混凝絮体破碎再絮凝机理研究及对超滤膜污染的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝是给水处理中的核心单元,而混凝机理一直还存在着较多的争议。一般来讲,混凝包括两个阶段:投加混凝剂后的快速混合阶段,以及絮体逐渐形成增大的慢速絮凝阶段。由于混凝构筑物中各处流场的速度梯度分布不均匀,导致了絮体在构筑物中发生破碎,而破碎后的絮体也会发生再絮凝。此外,在一定的搅拌强度下,絮体的破碎和絮凝过程同时存在,最终会达到一个稳定的动态平衡。因此,混凝工艺中絮体的絮凝、破碎以及再絮凝过程,逐渐成为了近年来研究混凝机理的热点领域。
     常规水解混凝剂的混凝机理主要是电中和作用和网捕卷扫作用,而在实际给水处理中(pH值为7左右),网捕卷扫作用占主导机理。本文主要针对网捕卷扫作用为主的混凝过程中,通过研究絮体破碎再絮凝过程,来探讨水中的微小絮体依靠什么作用、以怎样的方式粘结在一起,以及什么因素决定了最终平衡状态下絮体的尺寸和形态。研究中主要采用了透光率脉动检测仪(PDA-2000)和CCD摄像技术对絮体进行监测和分析,探讨了高岭土和腐殖酸絮体的絮凝、破碎和再絮凝过程,从以下几个方面逐步揭示了微小絮体粘结聚集的过程和规律,该研究结果具有工程应用的价值和潜力。
     在不同混凝剂投量、不同混凝机理作用下,研究了絮体破碎再絮凝过程的主要影响因素,考察了不同影响因素下絮体的变化特征。研究发现:在以高岭土为悬浮颗粒物的原水中,电中和条件下硫酸铝絮体破碎后能够完全恢复,并且与破碎强度无关;而在网捕卷扫条件下,破碎后的絮体只能部分程度得到恢复,而破碎前和再絮凝后的絮体电泳迁移率(或zeta电位)并不会发生变化。此外,考察了不同混凝剂种类(包括铝盐和高分子电解质)、温度和初始颗粒大小、絮凝时间和腐殖酸浓度、破碎强度以及搅拌条件对絮体破碎再絮凝过程的影响。
     针对网捕卷扫条件的普遍性及该机理条件下絮体难以完全恢复的情况,考察了再次投加少量硫酸铝混凝剂对破碎絮体再絮凝的影响。在不同混凝机理主导下,通过等电点(电泳迁移率接近于零)确定了硫酸铝的最佳投量。研究发现:当pH值为5的电中和条件下,再次投加少量硫酸铝会导致颗粒再稳,反而降低了破碎絮体的再絮凝能力;而当pH值为7的网捕卷扫条件下,再次投加少量硫酸铝能够显著提高絮体的再絮凝能力,使再絮凝后的絮体尺寸完全恢复到破碎前的水平。在网捕卷扫条件下,为了进一步研究再次投加硫酸铝的作用机理,将一分钟破碎时间延长至十分钟,发现了在长时间破碎的初期再次投加硫酸铝时,再絮凝能力提高不明显;而在长时间破碎快结束时再次投加硫酸铝,破碎絮体能够完全恢复。这说明硫酸铝新析出物的效力,会在其暴露于高剪切速率下的几分钟后消失。由此证明,在絮体破碎再絮凝过程中,是絮体的表面活性,而非絮体的带电性质(表现为电泳迁移率)决定了絮体的恢复能力。通过比较再次投加氯化铝(AlCl_3)和聚合氯化铝(PACl_(25))后发现,AlCl_3能够促进破碎絮体的完全恢复,而PACl_(25)并不能提高破碎絮体的再絮凝能力。利用试铁灵试剂(Ferron)研究后发现,很可能是由于AlCl_3析出物表面存在单体水解产物(Al_a),使微絮体之间能够相互粘结聚集;而对于PACl_(25),其多核水解产物(Al_b)转化成了其它稳定的物质,再次投加并不能促进破碎絮体的再絮凝。上述结果得出了本论文的核心观点:在网捕卷扫条件下,絮凝及再絮凝过程取决于絮体表面的Al_a。
     研究了AlCl_3和PACl_(25)水解产物的表面特性对水中颗粒物高岭土的吸附作用。pH值为7时,投加AlCl_3后无定形氢氧化铝析出,由于表面Al_a的存在使析出物粘结聚集而逐渐长大。随后加入的高岭土颗粒主要吸附在了AlCl_3析出物的表面,而析出物内部的颗粒很少。然而,PACl_(25)的水解产物在水中较稳定,并不会发生粘结聚集,随着高岭土颗粒的投加,由于颗粒失稳而相互吸引,聚集形成了较大的絮体,因此絮体各部分(包括内部)颗粒均匀分布。由此可知,AlCl_3析出物具有粘结能力,而PACl_(25)则不具有这样的能力。这个研究结果可用于混凝絮体(污泥)的回流再利用。将絮体破碎后可增大其比表面积,可以促进对颗粒物的吸附,然后通过再次投加少量硫酸铝,不仅可以进一步吸附颗粒物,而且能够将破碎后的絮体粘结,最终形成较大的絮体。
     研究了絮体的特性对混凝-超滤组合工艺中膜污染的影响。虽然絮体破碎再絮凝后的平均尺寸比常规混凝的絮体要小,但其分形维数比常规混凝的絮体要低,并且小絮体数目减少,从而减缓了膜污染的速度。另外,研究还发现慢速搅拌的絮凝过程并没有增加对水中高岭土和腐殖酸等物质的去除,而一分钟的快速混合足以完成对污染物的去除作用。快速混合后形成的絮体其分形维数较低,结构较松散,因此吸附在膜表面上形成的滤饼层孔隙度较高,同时絮体还具有较高的表面活性,对小颗粒的吸附能力较强,从而降低了跨膜压差的增长速度。研究还发现了高锰酸钾(KMnO_4)预氧化助凝时,硫酸铝絮体破碎再絮凝后的分形维数比单独投加硫酸铝的絮体要低,因此能够起到缓解膜污染的作用。
