架的循环加载试验研究.建筑结构学报,2006,27(2):47-56.
    [145] Kim S E, Lee D H, Cuong N H. Shaking table tests of a two-story un-braced steel frame.Journal of Constructional Steel Research,2007,63(3):412-421.
    [146]李洪泉,贲庆国,于之绰,张跃强,吕西林.钢框架结构在地震作用下累积损伤分析及试验研究.建筑结构学报,2004,25(3):69-74.
    [147] Vamvatsikos D, Cornell C A. Incremental dynamic analysis. Earthquake Engineering andStructural Dynamics,2002,31(3):491-514.
    [148]李杰,张玉凤,霍立兴,王东坡.抗震焊接接头在模拟地震循环载荷作用下累积损伤的研究.天津大学学报,2003,36(4):452-455.
    [149] Paret T, Sasaki K. Analysis of a17-story steel moment frame building damaged by theNorthridge earthquake, SAC Report no.95-04, Part2, Applied Technology Council, RedwoodCity, CA,1995.
    [150] Chi W M, Tawil EI-S, Gregory G D, Abel J F. Inelastic analyses of a17-story steel framedbuilding damaged during Northridge. Engineering Structures,1998,20(4-6):481-495.
    [151]李波,杨庆山,茹继平,杨娜.梁腹板开圆孔的钢框架抗震性能研究.工程力学,2009,26(1):64-73.
    [152]李波.梁腹板开圆孔的钢框架抗震性能研究[博士学位论文].北京:北京交通大学,2006.
    [153]陆新征,林旭川,叶列平.多尺度有限元建模方法及其应用.华中科技大学学报(城市科学版),2008,25(4):76-80.
    [154]石永久,王萌,王元清.基于多尺度模型的钢框架抗震性能分析.工程力学,2011,28(12):20-26.
    [155]王朝波.既有多高层钢框架抗震鉴定指标体系及分析方法研究[博士学位论文].上海:同济大学,2007.
    [156] Azizinamini A, Bradburn J H, Radziminski J B. Initial semi-rigid steel beam to columnconnections. Journal of Constructional Steel Research,1987,8:823-829.
    [157]中华人民共和国国家质量监督检查检疫总局,中国国家标准化管理委员会.GB/T700-2006.碳素结构钢.北京:中国标准出版社,2007.
    [158]中华人民共和国国家质量监督检查检疫总局,中国国家标准化管理委员会.GB/T1591-2008.低合金高强度结构钢.北京:中国标准出版社,2009.
    [159]施刚,王飞,戴国欣,石永久,王元清. Q460D高强度结构钢材循环加载试验研究.土木工程学报.2012,45(7):48-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700