同步厌氧脱氮除硫工艺及微生物学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业的发展与人类生活水平的提高,废水产生量不断增加。其中,许多工业废水、农业污水和城市污水中都有含硫污染物,废水排放所致的硫素污染严重威胁着人类健康和生态安全。这类废水的有效治理技术已成为环保界急需攻克的难题。研究证明,一些微生物能够以硝酸盐为电子受体将硫化物氧化成单质硫。据此,笔者提出了用废水生物处理系统中硝化段产生的硝酸盐来氧化厌氧段产生的硫化物,达到氮硫同时去除的设想,并对同步厌氧生物脱氮除硫工艺的运行性能和微生物特性进行了较为全面而深入的研究,主要结论如下:
     1)研发了自养型同步厌氧生物脱氮除硫工艺。该工艺启动时间较短,运行26天,硫化物和硝酸盐的容积去除率分别达到文献报道水平;该工艺容积效率较高,稳态运行时,容积硫化物去除速率和容积硝酸盐去除速率分别为3.73kg·m-3·d-1和0.80 kg·m-3.d-1;该工艺基质耐受性较好,当进水硫化物浓度高于580mg·L-1时,硫化物去除率仍可保持在90%以上;该工艺水力适应性较强,当HRT从1天缩短到0.13天时,硫化物去除率保持在99%以上,硝酸盐去除率保持在92%以上。
     2)优化了同步厌氧生物脱氮除硫工艺的操作条件。
     ①揭示了不同氮素基质对工艺性能的影响。以硝酸盐作为电子受体优于亚硝酸盐。硝酸盐型脱氮除硫工艺所能耐受的最大进水硫化物浓度和硫化物去除速率均优于亚硝酸盐型脱氮除硫工艺。同步脱氮除硫污泥对电子供体的耐受性强于电子受体。以灵敏度比作为判据,同步脱氮除硫菌受硫化物的影响不显著;而受硝酸盐/亚硝酸盐的影响较大,其中受亚硝酸盐的影响更大。同步脱氮除硫污泥对亚硝酸盐的亲和力略高于硝酸盐,其半饱和常数分别为0.26±0.08 mg·L-1和0.35±0.09 mg·L-1。
     ②揭示了硫氮比对工艺性能的影响。从高效性、稳定性及选择性方面看,单质硫型厌氧生物同步脱氮除硫工艺(硫氮摩尔比为5:2)明显优于混合型和硫酸盐型(硫氮摩尔比分别为5:5和5:8)。在所试范围内,单质硫型厌氧生物同步脱氮除硫工艺效能明显高于混合型和硫酸盐型,其硫化物和硝酸盐的容积去除速率高达4.86 kg·m-3·d-1和0.99 kg·m-3·d-1。单质硫型脱氮除硫工艺稳定性好,各项出水指标的波动相对较小。将硫氮摩尔比调控在较高水平(如5:2),可提高同步厌氧生物同步脱氮除硫反应对单质硫和氮气的选择性。且在所试的3种进水硫氮摩尔比下,实际反应的硫氮摩尔比有靠拢5:2的趋势。③揭示了pH和碱度对工艺运行性能的影响。控制反应液pH在7.0±0.1范围时的容积效能高于控制进水pH时的相应值。维持反应所需的中性条件时,碱度宜控制在454.1±40.5 mg CaCO3·L-1。反应过程中的碱度变化(增量)可以指示反应器内主导反应的类型及其反应进度。单质硫型、硫酸盐型和混合型生物脱氮除硫反应的硫化物去除量与碱度减少量之比分别为2.27、2.00和5.00。④揭示了冲击负荷对工艺运行性能的影响。同步厌氧生物脱氮除硫反应器对基质浓度冲击的响应过程可分为冲击期、惯性期和恢复期。其中出水硫化物浓度对基质浓度冲击的响应较为灵敏,可用作反应器性能变化的指示参数。同步厌氧生物脱氮除硫反应器对基质浓度冲击的响应与其冲击强度有关,出水pH值及基质浓度显著升高,且各性能指标的响应强度与冲击强度呈正相关。同步厌氧生物脱氮除硫反应器对基质浓度的冲击具有良好的恢复能力,所需的恢复时间短于30 h(7.5 HRT)。
     3)研究了同步厌氧生物脱氮除硫工艺的微生物学特性。
     ①考察了同步脱氮除硫反应器稳态运行时的污泥特性与微生物生态学特性。同步脱氮除硫污泥沉降性能优良。在稳态运行的同步脱氮除硫反应器中,污泥粒径在0.54-3.99 mm之间,其中62.5%污泥直径在1.67-2.83 mm范围。颗粒污泥湿密度为1.08 kg·m-3,沉降速度在56.13-171.43 m·h-1之间。同步脱氮除硫污泥结构性能优良。同步脱氮除硫颗粒污泥由污泥亚单位(菌胶团和絮体污泥)复合而成,污泥表面微生物以杆菌为主,内部微生物形态多样。同步脱氮除硫污泥生物种群丰富。运用PCR-DGGE技术分析表明,同步脱氮除硫污泥中特征性条带较多,微生物种类多样性较高,其中以变形菌门的微生物为主。
     ②分离研究了脱氮除硫功能菌。从长期运行的脱氮除硫污泥中,分离获得了两个菌株(菌株CB和菌株CS),经形态学观察和16S rDNA序列比对,将其归入芽孢杆菌属,菌株CB与Bacillus pseudofirmus OF4最为接近,菌株CS与Bacillus hemicellulosilytus、Bacillus halodurans最为接近。首次试验证明芽孢杆菌菌株具有脱氮除硫功能,其中菌株CB对硝酸盐、硫化物的转化能力及亲和力大于菌株CS。经Biolog板检测,菌株CB的基质多样性不明显,菌株CS则可利用Biolog板中多种碳源。
With the development of economy and the improvement of standard living, large amount of wastewaters are generated. The wastewaters from industry, agriculture and housing settlements contain sulfur compounds. Sulfur pollution has already posed hazardous effects on human health and ecological safety. Hence, how to treat such wastewater economically and efficiently is one of the most popular environmental topics in recent years. It has been shown that some bacterial species like Thiobacillus denitrificans can oxidize sulfide to elemental sulfur simultaneously reducing nitrate to dinitrogen. For such reasons, the simultaneous anaerobic sulfide and nitrate removal process has been developed. In this research, the process was studied from operating conditions and microbial properties. Major research results are as follows:
     1) The simultaneous anaerobic sulfide and nitrate removal process in inorganic condition was studied. It was discovered that the start-up course of the process was fast by using Upflow Anaerobic Sludge Blanket (UASB) reactor. The volumetric removal rates of sulfide and nitrate were 0.323 kg·m-3·d-1 and 0.071 kg·m-3·d-1 after 26 days'operation, which had reached the reported level in liteature. The results also showed that the process could hold a high sulfide and nitrate removal loading rate of 3.73 kg·m-3·d-1 and 0.80 kg·m-3·d-1, respectively, under steady state. It was capable of tolerating high influent substrate concentration (580 mg-L-1 and 110 mg-L-1). It was capable of tolerating short hydraulic retention time (HRT). When HRT was 0.13 d, the removal percentage of sulfide and nitrate were higher than 99% and 92%, respectively.
