循环全回流间歇精馏新型控制方式的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了无塔顶回流罐的全回流-全采出循环全回流间歇精馏的操作方式,模拟和实验验证了无回流全采出操作期间塔顶浓度平台的存在。提出了增加塔中存液罐强化过渡馏分采出的新操作方法并采用甲醇-乙醇-正丙醇三元物系进行了分离过程。建立了具有塔中存液罐过渡馏分操作过程的数学模型。针对新型操作方式提出了多点测温三温控制策略。本文以理论塔板辅助法进行参数设定,结合系统辨识及预测控制理论构建循环全回流间歇精馏的自动化和在线优化平台,并通过数学模拟及实验研究对提出的三温控制策略进行可行性研究。
     首先,对无回流罐循环全回流间歇精馏过程的基础—全采出过程进行了实验研究和模拟研究,分别讨论了不同的精馏塔参数对于精馏全采出过程的影响,验证了作为全回流-全采出式循环全回流间歇精馏操作的理论基础的塔顶浓度平台的存在;然后,对加有中间储罐的循环全回流间歇精馏用于过渡馏分采出阶段进行了研究,讨论了中间储罐的充、放液操作对塔顶轻组分的变化和对塔釜重组分上升的影响,并建立了新型操作方式的数学模型。
     在上述研究的基础上提出了理论板辅助法的三温控制方法。该方法采用RBF径向神经网络进行温度系统辨识,通过扩展卡尔曼滤波(EKF)进行时变系统的温度推算和精馏塔浓度预测估计,采用模糊神经网络控制算法FNNC设计控制系统,对系统的采出与回流过程加以控制,形成一个闭环控制系统,达到在线控制间歇精馏全采出-全回流切换过程的目的。
     最后,建立了带有中间回流罐的全回流间歇精馏三温控制的实验装置,应用本文提出的新型操作及控制方式实现了对甲醇-乙醇-正丙醇三元物系的分离,控制过程有较好的鲁棒性,与恒回流操作方式相比,产品的产量提高了26.2%,过渡馏分采出时间缩短了53.4%,精馏塔利用率提高了66.2%。对于循环全回流三元物系间歇精馏过程,加有塔中回流罐的三温控制方式明显优于传统的固定回流比控制,证明了控制方法的可行性。
The operation mode of cyclic total reflux batch distillation in the way of total reflux-total withdrawal without reflux drum was proposed in this paper. The existence of the concentration platform of the top of the column during the total withdrawal period was proven by simulation and experiment. A middle tank which improves the slop cut operation was set up. The new operation mode was applied in separation of the ternary mixture: methanol-ethanol-propanol system. The mathematical model for the slop cut operation process with a middle tank was set up. A control policy based on the multi-temperature measured and tri-temperature controlled was proposed according to the new operation mode. Combined with the system identification and predictive control theory, the automatic control and on-line optimization platform was developed for the cyclic total reflux batch distillation. The operational parameters were set with the assistance of the theoretical plate method, and furthermore, the feasibility of the tri-temperature control policy was validated by the mathematical simulation and experiments in the paper.
     First, total withdrawal process which is the principle basis of the no-reflux-drum cyclic total reflux batch distillation process was studied computationally and experimentally. The effect of different column parameters on total withdrawal process was discussed respectively. The existence of the concentration platform at the top of the column, which acts as the theoretical basis of total reflux-total withdrawal cyclic batch distillation, was proven. Then, the withdrawal of slop cut of the cycle total reflux batch distillation with an additional middle tank was studied. The effect of filling and dumping of the liquid in middle tank on the change of the top concentration of light component and the rising of the heavy component in still was discussed. Furthermore, the mathematic model of the process of the new operation mode was set up.