Coagulation is one of the most important processes in drinking water treatment. Up to now, however, there are still something unclear in the mechanism of coagulation. Generally speaking, coagulation process is consisted of two parts: rapid mixing and slow flocculation. It is inevitable that floc breakage and re-growth will occur due to the asymmetry of liquid field in coagulation reactors. Moreover, at a certain mixing speed, floc breakage and floc growth happen in the same time to obtain a dynamic balance. Therefore, it becomes a new research area to investigate the process and mechanism of floc growth, breakage and re-growth.
     Charge neutralization and sweep coagulation are main coagulation mechanisms of traditional hydrolyzed coagulant, and sweep coagulation dominates the coagulation mechanism in practical water treatment process (pH 7). Under the condition of sweep coagulation mechanism, formation, breakage and re-growth of flocs were investigated using alum or other coagulants to explore the reversibility of floc breakage. The objective of this study is to better understand how micro-flocs grow to become big flocs, as well as the key factors which determine the size and structure of flocs in the end. The flocs were continuously measured by Photometric Dispersion Analyzer (PDA) and CCD camera. Some research was carried out to explore the intrinsic principle of micro-floc connection and the significant finding had important practical consequences. This dissertation mainly included the following parts.
     At first, at different coagulant dosages and mechanisms, the aspects influencing floc breakage and re-growth were investigated to obtain more useful information of flocs characteristics. In charge neutralization, there is dramatically reversibility of broken flocs, which is no relationship with the breakage applied shear. While in sweep coagulation, the broken process was dramatically irreversible, and it did not attribute to electrophoretic mobility. In this part, some factors including coagulant species (alum and polymer polyDADMAC), temperature and primary particle size, flocculation time and humic acid concentration, breakage intensity and mixing conditon were also discussed to better understand the process of floc breakage and re-growth.