     2) The operating conditions of simultaneous anaerobic sulfide and nitrate removal process were investigated.
     ①The effect of influent substrates on the performance of simultaneous anaerobic sulfur and nitrogen removal process was investigated. It was discovered that the process using nitrate as electron accepter was better than that using nitrite as electron accepter. The maximum acceptable sulfide concentration and volumetric removal rate of simultaneous anaerobic sulfide and nitrate removal process were higher than those of simultaneous anaerobic sulfide and nitrite removal process. The sludge had better tolerance to electron donor than electron accepter. Judged by sensitivity ratio, the activated sludge was more tolerant to sulfide, while no significant differences were found in respect of using nitrate or nitrite as influent substrate. The activated sludge was less tolerant to nitrate, the least tolerant to nitrite. The sludge had slightly better affinity on nitrite than nitrate, whose half saturation values were 0.26±0.08 mg·L-1 and 0.35±0.09 mg·L-1, respectively. The minimum reaction time (5h) for nitrate and sulfide was relatively longer than that for nitrite and sulfide as influent substrates (4 h).
     ②The effect of sulfide to nitrate (S/N) molar ratio on the performance of simultaneous anaerobic sulfide and nitrate removal process was investigated. It was discovered that the process performance at molar S/N ratio of 5:2 was significantly better than those at S/N molar ratios of 5:5 and 5:8, based on capacity, stability and selectivity. The volumetric sulfide and nitrate removal rates at molar S/N ratio of 5:2 were 4.86 kg·m-3·d-1 and 0.99 kg·m-3·d-1, respectively, which were higher than those at the other S/N molar ratios. Moreover, the fluctuations in the effluent at S/N ratio of 5:2 were less than those at the other two tested ratios, which showed better stability. The selectivity for elemental sulfur and dinitrogen was improved when the S/N molar ratio was set at 5:2 rather than 5:5 or 5:8. Moreover, the ratio of converted sulfide to converted nitrate tended to approach 5:2 during the operation.
     ③The effect of pH and alkalinity on the performance of simultaneous anaerobic sulfide and nitrate removal process was investigated. It was discovered that the process performance was better when the reaction pH was controlled between 6.9 and 7.1 than that when the influent pH was controlled between 7.5 and 8.0. In order to keep a neutral condition, the alkalinity should be adjusted at 454.1±40.5 mg CaCO3·L-1. The alkalinity change in the process can indicate the style and extent of the dominant reaction. When S/N ratios were 5:2,5:8 and 5:5, the ratios of removed sulfide to decreased alkalinity were 2.98,2.56 and 6.41, respectively.
     ④The effect of substrate shock on the performance of simultaneous anaerobic sulfide and nitrate removal process was investigated. It was discovered that based on the response to the shock loads, the reactor performance could be divided into three stages:disturbance, inertia and recovery periods. The effluent sulfide concentration was a sensitive parameter, which increased up to 18 times of that at steady state and could be used as an indicator of the reactor performance. The effect of the shock loads on the reactor performance was related to the intensity of the shock loads. The responsive strength increased with the increasing intensity of shock loads. The performance was able to recover from disturbances at all the tested shock loads. In 30 hours (7.5h), all the performance indices of the reactor could return to the initial stable state.
     3) The microbial properties of simultaneous anaerobic sulfide and nitrate removal process were studied.
     ①The physical and ecological characteristics of cultivated sludge for simultaneous anaerobic sulfide and nitrate removal were studied. It was discovered that the cultivated sludge showed good settlability, whose diameters, settling velocities and density were 0.54-3.99 mm,56.13-171.43 m·h-1 and 1.08 kg·m-3, respectively. It was irregular-shaped and was composed of subunits (such as zoogloea and floc) under optical microscope. It was observed that the dominant microorganisms on the surface were bacilli, but those in the inner were diversiform under scanning electron microscope, The results from PCR-DGGE analysis exhibited rich diversity of microbial populations and dominant kinds of microorganisms Proteobacteria.
     ②The bacteria responsible for simultaneous sulfide and nitrate removal were isolated and identified. It was discovered that the bacterial strains CB and CS were isolated from the UASB reactor working under steady-state with sulfide and nitrate as electron donor and acceptor, respectively. Based on electron microscopy, physiological test and 16S rDNA phylogenetic sequence analysis, the isolate CB was very close to Bacillus pseudofirmus and the isolate CS was very close to Bacillus hemicellulosilytus and Bacillus halodurans. Both the isolate CB and the isolate CS are able to use nitrate for sulfide oxidation. The isolate CS has greater capability to oxidize sulfide with nitrate as electron acceptor. According to Biolog carbon source utilization test, the isolate CB can only use a few of carbon sources, while the isolate CB can use a lot of carbon sources. Some carbon sources, such as glucose, galactose, arabinose, can be used to promote the growth of these autotrophic bacteria.
引文
Alcantara S, Velasco A, Munoz A, et al. Hydrogen sulfide oxidation by amicrobial consortium in a recirculation reactor system:sulfur formation under oxygen limitation and removal of phenols[J]. Environmental Science and Technology, 2004,38:918-923.