     Based on the above research, tri-temperature control strategy assisted by the theoretical plate method was proposed. RBF (Radial Basis Function) neutral network was adopted to carry out the temperature system identification, and EKF (Extended Kalman Filter) was adopted to estimate the temperature in the time-varying system and predict the concentration variation in the column. In order to realize the on-line control of the switch between total-reflux and total-withdrawal, a closed loop control system based on FNNC (Fuzzy Neural Network Control) method was formed by the control of the withdrawal and reflux process.
     Finally, the experimental apparatus with tri-temperature controlled cyclic total reflux batch distillation with middle tank was set up. The separation of the ternary mixture methanol-ethanol-propanol was carried out in the new operation mode and control method proposed by the paper. During the process the control performance showed good robustness. Compared with the constant reflux operation, the product amount was increased by 26.2%, and the operation time for slop cut withdrawal was decreased by 53.4%, the efficiency of the distillation column was increased by 66.2%. Therefore in the separation of ternary mixture, the tri-temperature controlled cyclic total reflux batch distillation with middle tank is obviously advantageous over the conventional constant reflux control policy. And the feasibility of this control policy was verified.
引文
[1]白鹏,姜健,张志等,间歇精馏新型操作方式的研究进展,化学工业与工程,17 (4):226~229
    [2]杨海荣,薄翠梅,陆爱晶等,间歇精馏变回流比智能控制策略的研究,化工自动化与仪表,2008,35 (1):12~16
    [3]李贞玉,李长海,汤洁等,基于间歇精馏回收废溶剂中二甲苯/醋酸丁酯,环境工程学报,2008,4:564~568
    [4]颜清,彭小平,冷明伟,VBA实现恒馏出液组成间歇精馏的计算机模拟,计算机应用与软件,2008,25 (12):88~90
    [5]许松林,应安国,王淑华,桃醛提纯的真空间歇精馏工艺,化学工业与工程,2005,22 (2):112~114
    [6]陈建宁,阮奇,陈佳彬等,间歇精馏常规设计和优化设计的模型和算法,计算机与应用化学,2004,21 (3):429~433
    [7]Tajalasfia M.M.Barakat, Eric S.Fraga, Eva S?rensen, Multi-objective optimization of batch separation processes, Chem. Eng. Proc., 2008, 47: 2303~2314
    [8] Luyben, William L., Unusual control structure for high reflux ratio distillation columns, Ind & Eng Chem Res, 2009, 48(24): 11048~11059
    [9] A Téllez-Anguiano, F Rivas-Cruz, C M Astorga-Zaragoza, et al,. Process control interface system for a distillation plant, Computer Standards & Interfaces, 2009, 31: 471~479
    [10]Luyben, William L., Control of a column process for separating the ethanol/water azeotrope, Ind& Eng Chem Res, 2009, 48(7): 3484~3495
    [11] Arthur Rose R. L., Williams T. J., Charles Prevost., Holdup in batch distillation, Ind & Eng Chem, 1950, 42(9): 1876~1879
    [12] Pigford J.B., Effect of column holdup in batch distillation, Ind & Eng Chem, 1951, 43(11): 2592~2602
    [13] M.A.Greaves, I.M. Mujtaba, M. Barolo, et al., Neural-Network approach to dynamic optimization of batch distillation: Application to a middle-vessel column, Chemical Engineering Research and Design, 2003, 81(3): 393~401
    [14]余国琮,王宇新,间歇蒸馏的优化操作,化工学报, 1986,(1):9~15
    [15]张雪梅,张卫江,简春贵等,多组元分批精馏中各种设计参数对回流比的影响,化工进展,2004,23 (5):519~523
    [16] R.Muradore, F.Bezzo, M.Barolo, Optimal sensor location for distributed-sensorsystems using multivariate regression, Comp. & Chem.Eng., 2006, 30: 521~534