     A second low dosage of coagulant, added half way through the floc breakage period caused significantly different effects on the broken flocs for pH 5 and pH 7, even though the initial electrophoretic mobility was close to zero in both cases. At pH 5 a second low alum dosage reduced the re-growth ability of broken flocs, probably because of adsorption of excess cationic species, giving charge reversal and restabilization of broken flocs. By contrast, a second alum dosage at pH 7 greatly enhanced floc re-growth, such that the re-grown flocs could be larger than those before breakage. It is likely that this effect is caused by the adsorption of freshly precipitated hydroxide on the surface of broken flocs, giving improved adhesion. With an extended floc breakage time, the time of addition of the second coagulant dosage had a very large effect. When added shortly after the start of floc breakage, the additional dosage gave only slightly improved floc re-growth, but when added close to the end of the breakage period complete re-growth of broken flocs occurred. The implication is that the beneficial effect of new precipitate is lost after some minutes of exposure to high shear. It seems that the nature of this‘surface activation’is the most important factor influencing the re-growth of flocs. Comparing AlCl_3 with PACl_(25), additional dosage of AlCl_3 significantly improve the re-growth ability of broken floc, and the size of re-grown flocs is the same as or even higher than that before breakage. While for PACl_(25), it will not change the re-growth ability of broken flocs. The re-growth ability of broken flocs is significantly correlated with the species of Al_a and Al_b, which is distinguished by ferron assay. The most important conclusion was made that Al_a on the surface of flocs was the material which can improve the floc re-growth when sweep coagulation dominated the coagulation mechanism.
     The effect of surface characteristic of different hydrolyzed product (precipitate) on particles adsorbing was also investigated. Kaolin particles were adsorbed on the surface of but not within the precipitate of AlCl_3. While for PACl_(25), the precipitate was stable, and the flocs were as same as the one formed in normal coagulation. The surface area of AlCl_3 flocs increased when they were broken, which increased the adsorption ability of kaolin particles. Additional dosage of alum can dramatically improve the adsorption of kaolin particles on the surface of precipitate, and induce the adhesion of precipitate with each other. Hence, if floc sludge is reused, alum should be added to improve the removal of contaminants and floc re-growth.
     The surface characteristic of floc has an effect on membrane fouling in the coagulation-ultrafiltration hybrid process. Though the average size of flocs after breakage and re-growth was smaller than that without breakage, the fractal dimension of flocs after breakage and re-growth was much lower than that without breakage. Comparing with traditional coagulation process, the development of TMP decreased in breakage and re-growth coagulation process. Flocculation process (about 15 minutes) will not remove any more contaminants than rapid mixing process (about 1 min). The result showed that 1 min is enough for removing particles and organic matter in water and flocculation process may cause higher trans-membrane pressure. Because the flocs formed after only 1 min had lower fractal dimension and looser structure, and there was more pores in the cake layer on the membrane surface and the surface of flocs was more actived. The increase of trans-membrane pressure of KMnO_4 (pre-oxidation) coagulation-ultrafiltration (KCUF) is lower than that without pre-oxidation (CUF), because of the bigger size and lower fractal dimension of flocs. Although assimilable organic carbon (AOC) was increased by permanganate treatment, the AOC of the permeation from KCUF was nearly the same as that from CUF, showing that the cake layer on the surface of KCUF membrane could adsorb small molecules more effectively than that of CUF.
引文
1 K. McCurdy, K. Carlson, D. Gregory. Flocs morphology and cyclic shearing recovery: comparison of alum and polyaluminum chloride coagulants. Water Res. 2004, 38: 486-494.