    Altas L and Buyukgungor H. Sulfide removal in petroleum refinery wastewater by chemical precipitation [J]. Journal of Hazardous Materials,2008,153(1-2): 462-469.
    Anja K, Peter S, Heide N. Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture[J]. Applied and Environmental Microbiology, 2006,72 (7):4755-4760.
    Annachhatre A P, Suktrakoolvait S. Biological sulphide oxidation in a fluidized bed reactor[J]. Environmental Technology,2001,22 (6):661-672.
    Aranda-Tamaura C, Estrada-Alvarado M I, Texier A C, et al. Effects of different quinoid redox mediators on the removal of sulphide and nitrate via denitrification[J].Chemosphere,2007,6(11):1722-1727.
    Bae H S, Rash B A, Rainey F A, et al. Description of Azospira restricta sp. nov. a nitrogen-fixing bacterium isolated from groundwater[J]. International Journal of Systematic and Evolutionary Microbiology,2007,57:1521-1526.
    Bagchi A, Ghosh T C. Structural identification of a novel thioredoxin SoxS: Prediction of the function in the process of transport of reductants during sulfur oxidation by the novel global sulfur oxidation reaction cycle[J]. Journal of Molecular Structure:Theochem,2006a,758:113-118.
    Bagchi A, Ghosh T C. Structural insight into the interactions of SoxV, SoxW and SoxS in the process of transport of reductants during sulfur oxidation by the novel global sulfur oxidation reaction cycle[J]. Biophysical Chemistry,2006b, 1197-13.
    Betlach M R, Tiedje J M. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification [J]. Applied and Environmental microbiology,1981,42(6):1074-1084.
    Bhambhani Y, Singh M. Physiological effects of hydrogen sulfide inhalation during exercise in healthy men [J]. Applied Physiology,1991,71:1872-1877.
    Borkenstein C G, Fischer U. Sulfide removal and elemental sulfur recycling from a sulfide-polluted medium by Allochromatium vinosum strain 21D[J]. International Microbiology,2006,9:253-258.
    Bruser T, Selmer T, Dahl C.'ADP sulfurylase'from Thiobacillus denitrificans is an adenylylsulfate:phosphate adenylyltransferase and belongs to a new family of nucleotidyltransferases[J]. Journal of Biological Chemistry,2000 275:1691-1698.
    Buisman C J N, Bert g, Ijspeert P, Lettinga G. Optimization of sulfur production in biotechnological sulfide-removing reactor[J]. Biotechnology and Bioengineering. 1990b,38:50-56.
    Buisman C J N, Ijspeert P, Lettinga G. Kenetic Parameters of a mixed culture oxidizing sulfide and sulfur with oxygen [J]. Biotechnology and Bioengineering, 1991,38:813.
    Buisman C J N, Lettinga G. Sulfide from anaerobic waste treatment effluent of a paper mill [J]. Water Research,1990a,24(3):313-319.
    Burgess J E, Parsons S A, Stuetz R M. Developments in odour control and waste gas treatment biotechnology:a review [J]. Biotechnology Advances,2001, 19:35-63.
    Camargo J A, Alonso A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems:A global assessment [J]. Environment International,2006,32(6):831-849.
    Campos JL, Carvalho S, Portela R A, et al. Kinetics of denitrification using sulphur compounds:Effects of S/N ratio, endogenous and exogenous compounds [J]. Bioresource Technology,2008,99(5):1293-1299.
    Charles A M, Suzuki I. Mechanism of thiosulfate oxidation by Thiobacillus novellus[J].Biochimica et Biophysica Acta,1966,128:510-521.
    Charles G, Jlann S. Denitrification kinetics of high nitrate concentration water:pH effect on inhibition and nitrite and accumulation [J]. Water Research,1998, 32(3):831-839.
    Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process:A review [J]. Bioresource Technology,2008,99(10):4044-4064.
    Cho K S, Hirai M, Shoda M. Degradation characteristics of hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide by Thiobacillus thioparus DW44 isolated from peat biofilter [J]. Journal of Fermentation and Bioengineering,1991,71:384-389.
    Cho K S, Hirai M, Shoda M. Degradation of Hydrogen Sulfide by Xanthomonas sp. Strain DY44 Isolated from Peat[J]. Applied and Environmental Microbiology, 1992,58(4):1183-1189.
    Chung Y C, Huang C, Tseng C P. Biodegradation of hydrogen sulfide by a laboratory-scale immobilized Pseudomonas putida CH11 biofilter[J]. Biotechnology Progress,1996,12:773-778.
    Cirne D G, van der Zee F P, Fernandez-Polanco M, et al. Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate[J]. Reviews in Environmental Science and Biotechnology, 2008,7(2):93-105
    Claus G, Kutzner H J. Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans [J]. Applied Microbiology and Biotechnology,1985, 22(4):283-288.
    Cline J D, Richards F A. Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature and pH[J]. Environmental Science Technology,1969,3: 838-843.
    Cohen Y, Jorgensen B B, Padan E, et al. Sulfide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica [J]. Nature,1975, 257:489-492.
    Cork D, Mather J, Maka A and Srnak A. Control of oxidative sulfur metabolism of Chlorobium limicola forma thiosulfatophilum[J]. Applied Environmental Microbioogy,1985,49:269-272.
    Cypionka H, Widdel F, Pfennig N. Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients [J]. FEMS Microbial Ecology,1985,31:39-45.
    Cytryn E, Minz D, Gelfand I, et al. Sulfide-Oxidizing Activity and Bacterial Community Structure in a Fluidized Bed Reactor from a Zero-Discharge Mariculture System[J]. Environmental Science Technolog,2005,39:1802-1810.
    Dapena-Mora A, Fernandez I, Campos J L, et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production [J]. Enzyme and Microibial Technology,2007,40(4):859-865.
    de Lomas J G, Corzo A, Gonzalez J M, et al. Nitrate Promotes Biological Oxidation of Sulfide in Wastewaters:Experiment at Plant-Scale [J]. Biotechnology and Bioengineering,2006,93(4):801-811.
    Dean J A. Lange's handbook of chemistry (15th ed)[M]. McGraw-Hill,1999.