    [17] Meski G.A., Morari M., Design and operation of a batch distillation column with a middle vessel.Comp&Chem Eng., 1995, 19: 597~604
    [18] Davidyan A.G., Kiva V.N., Platonov V.M., Separation of binary mixtures in two-section column with central reservoir, Theory Found Chemical Engineering, 1992, 25(4): 393~400
    [19] M.Warter, D.Demicoli, J.Stichlmair, Operation of a batch distillation column with a middle vessel: experimental results for the separation of zeotropic and azeotropic mixtures, Chem. Eng. Proc., 2004, 43: 263~272
    [20] Barolo Massimiliano, Botteon Franco, Simple method of obtaining pure products by batch distillation, AIChE [J], 1997, 43(10): 2601~2604
    [21] Diwekar U. M., Madhavan, K. P., BATCH-DIST: a comprehensive package for simulation, design, optimization and optimal control of multicomponent, multifraction batch distillation columns, Comp.&Chem.Eng., 1991, 15(12): 833-842
    [22] Arellano-Garcia Harvey, Carmona Irisay, Wozny Guenter, A new operation mode for reactive batch distillation in middle-vessel columns: Start-up and operation, Comp. Chem. Eng., 2008, 32(1): 161~169
    [23] Hasebe S., Kurooka T., Hashimoto I., Comparison of the separation performance of a multi-effect batch distillation system and a continuous distillation system, Proceedings of IFAC Symposium DYCORD’95, l995, 249~255
    [24] Skogestad S., Wittgens B., Closed operation of multivessel batch distillation: Experimental verification, AIChE [J], 2000, 46: 1209~1217
    [25] Skogestad S., Hilmen E.K., Kiva V.N., Analysis of closed multivessel batch distillation of ternary azeotropic mixtures using elementary VLE cells, Comp.& Chem. Eng., 1999, 23: 347~350
    [26] Hasebe S., Noda M., Optimal operation policy for multi-effect batch distillation system, Comp. Chem. Eng., 1997, 21: 1221~1226
    [27] U. M. Diwekar, Madhavan K.P., Multicomponent batch distillation column design, Ind. Eng. Chem. Res., 1991, 30: 713~721
    [28] S?rensen E., Skogestad S., Optimal operating policies of batch distillation with emphasis on the cyclic operating policy, Proceedings. Proc. Sys. Eng. (PSE), Korea, 1994: 449
    [29] Barb D. K., Holland C. H., Batch distillation, Proceedings of the 7th World Petroleum Congress, 1967, 4: 31
    [30] Block B., Control of batch distillation, Chemical Engineering, 1967, 16:147~150
    [31] Trilleros Villaverde J.A., Otero de la Gandara J.L., Analogical study of the unsteady state in a rectifying column operating under total reflux(I) theoretical aspects, AIChE, 1994, 34(3): 320~327
    [32] Mori Hideki,Ito Chikara,Oda Akiyoshi,et al., Total reflux simulation of packed column distillation, Journal of Chemical Engineering of Japan, 1999, 32(1): 69~75
    [33] Sorensen E., A cyclic operation for batch distillation-Theory and Practice, Comp. Chem. Eng., 1999, 23: 533
    [34]白鹏,张卫江,余国琮,动态累积分批精馏过程研究(1),化学工程,1994,22 (5):15
    [35] P. Bai, C. Hua, X.G. Li, et al., Cyclic total reflux batch distillation with two reflux drums, Chem. Eng. Sci., 2005, 60: 5845~5851
    [36]白鹏,张卫江,尹波等,无返混动态累积分批精馏过程,化学工程,2000,28(5):7~9
    [37]郭天仁,白鹏,曹吉林,间歇精馏过渡馏份的脉冲控制法,化工科技,1999,7(4):15~18
    [38]曲红梅,张卫江,白鹏等,分批精馏最小过渡馏分量及过渡馏分脉冲控制法的研究,2002,30(6):7~11
    [39]李文秀,胡国良,于三三,间歇精馏过度馏分的脉动馏出,沈阳化工学院学报,1996,10 (3):196~201