    2 P. Jarvis, B. Jefferson, J. Gregory, S.A. Parsons. A review of floc strength and breakage. Water Research. 2005, 39: 3121–3137
    3 D.S.Parker, W.J.Kaufman, D.Jenkins. Floc breakup in turbulent flocculation processes. J. Sanit. Eng. Div.: Proc. Am. Soc. Civ. Eng. SA1, 1972, 79-99.
    4 R.J. Francois. Strength of aluminium hydroxide flocs. Water Res. 1987, 21: 1023-1030.
    5 A.K.C.Yeung, R. Pelton. Micromechanics: a new approach to studying the strength and breakup of flocs. J. Colloid Interface Sci. 1996, 184: 579-585.
    6 Mikkelsen, L.H., Keiding, K., 2002. The shear sensitivity of activated sludge: an evaluation of the possibility for a standardised floc strength test. Water Res. 36: 2931-2940.
    7 P. Jarvis, B.Jefferson, S.A. Parsons. Breakage, re-growth, and fractal nature of natural organic matter flocs. Environ. Sci. Technol. 2005, 39: 2307-2312
    8 P. Jarvis, B.Jefferson, S.A. Parsons. How the Natural Organic Matter to Coagulant Ratio Impacts on Floc Structural Properties. Environ. Sci. Technol. 2005, 39: 8919-8924
    9 P. Jarvis, B.Jefferson, S.A. Parsons. Floc structural characteristics using conventional coagulation for a high doc, low alkalinity surface water source. Water Res. 2006, 40: 2727-2731.
    10 Y.Wang, B.Gao, X.Xu, W.Xu, G. Xu. Characterization of floc size, strength and structure in various aluminum coagulants treatment Journal of Colloid and Interface Science. 2009, 332: 354-359
    11 R.K. Chakraborti, K.H.Gardner, J.F. Atkinson, J.E.Benschoten. Changes in fractal dimension during aggregation. Water Res. 2003, 37: 873-883
    12 M. Boller, S. Blaser. Particles under stress. Water Sci. Technol. 1998, 37 (10): 9-29
    13吴珍,张盼月,曾光明,高英,肖辉煌,周凡.不同铝形态去除水中腐殖酸的混凝特性.环境科学. 2008, 29(7): 1903-1907
    14赵建海,刘夕清,刘连生.混凝过程絮体开始形成和开始沉降时问研究.环境污染与防治. 2009, 3l(7): 62-65
    15钱玉山,王瑛,龚云峰.混凝pH对水中溶解态有机物去除影响研究.能源环境保护. 2009, 23(1): 38-40
    16 J. Duan, J. Gregory. Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science. 2003, 100-102: 475-502
    17 H. Stechemesser, B. Dobias, Coagulation and Flocculation, Second edition, Taylor & Francis[M], 2005, 28-35.
    18 B. Gao, Y. Chu, Q. Yue, B. Wang, S. Wang Characterization and coagulation of a polyaluminum chloride (PAC) Journal of Environmental Management 2005, 76: 143-147
    19 X Wu, X. Ge, D. Wang, H. Tang. Distinct coagulation mechanism and model between alum and high Al13-PACl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 305(1-3): 89-96
    20 J. E. Gregor, C. J.Nokes, E. Fenton. Optimising natural organic matter removal from low turbidity waters by controlled pH adjustment of aluminium coagulation. Water Res. 1997, 31: 2949-2958.
    21 J. Duan, J. Gregory. Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science, 2003, 100–102: 475-502
    22 H. Liu, C. Hu, H. Zhao, J. Qu Coagulation of humic acid by PACl with high content of Al13: The role of aluminum speciation. Separation and Purification Technology, 2009, 70(2): 225-230
    23刘红,王东升,吕春华,鲁毅强,汤鸿霄. Al13去除水中腐殖酸的混凝作用机理.环境化学, 2005, 24(2): 121-124
    24 D. H. Li, J. J. Granczarcyk, Application of image analysis system for study of actived sludge flocs, Water Pollut. Res. J. Can. 1986, 21(1): 130-140
    25 I. G. Droppo, E. D. Ongley. Floculation of suspended solids in southern Ontario rivers, IAHS Publ., 1989, 184(Sediment Environ.): 95-103.