    Diaz E E, Stams A J M, Amils R, et al. Phenotypic Properties and Microbial Diversity of Methanogenic Granules from a Full-Scale Upflow Anaerobic Sludge Bed Reactor Treating Brewery Wastewater [J]. Applied and Environmental microbiology,2006,72(7):4942-4949.
    Firer D, Friedler E, Lahav O. Control of sulfide in sewer systems by dosage of iron salts'.Comparison between theoretical and experimental results, and practical implications[J]. Science of the total environment,2008,392:145-156.
    Friedrich C G, Bardischewsky F, Rother D, et al. Prokaryotic sulfur oxidation [J]. Current Opinion in Microbiology,2005,8:253-259.
    Friedrich C G, Rother D, Bardischewsky F, et al. Oxidation of reduced inorganic sulfur compounds by bacteria:emergence of a common mechanism?[J] Applied Environmental Microbiology,2001,67:2873-2882.
    Friedrich C G.Physiology and genetics of bacterial sulfur oxidation[J]. Advances in microbial physiology,1998,39:236-289.
    Gadekar S, Nemati M, HillBatch G A. Continuous biooxidation of sulphide by Thiomicrospira sp. CVO:Reaction kinetics and stoichiometry[J]. Water Research,2006,40(12):2436-2446.
    Gevertz D, Telang A J, Voordouw G J, et al. Isolation and Characterization of Strains CVO and FWKO B, Two Novel Nitrate-Reducing, Sulfide-Oxidizing Bacterialsolated from Oil Field Brine[J]. Applied and Environmental Microbiology,2000,66(6):2491-2501.
    Ghosh W, Mandal S. Roy P. Paracoccus bengalensis sp. nov., a novel sulfur-oxidizing chemolithoautotroph from the rhizospheric soil of an Indian tropical leguminous plant[J]. Systematic and Applied Microbiology,2006,29(5):396-403.
    Glass C, Silverstein J, Oh J. Inhibition of denitrification in activated sludge by nitrite [J]. Water Environmental Research,1997,69(6):1086-1093.
    Gommers P J F. Simultaneous sulfide and acetate oxidation in a denitrifying fluidized bed reactor, I start up and reactor performance[J]. Water Research,1988a,22: 1075-1083.
    Gommers P J F. Simultaneous sulfide and acetate oxidation in a denitrifying fluidized bed reactor, Ⅱ measurements of activities and conversions[J]. Water Research, 1988b,22:1085-1092.
    Gonzalez-Sanchez A, Revah S. Biological sulfide removal under alkaline and aerobic conditions in a packed recycling reactor[J]. Water Science and Technology, 2009,59(7):1415-1421.
    Gonzalez-Sanchez A, Revah S. The effect of chemical oxidation on the biological sulfide oxidation by an alkaliphilic sulfoxidizing bacterial consortium [J]. Enzyme and Microbial Technology,2007,40:292-298.
    Gruber K, Sleytr U B. Influence of an S-layer on surface properties of Bacillus stearothermophilus[J]. Archives of Microbiology,1991,180:101-105.
    Henshaw P F, Bewtra J K, Biswas N. Hydrogen sulphide conversion to elemental sulphur in a suspended-growth continuous stirred tank reactor using Chlorobium limicola[J]. Water Research,1998,32 (6):1769-1778.
    Henshaw P F, Zhu W. Biological conversion of hydrogen sulphide to elemental sulphur in a fixed-film continuous flow photo-reactor [J]. Water Research, 2001,35(15):3605-3610.
    Holt J G, Gibbons N E. Bergeyps Mannual of Determinative Bacteriology(9th Edition)[M]. Baltimore:The williams and Wickins Company,1994
    Hurse J, Keller J. Performance of a substratum-irradiated photosynthetic biofilm reactor for the removal of sulfide from wastewater. Biotechnology and Bioengineering,2004,87:14-23.
    Inagaki F, Takai K, Nealson K H, et al. Sulfurovum lithotrophicum gen. nov. sp nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from Okinawa Trough hydrothermal sediments [J]. International Journal of Systematic and Evolutionary Microbiology,2004,54: 1477-1482
    Ito T, Sugita K, Okabe S. Isolation, Characterization, and In Situ Detection of a Novel Chemolithoautotrophic Sulfur-Oxidizing Bacterium in Wastewater Biofilms Growing under Microaerophilic Conditions[J]. Applied and Environmental microbiology,2004,70(5):3122-3129
    Janssen A J H, Lettinga G, de Keizer A. Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur Colloidal and interfacial aspects of biologically produced sulphur particles[J].
    Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999, 151:389-397.
    Jassen A J H, Ma S C, Lens P, et al. Performance of a sulfide oxidizing expended bed reactor supplied with dissolved oxygen[J]. Biotechnology Bioengineering, 1997,53:32-40.
    Jong G A H, Tang J A, PietBos, et al. Purification and characterization of a sulfite: cytochrome c oxidoreductase from Thiobacillus acidophilus[J]. Journal of Molecular Catalysis B:Enzymatic,2000,8:61-67.
    Jφrgensen B A. Thiosulfate shunt in the sulfur cycle of marine sediments [J]. Science, 1990,249(4965):152-154
    Justin P, Kelly D P. Growth kinetics of Thiobacillus denitrificans in anaerobic and aerobic chemostat culture[J]. Journal of General Microbiology,1978,94: 269-282.
    Kaksonen A H, Reikkola-Vanhanen M L, Puhakka J A. Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater[J]. Water Research,2003,37:255-66.
    Kappler U, Dahl C. Enzymology and molecular biology of prokaryotic sulfite oxidation [J]. FEMS Microbiology Letters,2001,203:129.
    Karline S, Andreas F H, Jack J M, et al.The effect of biogeochemical processes on pH [J]. Marine Chemistry,2007,105:30-51.
    Kelly D P, Shergill J K, Lu W-P, et al.Oxidative metabolism of inorganic sulfur compounds by bacteria[J]. Antonie van Leeuwenhoek,1997,71:95-107.
    Kelly D P. Biochemistry of the chemolithotrophic oxidation of inorganic sulphur[J]. Philosophical Transactions of the Royal Society B,1982,298:499-528.