    [40] Li Xiaofeng, Bai Peng, et al., Study of dual temperature control method on cyclic total reflux batch distillation, Chem.Eng.& Proc., 2007(46): 769~772
    [41]薛亚丽,热力过程多变量控制系统的优化设计,[博士学位论文],北京,清华大学,2005. 4
    [42] Jose A.R., Rosendo M.L., et al., A novel Proportional?Integral-Derivative control configuration with application to the control of batch distillation, Ind & Eng Chem Res, 2000, 39(2): 432~440
    [43] Rosendo M. L., Jose A. R., A note on the identification and control of batch distillation columns, Chem. Eng. Sci., 2003, 58(20): 4729~4737
    [44] Rosendo M. L., Enduardo P. C., Jose A. R., A robust PI control configuration for a high-purity ethylene glycol reactive distillation column, Chem.Eng.Sci., 2000, 55(21): 4925~4937
    [45] Li P., Wozny G., Tracking the predefined optimal policies for multiplefraction batch distillation by using adaptive control, Comp & Chem Eng, 2001, 25: 97~107
    [46] Jana A.K.,Samanta A.N., Ganguly S., Globally linearized control system design of a constrained multivariable distillation column, Journal of Process Control, 2005, 15: 169~181
    [47] Sumana C., Venkateswarlu, Genetically tuned decentralized Proportional -Integral controllers for composition control of reactive distillation, Ind. & Eng. Chem. Res., 2010, 49(3): 1297~1311
    [48] Quintero-Marmol E., Luyben W. L., Georgakis C., Application of an extended Luenberger observer to the control of multicomponent batch distillation, Ind & Eng Chem Res, 1991, 30: 1870~1880
    [49] Oisiovici R. M., Cruz S. L., Inferential control of high-purity multicomponent batch distillation columns using an extended Kalman filter, Ind & Eng Chem Res, 2001, 40: 2628~2639
    [50] Gundale M.M., Amiya K.J., Nonlinear adaptive control algorithm for a multi -component batch distillation column, Chem. Eng. Sci., 2007, 62: 1111~1124
    [51] Amiya K., Jana, Synthesis of nonlinear adaptive controller for a batch distillation, ISA Transactions, 2007, 46: 49~57
    [52] Dechechi E. C., Luz L. F. L. Jr, Assi A. J., et al., Interactive supervision of batch distillation with advanced control capabilities, Comp. & Chem. Eng., 1998, 22: 867~870
    [52] Fileti Ana M Frattini, Sandra L Cruz, Joao A. F. R. Pereira, Control strategies analysis for a batch distillation column with experimental testing, Chem Eng & Proc, 2000, 39(2): 121~128
    [53] Lalitha S. B., Francis J., Nonlinear model-based control of a batch reactive distillation column, Journal of Process Control, 2000, 10: 209~218
    [54] Danielle Dougherty, Doug Cooper, A practical multiple model adaptive strategy for single-loop MPC, Control Engineering Practice, 2003, 11(2): 141~159
    [55] Schenker B., Mukul Agarwal., Online-optimized feed switching in semi-batch reactor using semi-empirical dynamic models, Control Engineering Practice, 2000, 8(12): 1393~1403
    [56]邹志云,甲醇/水二元间歇精馏塔的模型预测控制,冶金自动化,2004,28 (增刊):166~170
    [57]邹志云,于德弘,甲醇/水二元间歇精馏塔的建模与先进控制,控制工程,2005,12 (4):355~355
    [58] Eliana Zamprogna, M.Barolo, Dale E. Seborg, Estimating product compositionprofiles in batch distillation via partial least squares regression, Control Engineering Practice, 2004, 12: 917~929
    [59]Pornsiri Kaewpradit, Paisan Kittisupakorn, Piyanuch Thitiyasook, et al., Dynamic composition estimation for a ternary batch distillation, Chem. Eng. Sci., 2008, 63: 3309~3318