    26 D. K. W. Smith, J. A. Kitchener. The strength of aggregates formed in flocculation, Chem, Eng.Sci. 1978, 33(12): 1631-1636.
    27 G. D. Reed, and P. C. Mery. Inflence of floc size distribution on clarification, J. Am. Water Works Assoc. 1986, 78(8): 75-80.
    28 P.T. Spicer, S.E. Pratsinis. Shear-induced flocculation: the evolution of flocstructure and the shape of the size distribution at steady state. Water Res. 1996,
    30(5): 1049-1056.
    29 M. Stone, B.G. Krishnappan. Floc morphology and size distributions of cohesive sediment in steady-state flow. Water Res. 2003, 37: 2739-2747
    30 J.Yu, D.Wang, X. Ge, M.Yan, M. Yang. Flocculation of kaolin particles by two typical polyelectrolytes: A comparative study on the kinetics and floc structures Colloids and Surfaces A: Physicochem. Eng. Aspects. 2006, 290: 288-294
    31 A. Thill, S. Moustier, J. Aziz, M. R. Wiesner, J. Y. Bottero. Flocs Restructuring during Aggregation: Experimental Evidence and Numerical Simulation Journal of Colloid and Interface Science. 2001, 243: 171-182
    32 S.-H.Kim, B.-H.Moon, H.-I. Lee. Effects of pH and dosage on pollutant removal and floc structure during coagulation. Microchemical Journal. 2001, 68: 197-203
    33 T. Li, Z. Zhu, D. Wang, C. Yao, H. Tang. Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technology, 2006, 168(2): 104-110
    34 J.-L. Lin, C.-J. M.Chin, C. Huang, J. R. Pan, D.Wang. Coagulation behavior of Al13 aggregates. Water Res. 2008, 42: 4281-4290
    35 J.-L. Lin, C. Huang, C.-J. M. Chin., J. R. Pan. Coagulation dynamics of fractal flocs induced by enmeshment and electrostatic patch mechanisms. Water Res. 2008, 42: 4457-4466
    36 V. Oles. Shear-induced aggregation and breakup of polystyrene latex particles. Colloid Interface Sci. 1992, 154: 351-358
    37王广华,王晓昌,金鹏康. PAC为混凝剂时高岭土悬浊液的混凝条件及絮凝体形态学特征.给水排水. 2007, 33(11), 143-145
    38 . S. J. Jung, R. Amal, J. A. Raper. Monitoring effects of shearing on floc structure using small-angle light scattering. Powder Technology, 1996, 88(1): 51-54
    39 X. Zhan, B. Gao, Q. Yue, Y. Wang, Q. Wang. Coagulation efficiency of polyaluminum chloride for natural organic matter removal from low specific UV absorbance surface water and the subsequent effects on chlorine decay. Chemical Engineering Journal, 2010, 161(1-2): 60-67
    40 L. Gmachowski. Mechanism of shear aggregation. Water Research. 1995, 29(8): 1815-1820
    41 K. A. Kusters, J. G. Wijers, D Thoenes. Aggregation kinetics of small particles in agitated vessels. Chemical Engineering Science. 1997, 52(1): 107-121
    42 M. Tirado-Miranda, A. Schmitt, J. Callejas-Fernandez, A. Fernandez-Barbero. Colloidal Clusters with Finite Binding Energies: Fractal Structure and Growth Mechanism. Langmuir 1999, 15:3437-3444
    43 S. A.Lee, A. G. Fane, T. D. Waite. Impact of natural organic matter on floc size and structure effects in membrane filtration. Environ. Sci. Technol. 2005, 39: 6477-6486.