    Kelly D P. Oxidation of sulphur compounds[J]. Soc. Gen. Microbiol. Symp.,1988, 42:65-98.
    Kelly D P. Physiology of the thiobacilli:elucidating the sulphur oxidation pathway[J]. Microbiological Sciences,1985,2:105-109.
    Khanal S K. Anaerobic Biotechnology for Bioenergy Production:principles and applications [M]. Iowa:Wiley-Blackwell,2008.
    Khanna P T, Rajkumar B, Jothikumar N. Microbial Recovery of Sulfur from Thiosulfate-Bearing Wastewater with Phototrophic and Sulfur-Reducing Bacteria [J]. Current Microbiology,1996,32:33-37.
    Kim B W, Chang H N. Removal of hydrogen sulfide by Chlorobium thiosulfatophilum in immobilized cell and sulfur settling free-cell recycle reactors[J]. Biotechnology Progress,1991,7:495-500.
    Kim J H, Rene E R, Park H S. Biological oxidation of hydrogen sulfide under steady and transient state conditions in an immobilized cell biofilter[J]. Bioresource Technology,2008,99(3):583-588
    Koenig A, Liu L H. Autotrophic denitrification of landfill leachate using elemental sulfur [J]. Water Science Technology,1996,34 (5-6):469-476.
    Koenig A, Liu L H. Kinetic model of autotrophic denitrification in sulfur packed-bed reactors [J]. Water Research,2001,35 (8):1969-1978.
    Koenig A, Liu L H. Use of limestone for pH control in autotrophic denitrification: continuous flow experiments in pilot-scale packed bed reactors [J]. Journal of Biotechnology,2002,99:161-171.
    Koenig A,刘玲花.脱氮硫杆菌处理垃圾填埋场渗滤污水的研究[J].环境科学,1997,18:51-54
    Kotronarou A and Hoffmann M. Catalytic Autoxidation of Hydrogen Sulfide in Wastewater[J]. Environmental Science and Techology,1991,25,1153-1160.
    Krishnakumar B, Majumdar S, Manilal V B, et al.Treatment of sulfide containing wastewater with sulfur recovery in a novel reverse fluidized loop reactor(RFLR)[J]. Water Research,2005,39:639-647.
    Krishnakumar B, Manilal V B. Bacterial oxidation of sulfide under denitrifying conditions[J]. Biotechnological Letter,1999,21:437-440
    Kruithof J C, van Bennekom C A, Dierx H A, et al.1988. Nitrate removal from groundwater by sulfur/limestone filtration [J]. Water Supply,6:207-217
    Kuenen J G. Microbial interactions among aerobic and anaerobic sulfur-oxidizing bacteria[J]. Advances in Micro Ecology,1985,8:1-60
    Larsen H. On the culture and general physiology of the green sulfur bacteria [J]. Journal of Bacteriology,1952.64:187-196.
    Lefebvre O, Vasudevan N, Thanasekaran K, et al. Microbial diversity in hypersaline
    wastewater:the example of tanneries [J]. Extremophiles,2006,10(6):505-513.
    Leitao R C, Adrianus C H, Zeemen G, et al. The effects of operational and environmental variations on anaerobic wastewater treatment systems:A review [J]. Bioresource Technology,2006,97:1105-1118.
    Lens P N L, Visser A, Janssen A J H,et al Biotechnological Treatment of Sulfate-Rich Wastewaters[J]. Critical Reviews in Environmental Science and Technology, 1998,28(1):41-88.
    Liamleam W. and Annachhatre A P. Electron donors for biological sulfate reduction[J]. Biotechnology Advances,2007,25:452-463
    Lipski A, Reichert K, Reuter B, et al. Identification of bacterial isolates from biofilters as Paracoccus alkenifer sp. nov. and Paracoccus solventivorans with emended description of Paracoccus solventivorans[J]. International Journal of Systematic Bacteriology,1998,48:529-536
    Lu W P, Kelly D P. Properties of the thiosulphate-oxidizing multi-enzyme system from Thiobacillus versutus[J]. Biochimica et Biophysica Acta,1984,765: 106-117.
    Lyric R M, Suzuki I. Enzymes involved in the metabolism of thiosulfate by Thiobacillus thioparus.3. Properties of thiosulfate-oxidizing enzyme and proposed pathway of thiosulfate oxidation[J]. Canadian Journal of Biochemistry, 1970,48 (3):334-343.
    Ma Y L, Zhao J L, Yang B L. Removal of H2S in waste gases by an activated carbon bioreactor[J]. International Biodeterioration and Biodegradation,2006,
    57:93-98
    Ma Y L, Yang B L, Zhao J L. Removal of H2S by Thiobacillus denitrificans immobilized on different matrices[J]. Bioresource Technology,2006,97 (16): 2041-2046.
    Madigan M T, Martinko J M. Brock Biology of Microorganisms(llth edition)[M]. Prentice Hall, Upper Saddle River, NJ,2006.
    Mahmood Q, Zheng P, Cai J, et al. Sources of Sulfide in waste streams and current biotechnologies for its removal[J]. Journal of Zhejiang University Science A, 2007,8(7):1126-1140
    Mahmood Q, Zheng P, Cai J, et al.Anoxic sulfide biooxidation using nitrite as electron acceptor [J]. Journal of Hazardous Materials,2007,147(1-2):249-256.
    Mahmood Q, Zheng P, Hayat Y, et al. Effect of pH on anoxic sulfide oxidizing reactor performance [J]. Bioresource Technology,2008,99(8):3291-3296.
    McCarty P L, Smith D P. Anaerobic wastewater treatment. Environmental Science Technology [J].1986,20(12):200-206.
    Metcalf E. Wastewater Engineering:Treatment Disposal and Reuse[M]. McGraw Hill; 2003.
    Moore P K, Bhatia M, Moochhala S. Hydrogen sulfide:from the smell of the past to the mediator of the future? [J]. Trends in Pharmacological Sciences,2003, 24(12):609-611
    Moriarty D J W, Nicholas D J D. Enzymic sulphide oxidation by Thiobacillus concretivorus [J]. Biochimica et Biophysica Acta,1969,184:114-123.