    [60] W.Weerawun, K.Paisan, S.Aritsara, et al., Batch distillation control improvement by novel model predictive control, Journal of Industrial and Engineering Chemistry, 2010, 16(2): 305~313
    [61] A.Wilson, E.C. Martinez, Neuro-fuzzy modeling and control of a batch process involving simultaneous reaction and distillation, Comp & Chem. Eng., 1997, 21 ( Supplement 1): 1233~1238
    [62] Fileti A.M., Frattini, Pereira J.A.F.R., et al., The development and experimental testing of a fuzzy control system for batch distillation, Brazilian Journal of Chemical Engineering, 2002, 19(1): 1~10
    [63]邹志云,于德弘,于鲁平等,间歇精馏过程的模糊逻辑与增益自调整PID混合控制控制,计算机与应用化学,2006,23(11):1079~1082
    [64] Savkovic-Stevanovic, Jelenka B., A neural-fuzzy system for ethanol recovery distillation control, Glasnik na Hemicarite i Tehnolozite na Makedonija, 2005, 24(1): 87~92
    [64] Mamlook, Rustom, Al-Rawajfeh, et al., Fuzzy set implementation for controlling and evaluation of factors affecting multiple-effect distillers, Desalination, 2008, 222(3): 541~547
    [65]刘兴高,精馏过程的建模、优化与控制,北京:科学出版社,2007
    [66]王为国,冯魏良,彭友瑞等,二元多段恒回流比常规间歇精馏的讨论,化工设计,2008,18 (1):7~9
    [67]杨海荣,薄翠梅,陆爱晶等,间歇精馏过程变回流比智能控制策略的研究,化工自动化及仪表,2008,35 (1):12~16
    [68]颜青,彭小平,恒馏出液组成间歇精馏回流比的控制和调节,计算机与应用化学,2008,25 (10):1248~1252
    [69]张雪梅,张卫江,简春贵等,多组元分批精馏中各种设计参数对回流比的影响,化工进展,2004,23 (5):519~523
    [70] Süleyman Karacan, Application of a non-linear long range predictive control to a packed distillation column, Chem Eng & Proc, 2003, 42: 943~953
    [71] Süleyman Karacan, Hale Hapo?lu, Mustafa Alpbaz, Multivariable systemidentification and generic model control of a laboratory scale packed distillation column, Applied Thermal Engineering, 2007, 27(5-6): 1017~1028
    [72] Zumoffen L, Garyulo,M.Basualdo, et al., Predictive functional control applied to multicomponent batch distillation column, Computer Aided Chemical Engineering, 2005, 20(2): 1465~1470
    [73]Amiya Kumar Jana, Amar Nath Samanta, Saibal Ganguly, Nonlinear model-based control algorithm for a distillation column using software sensor, ISA Transactions, 2005, 44(2): 259~271
    [74] William L. Luyben, Evaluation of criteria for selecting temperature control trays in distillation columns, Journal of Process Control, 2006, 16(2): 115~134
    [75] Converse A.O., Gross G.D., Optimal distillate rate policy in batch distillation, Ind.Eng.Chem.Fundum, 1963, 2: 217
    [76] Kerkhof L.H.J., Vissers H.J.M., On the profit of optimum control in batch distillation, Chem.Eng.Sci., 1978, 33(3-4): 961~970
    [77] Robinson E.R., The optimization of batch distillation operation, Chem.Eng.Sci., 1969, 24: 1661~1668
    [78]Kerkhof, Vissers, Optimal Control Problem in Batch Distillation Using Thermodynamic Efficiency, Ind.& Eng. Chem. Res., 2008, 47 (8): 2788~2793
    [79]Robinson E.R., The optimal control of an industrial batch distillation, Chem.Eng.Sic.,1970, 25(71): 921~928
    [80] Robinson E R., Optimum reflux policies for batch distillation, Chem.Process.Eng, 1971, 5(71): 47~55
    [81] Kerkhof L. H. J., Vissers H. J. M., On the profit of optimum control of batch distillation, Chem.Eng.Sci., 1978, 33: 961~970
    [82] Rippin D. W. T., Simulation of single and multi-product batch chemical plants for optimal design and operation, Computer Chemical Engineering, 1983,7(3):137~156