    44 Y. H.Choi, H. S.Kim, J. H. Kweon. Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane processes Separation and Purification Technology. 2008, 62: 531-536
    45 L.Ehrl, M.Soos, M.Morbidelli. Dependence of Aggregate Strength, Structure, and Light Scattering Properties on Primary Particle Size under Turbulent Conditions in Stirred Tank. Langmuir. 2008, 24: 3070-3081.
    46 F. Sekiou, A. Kellil. Effect of organic and mineral matters on kinetic and performance of flocculation Desalination. 2009, 249(2): 891-894
    47 F. Xiao, X. Zhang, J. Ma. Indecisiveness of electrophoretic mobility determination in evaluating Fe(III) coagulation performance. Separation and Purification Technology. 2009, 68: 273-278
    48 F. Xiao, X. Zhang, C. Lee. Is electrophoretic mobility determination meaningful for aluminum(III) coagulation of kaolinite suspension? Journal of Colloid and Interface Science. 2008, 327: 348-353
    49 A. Amirtharajah, C.R. O’Melia. Coagulation processes: destabilization, mixing, and flocculation. In: Water quality and treatment. New York: McGraw-Hill, 1990
    50 C.R. O’Melia. Coagulation and sedimentation in lakes, reservoirs and water treatment plants. Water Sci Technol. 1998, 37(2): 129-135
    51 M.R. Wiesner. Kinetics of aggregate formation in rapid mix. Water Res 1992, 26(3): 379-87
    52 A.T. Hanson, J.L. Cleasby. The effect of temperature on turbulent flocculation: fluid dynamics and chemistry. J. Am. Water Works Assoc. 1990, 82(11):, 56-73
    53 F. Xiao, J. Ma, P. Yi, J.-C. H. Huang. Effects of low temperature on coagulation of kaolinite Suspensions Water Research, 2008. 42: 2983-2992
    54 F. Xiao, J.-C H. Huang, B. Zhang, C. Cui. Effects of low temperature oncoagulation kinetics and floc surface morphology using alum. Desalination, 2009, 237(1-3): 201-213
    55张忠国,栾兆坤,赵颖,崔建华,陈朝阳,李燕中.聚合氯化铝(PACl)混凝絮体的破碎与恢复.环境科学. 2007, 28(2): 346-351
    56 M. A.Yukselen, J.Gregory. The effect of rapid mixing on the break-up and re-formation of flocs. Journal of Chemical Technology and Biotechnology. 2004, 79: 782–788
    57 M. A. Yukselen, J. Gregory. The reversibility of flocs breakage. Int. J. Miner. Process. 2004, 73: 251-259
    58 T. Li, Z. Zhu, D.Wang, C. Yao, H. Tang. The strength and fractal dimension characteristics of alum-kaolin flocs. Int. J. Miner. Process. 2007, 82: 23-29
    59 M. Hermawan, G.C.Bushell, V. S. J. Craig, W. Y. Teoh, Amal R. Floc Strength Characterization Technique. An Insight into Silica Aggregation. Langmuir, 2004, 20 (15): 6450-6456.
    60 I. Solomentseva, S. Barany, J. Gregory. The effect of mixing on stability and break-up of aggregates formed from aluminum sulfate hydrolysis products. Colloids and Surfaces A: Physicochem. Eng. Aspects 2007, 298: 34-41
    61 Z. Zhu, T. Li, J. Lu, D. Wang, C. Yao. Characterization of kaolin flocs formed by polyacrylamide as flocculation aids. International Journal of Mineral Processing. 2009, 91(3-4): 94-99
    62 W. Xu, B. Gao, Q. Yue, Y. Wang. Effect of Shear Force and Solution pH on Flocs Breakage and Re-growth formed by Nano-Al13 polymer. Water Res. 2010, 44(6): 1893-1899
    63 P. Jarvis,B. Jefferson, S. A. Parsons. The duplicity of floc strength[C]. Proceedings of the Nano and Micro Particles in Water and Wastewater Treatment Conference, International Water Association: Zurich, Switzerland. 2003