    Moriarty D J W, Nicholas D J D. Products of sulphide oxidation in extracts of Thiobacillus concretivorus[J]. Biochimica et Biophysica Acta,1970,197: 143-151.
    Murray R E, Parsons L L, Smith M S. Kinetics of nitrate utilization by mixed populations of denitrifying bacteria[J]. Applied and Environmental microbiology,1989,55(3):717-721.
    Nachaiyasit S, Stuckey D C. The effect of shock loads on the performance of an anaerobic baffled reactor (ABR).1. Step changes in feed concentration at constant retention time [J]. Water Research,1997a,31(11):2737-2746.
    Nachaiyasit S, Stuckey D C. The effect of shock loads on the performance of an anaerobic baffled reactor (ABR).2. Step and transient hydraulic shocks at constant feed strength [J]. Water Research,1997b,31(11):2747-2754.
    Nakada Y and Ohta Y. Purification and Properties of Hydrogen Sulfide Oxidase from Bacillus sp. BN53-1[J]. Journal of Bioscience and Bioengineering,1999, 87(4):452-455.
    Nathansohn A. Uber eine neue Gruppe von Schwfelbacterien und ihren Stoffwechsel[J]. Mitt. Zool. Stn Neapel,1902,15:655-680.
    Nevatalo L M, Makinen A E, Kaksonen A H, et al. Biological hydrogen sulfide production in an ethanol-lactate fed fluidized-bed bioreactor[J]. Bioresource Technology,2010,101(1):276-284
    Nielsen A H, Yongsiri C, Hvitved-Jacobsen T, et al. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks[J]. Water Science Technology. 2005b,52:201-208.
    Nielsen A H, Lens P, Vollertsen J, et al. Sulfide-iron interactions in domestic wastewater from a gravity sewer[J]. Water Research.2005a,39:2747-2755.
    Nielsen AH, Vollertsen J, Hvitved-Jacobsen T. Kinetics and stoichiometry of aerobic sulfide oxidation in wastewater from sewers-Effects of pH and temperature [J]. Water Environmental Research,2006,78(3):275-283
    Nielsen A, Vollertsen J, Hvitved-Jacobsen T. Determination of kinetics and stoichiometry of chemical sulfide oxidation in wastewater of sewer networks [J]. Environmental Science Technology,2003,37:3853-3858
    Noyola A, Morgan-Sagastume J, LOpez-Hernandez J E. Treatment of biogas produced in anaerobic reactors for domestic wastewater:odor control and energy/resource recovery [J]. Reviews in Environmental Science and Bio/Technology,2006,5:93-114.
    Oliva L C H V. Tratamento de esgotos sanitarios com reator anaerobio de manta de lodo (UASB) prototipo:desempenhoe respostas dinamicas as sobrecargas hidraulicas [D]. Sao Carlos:Universidade de Sao Paulo, EESC, USP,1997.
    Omil F, Mendez R and Lema J M. Anaerobic treatment of saline wastewaters under high sulphide and ammonia content[J]. Bioresource Technology.1995,54(3): 269-278.
    Peck H D, Deacon T E, Davidson J T. Studies on adenosine 5'-phosphosulfate reductase from Desulfovibrio desulfuricans and Thiobacillus thioparus[J]. Biochim. biophys. Acta,1965,96:429-446.
    Peck H D. Adenosine 5'-phosphosulfate as an intermediate in the oxidation of thiosulfate by Thiobacillus thioparus[J]. Proceedings of the National Academy of Sciences,1960,46:1053-1057.
    Percheron G, Michaud S, Bernet N, et al. Nitrate and nitrite teduction of a sulphide-rich environment [J]. Journal of Chemical Technology and Biotechnology,1998,72(3):213-220.
    Pokasoowan C, Kanitchaidecha W, Krishna KC B, et al. Investigation on laboratory and pilot-scale airlift sulfide oxidation reactor under varying sulfide loading rate[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering,2009,44(1):87-98.
    Prescott M L, Harley P J and Klein A D. Microbiology[M],5th edition. New York, NY:McGraw-Hill Companies.2003.
    Rahul B, Siram R, Edgar C C, et al. Conversion of hydrogen sulfide to elemental sulfur by chlorobium thiosulfatophilum in a CSTR with a sulfur-setting separator[J]. Applied Biochemistry and Biotechnology,1994,45/46:499.
    Ramirez M, Gomez J M, Aroca G, et al. Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam[J]. Bioresource Technology,2009,10(21):4989-4995
    Renato Carrha' Leitao. Robustness of UASB reactors treating sewage under trophical conditions [D]. Wageningen:Wageningen University,2004.
    Reyes-Avila J, Razo-Floresa E, Gomez J. Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification [J]. Water Research,2004,38 (14-15):3313-3321
    Robertson LA, Kuenen J G. The genus Thiobacillus, in:M. Dworkin, S. Falkow, E.Rosenberg, K. H. Schleifer, E. Stackebrandt (Eds.), The Prokaryotes[M]. vol.5,3rd ed., Springer, New York,2006, pp.812-827.
    Sahinkaya E, Gungor M, Bayrakdar A, et al. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide[J]. Journal of Hazardous Materials,2009,171(1-3):901-906.
    Santos J M, Lopes E S, Junior N C R, et al. Mathematical modelling of hydrogen sulphide emission and removal in aerobic biofilters comprising chemical oxidation [J]. Water Research,2009,43(14):3355-3364.
    Sanz J, Kochling T. Molecular biology techniques used in wastewater treatment:An overview[J]. Process Biochemistry,2007,42:119-133.
    Sarner E. Removal of sulphate and sulphite in an anaerobic trickling (ANTRIC) filter[J]. Water Science and technology,1990,22(1-2):395-404.
    Sayama M, Risgaard-Petersen N, Nielsen L P, et al.Impact of Bacterial NO3-Transport on Sediment Biogeochemistry[J]. Applied and Environmental Microbiology,2005,71(11):7575-7577.
    Schlegel H G. Mechanisms of chemo-autotrophy[M]. London:Wiley,1975.