    [83] Betlem B. H. L., Krijnsen H. C., Huijnen H., Optimal batch distillation control based on specific measures, Chem. Eng. J,1998(71): 111~126
    [84] Li P., Wozny G., Optimization of Multiple-Fraction Batch Distillation with Detailed Dynamic Process Model, In Distillation and Absorption’97: 289
    [85] Barolo M,Paolo Dal Cengio, Closed-loop optimal operation of batch distillation columns., Comp &Chem Eng, 2001, 25: 561~569
    [86] Bosley J. R., Edgar T. F., Patwardhan A. A., et al., Model-based control: a survey, IFAC Symposia Series, 1992, 8: 127~136
    [87] M.M.Miladi, I.M.Mujtaba, The effect of off-cut recycle on the optimum design and operation of binary batch distillation with fixed product demand, Comp.&Chem. Eng., 2005, 29(7): 1687~1695
    [88] Li P., Wozny G., Tracking the predefined optimal policies for multiple-fraction batch distillation by using adaptive control, Comp.&Chem. Eng., 2001,25(1): 97~107
    [89] Barolo M, Berto Fabrizio, Composition control in batch distillation: Binary and multi-component mixtures, Industrial Engineering Chemistry Research, 1998b, 37(12): 4689~4698
    [90] Bequette B W, Nonlinear control of Chemical Process: A Review, Ind. Eng. Chem. Res., 1991, 30: 1391~1413
    [91] Enquire Q.M., William L. Luben, Inferential Model-based control of multi- component batch distillation, Chem. Eng. Sci., 1992, 47(4): 887~898
    [92] Bosley J. R. Jr., Edgar, T. F., Application of nonlinear model predictive control to optimal batch distillation, IFAC Symposia Series, 1993, 2: 303~308
    [93] Sorensen E, Macchietto S, Stuart G, etal., Optimal control and online operation of reactive batch distillation, Comp.&Chem. Eng., 1996, 20(12): 1491~1498
    [94] Farschman C A, Diwekar Urmila, Dual composition control in a novel batch distillation column, Industrial&Engineering Chemistry Research,1998,27(1):89~96
    [95] Barolo M , Guarise G B, Ribon N, etal., Optimization of Methanol Process by Flowsheet Simulation , I&EC Proc. Des. Dev., 1996, 16(3):337~341
    [96] Eliana Zamprogna, Massimiliano Barolo, Dale E. Seborg, Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis, Journal of Process Control, 2005, 15: 39~52
    [97] Castellanos-Sahagun, Eduardo, Alvarez-Ramirez Jose, Alvarez, Two point composition temperature control of binary distillation columns, Ind.&Eng.Chem.Res., 2006, 45(26): 9010~9023
    [98] Kwantip Konakom, Paisan Kittisupakorn, Iqbal M. Mujtaba, Batch control improvement by model predictive control based on multiple reduced-models, Chemical Engineering Journal, 2008, 145: 129~134
    [99] Jana A.K., A Hybrid FLC-EKF scheme for temperature control of a refinery debutanizer column, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2010, 6(1): 25~35
    [100] Luyben, William L., Control of the Heterogeneous Azeotropic n-Butanol/Water Distillation, Energy & Fuels, 2008, 22(6): 4249~4258
    [101] Sunar Gulsah, Kaymak, Devrim B., Effect of feed tray location on temperature-based inferential control of double feed reactive distillation columns, Ind & Eng Chem Res, 2009, 48(24): 11071~11080
    [102]崔远,间歇反应过程的预测控制与实时仿真平台验证,[硕士学位论文],上海:上海交通大学,2008.6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700