    Schmidt J E, Ahring B R. Granular sludge Formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering,1996,49(3): 229-246
    Schulz H N, Jorgensen B B, Fossing H A, et al. Community structure of filamentous sheath-building sulfur bacteria Thioploca spp. off the coast of Chile[J]. Applied and Environmental Microbiology,1996,62:1855-1862
    Schutz M, Shahak Y, Padan E, et al. Sulfide-Quinone Reductase from Rhodobacter capsulatus[J]. Journal of Biological Chemistry,1997,272 (5):9890-9894.
    Shahak Y, Klughammer C, Schreiber U, et al. Sulfide-quinone and sulfide-cytochrome reduction in Rhodobacter capsulatus[J]. Photosynthesis Research,1994, 39:175-181.
    Sheintuch M, Tartakovsky B, Narkis N, et al. Substrate inhibition and multiple states in a continuous nitrification process [J]. Water Research,1995,29(3):953-963.
    Silver M, Lundfren D G. Sulfur-oxidizing enzyme of Thiobacillus ferrooxidans[J]. Canadian journal of biochemistry,1968,46:457-461.
    Smet E, Lens P, Van Langenhove H. Treatment of waste gases contaminated with odorous sulfur compounds[J]. Critical Reviews in Environmental Science and technology,1998,8(1):89-117
    Sorensen J, Rasmussen L K, Koike I. Micromolar sulfide concentrations alleviate acetylene blockage of nitrous oxide reduction by denitrifying Pseudomonas
    jluorescens[J]. Canadian Journal of Microbiology,1987,33:1001-1005.
    Stefess G C, J Yebeb J G. Factors influencing elemental sulfur production from sulfide or thiosulfate by autotrophic thiobacilli[J]. Forum Microbiology,1989,12: 92-101.
    Strous M, Kunen J G, Jetten M S M. Key physiology of anaerobic ammonium oxidation [J]. Applied and Environmental Microbiology,1999,65:3248-3250.
    Sugio T, Katagiri T, Inagaki K, et al.Actual substrate for elemental sulfur oxidation by sulfur:ferric ion oxidoreductase purified from Thiobacillus ferrooxidans[J]. Biochimica et Biophysica Acta,1989,973:250-256.
    Sugio T, Mizunashi W, Inagaki K, et al. Purification and some properties of sulfur:ferric ion oxidoreductase from Thiobacillus ferrooxidans[J]. Journal of Bacteriology,1987,169(11):4916-4922.
    Surmacz-Gorska J, Gernaey K, Demuynck C, et al.Nitrificaiton monitoring in activated sludge by oxygen uptake rate(OUR) measurements [J]. Water Research,1996,30(5):1228-1236.
    Suzuki I, Silver M. The initial product and properties of the sulfur-oxidizing enzyme of thiobacillus[J]. Biochimica et Biophysica Acta,1966,122 (1):22-33.
    Suzuki I. Incorporation of atmospheric oxygen-18 into thiosulfate by the sulfur-oxidizing enzyme of Thiobacillus thiooxidans[J]. Biochimica et Biophysica Acta,1965b,110 (1):97-101.
    Suzuki I. Oxidation of elemental sulfur by an enzyme system of Thiobacillus thiooxidans[J]. Biochimica et Biophysica Acta,1965a,104(2):359-371.
    Syed M A, Henshaw P F. Light emitting diodes and an infrared bulb as light sources of a fixed-film tubular photobioreactor for conversion of hydrogen sulfide to elemental sulfur[J]. Journal of Chemical Technology & Biotechnology,2005, 80:119-123.
    Syed M, Soreanu G, Falletta P, et al. Removal of hydrogen sulfide from gas streams using biological processes-A review[J]. Canadian Biosystems Engineering, 2006,48:1-14.
    Syed M A and Henshaw P F. Effect of tube size on performance of a fixed-film tubular bioreactor for conversion of hydrogen sulfide to elemental sulfur[J]. Water Research,2003,37(8):1932-1938.
    Tait S, Clarke W P, Keller J, et al. Removal of sulfate from high-strength wastewater by crystallisation. Water Research,2009,43(3):762-772.
    Tang K, Baskaran V, Nemati M. Bacteria of the sulphur cycle:An overview of microbiology, biokinetics and their role in petroleum and mining industries[J]. Biochemical Engineering Journal,2009,44(1):73-94.
    Toghrol F, Southerland W M. Purification of Thiobacillus novellus sulfite oxidase: Evidence for the presence of heme and molybdenum[J]. Journal of Biological Chemistry,1983,258:6762-6766.
    Trouve C, Chazal P M, Gueroux B, et al. Denitrification by new strains of Thiobacillus denitrificans under non-standard conditions:Effect of temperature,
    pH and sulphur source [J]. Environmental Technology,1998,9:601-610.
    Tsai Y, Juang R, Lin S. Production and further characterization of an alkaline elastase produced by alkalophilic Bacillus strain Ya-B[J]. Applied and Environmental Microbiology,2001,54 (12):3156-3161.
    US Environmental Protection Agency, Process Design Manual for Sulfide Control in Sanitary Sewerage Systems. US Environmental Protection Agency Technology Transfer Office, Washington, DC EPA-625/1-74-005.1974.
    US Environmental Protection Agency, Hydrogen sulphide corrosion in wastewater collection and treatment system. Technical Report,430/09-91-010.1991.
    Van Niel C B. On the morphology and physiology of the purple and green sulfur bacteria[J]. Archiv fur Mikrobiologie,1931.3:1-112.
    Vannini C, Munz G, Mori G, et al. Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification[J]. Water Research,2005,39: 4101-4109.
    Vannini C, Munz G, Mori G, et al. Sulphide oxidation to elemental sulphur in a membrane bioreactor:Performance and characterization of the selected microbial sulphur-oxidizing community[J]. Systematic and Applied Microbiology,2008, 31:461-473.
    Vishniac W, Santer M. The thiobacilli[J]. Bacteriol Review,1957,21:195-213.
    Visser J M, Govardus A H, Robertson L A, et al. A novel membrane-bound flavocytochrome c sulfide dehydrogenase from the colourless sulfur bacterium Thiobacillus sp. W5[J]. Archives of Microbiology,1997,167:295-301.
    Warounsak L, Ajit P. Electron donors for biological sulfate reduction [J]. Annachhatre Biotechnology Advances,2007,25(5):452-463
    Wodara C, Bardischewsky F, Friedrich C G. Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes and a flavoprotein of Paracoccus denitrificans GB17:essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation[J]. Journal of Bacteriology,1997,179:5014-5023.
    Xing I, Criddle C, Hickey R. Effects of a long-term periodic substrate perturbation on an anaerobic community [J]. Water Research,1997,31(9):2195-2204.
    Xiushan Y, Garuti G, Tilche A. Denitrification with Thiobacillus denitrificans in the ANANOX process[J]. Biotechnology Letters,1993,15 (5):531-536
    Yoshie S, Makino H, Hirosawa H, et al. Molecular analysis of halophilic bacterial community for high-rate denitrification of saline industrial wastewater[J]. Applied Microbiology and Biotechnology,2006,72:182-189
    Zhang L, De Schryver P, De Gusseme B, et al. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems:A review [J]. Water Research,2008,42:1-12
    Zhang L H, Schryver P, Gusseme B, et al. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems:A review [J]. Water Research,2008,42(1-2):1-12.
    Zhang L, De Schryver P, De Gusseme B, et al. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems:A review[J]. Water Research,2008,42(1-2):1-12.
    Zhang ZY, Lei Z F, He X Y, et al. Nitrate removal by Thiobacillus denitrificans immobilized on poly(vinyl alcohol) carriers[J]. Journal of Hazardous Materials, 2009,163(2-3):1090-1095
    陈凤冈,李伟光,潘桂珉等.缺氧—好氧生物膜法脱氮技术的研究[J].中国环境科学,1995,15(2):135-138.
    陈会娟.猪场废水脱氮与沼气脱硫的耦联工艺研究[D].成都:农业部沼气科学研究所,2008.
    邓良伟,唐一,吴彦.生物脱硫机理及其研究进展[J].上海环境科学,1998,5:35-39.
    东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    多伊尔,H W[澳].细菌的新陈代谢[M].北京:科学出版社,1983.
    范彬,曲久辉,刘锁祥等.饮用水中硝酸盐的脱除[J].环境污染治理技术与设备,2000,1(3):44-50.
    郭晓磊,胡勇有,高孔荣.厌氧颗粒污泥及其形成机理[J].给水排水,2000,26(1):33-38.
    国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    郝晓地,戴吉,魏丽.生物除硫理论与技术研究进展[J].生态环境,2006,15(4):844-853.
    贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.
    胡纪萃.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003.
    金仁村,胡宝兰,郑平,等.厌氧氨氧化反应器性能的稳定性及其判据[J].化工学报,2006,57(5),1166-1170.
    金仁村,郑平,黄可谈等.环境和水质条件冲击下厌氧生物反应器的稳定性研究进展[J].现代化工,2006,26(5):13-17.
    李巍,赵庆良,刘颢等.兼养同步脱硫反硝化工艺及影响因素[J].中国环境科学,2008,28(4):345-349.
    李亚新,储江林,池勇志.无色硫细菌氧化SRB还原硫酸盐产物硫化氢生成单质硫[J].城市环境与城市生态,2002,15(5):4-7.
    刘永红,贺延龄,李耀中.UASB反应器中颗粒污泥的沉降性能与终端沉降速度[J].环境科学学报,2005,25(2):176-179.
    闵航.厌氧微生物学[M].杭州,浙江大学出版社,1989.
    缪应祺.废水生物脱硫机理及技术[M].北京:化学工程出版社,2004.
    南京大学无机及分析化学编写组.无机及分析化学[M].北京:高等教育出版社,2001.
    邱广亮.微生物法脱除工业烟气二氧化硫的研究[D].河北:天津大学应用化学系,2006.
    沈耀良,王宝贞.废水生物处理新技术:理论与应用[M].北京:环境科学出版社,1999:215-217.
    陶涛,詹德昊,卢秀青等.味精废水治理的现状及进展[J].环境污染治理技术与设
    备.2002,3(1):68-73.
    陶天申,杨瑞馥,东秀珠.原核生物系统学[M].北京:化学工业出版社,2007:282.
    涂保华,张洁,张雁秋.对厌氧消化中硫化氢毒性的控制[J].污染防治技术,2003,6(4):57-59.
    王爱杰,杜大仲,任南琪.脱氮硫杆菌同步脱硫反硝化技术的关键因素研究[J].地球科学进展,2004,19:533-536.
    王白杨.废水生物处理脱氮原理与新工艺[J].江西师范大学学报(自然科学版),2006,30(4):399-403.
    王凯军,秦人伟.发酵工业废水处理[M].北京:化学工业出版社,2000.
    王凯军,左剑恶,甘海南等.UASB工艺的理论与工程实践[M].中国环境科学出版社,2000.
    王凯雄.水化学[M].北京:化学工业出版社,2001.
    王忠魁.硫化氢脱氢酶的分离纯化及性质研究[D].内蒙古:内蒙古师范大学植物系,2007.
    徐海岩,颜望明.无机硫化合物的微生物氧化[J].微生物学通报,1994,21(3):167-171.
    杨旭鹏,关晓彤,于大伟等.吹脱法含油废水脱硫的实验研究[J].辽宁化工2007,36(6):361-365.
    姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006.
    张成桂,夏金兰,王晶等.嗜酸硫杆菌属硫氧化系统研究进展[J].生物技术通报.2007,1:59-65.
    章非娟.生物脱氮技术[M].北京:环境科学出版社,1992:17-30.
    张克强.含硫化物(H2S,S2-,HS-)废水电凝聚与生物处理的技术研究[D].天津:天津大学,2004.
    郑平,冯孝善.废物生物处理[M].北京:高等教育出版社.2006.
    郑平,环境微生物学[M].杭州:浙江大学出版社.2001
    郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社.2004.
    郑平.环境微生物学实验指导[M].浙江:浙江大学出版社.2005.
    左剑恶,袁琳,胡纪萃等.利用无色硫细菌氧化废水中硫化物的研究[J].环境科学,1995,16(6):7-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700