    64 M. A. Yukselen, J. Gregory. Breakage and reformation of alum flocs. Environ. Eng. Sci. 2002. 19: 229-236.
    65 M. Soos, A. S. Moussa, Ehrl L, et al. Effect of shear rate on aggregate size and morphology investigate under turbulent conditions in stirred tank. Journal of Colloid and Interface Science. 2008, 319: 577-589
    66 V. Chaignon, B. S. Lartiges, El Samrani, A.; Mustin, C., Evolution of size distribution and transfer of mineral particles between flocs in activated sludges:an insight into flocs exchange dynamics. Water Res. 2002, 36: 676-484.
    67 P.T. Spicer, S.E. Pratsinis, J. Raper, R. Amal, G. Bushell, G. Meesters, Effect of shear schedule on particle size, density, and structure during ?occulation in stirred tanks. Powder Technology 1998, 97: 26-34.
    68 M. M. Clark, J. R. V. Flora. Floc restructuring in varied turbulent mixing. J Colloid Interface Sci, 1991, 147:107-421
    69 P. A. Shamlou, A. T. Gierczycki, N. J. Titchener-Hooker, Breakage of flocs in liquid suspensions agitated by vibrating and rotating mixers. The Chemical Engineering Journal. 1996, 62, 23-34
    70 F. E. Torres, W. B. Russel, W. R.Schowalter. Floc structure and growth kinetics for rapid shear coagulation of polystyrene colloids. Journal of colloid and interface science. 1991, 142(2): 554-574
    71武若冰,王东升,汤鸿霄.絮体分形结构形成机制探讨.环境科学学报. 2007, 27(10): 1599-1603
    72 M.Rossini, J. G. Garrido, M. Galluzzo. Optimization of the coagulation-flocculation treatment: influence of rapid mix parameters. Water Research, 1999, 33(8): 1817-1826
    73 H. B.Dharmappa, J. Verink, O. Fujiwara, S. Vigneswaran. Optimal design of a flocculator. Water Research. 1993, 27(3): 513-519.
    74 V. A.Mhaisalkar, R.Paramasivam, A. G. Bhole. Optimizing physical parameters of rapid mix for Coagulation-flocculation of turbid waters. Water Research 1991, 25(1): 43-52.
    75 C. Kan, C. Huang, J. R. Pan Time requirement for rapid-mixing in coagulation Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2002, 203: 1-9
    76 O.S. Amuda, A. Al_ade. Coagulation/flocculation process in the treatment of abattoir wastewater. Desalination. 2006, 196(1-3): 22-31
    77 T. Meyn, J. Altmann, T. Leiknes. Direct surface treatment with coagulation/ceramic microfiltration- minimisation of flocculation pre-treatment Membranes in drinking and industrial water treatment (MDIW) Norway, 2010.
    78 B. Zhao, D. Wang, T. Li, C. W.K. Chow, C. Huang Influence of floc structure on coagulation–microfiltration performance: Effect of Al speciation characteristics of PACls. Separation and Purification Technology, 2010, 72(1): 22-27
    79 X. Qiao, Z. Zhang, N. Wang, V. Wee, M. Low, C.S. Loh, N. T. Hing.Coagulation pretreatment for a large-scale ultrafiltration process treating water from the Taihu River. Desalination. 2008, 230: 305–313
    80 J. D.Lee, S. H.Lee, M. H. Jo, P. K. Park, C. H. Lee, J. W. Kwak. Effect of coagulation conditions on membrane filtration characteristics in coagulation-Microfiltraiton process for water treatment. Environ. Sci. Technol.2000, 34: 3780-3788.
    81 D. Antelmi, B. Cabane, M. Meireles, P. Aimar. Cake collapse in pressure filtration. Langmuir. 2001, 17: 7137-7144.
    82 T. D.Waite, A. I.Schafer, A. G. Fane, A. Heuer. Colloidal Fouling of Ultrafiltration Membranes: Impact of Aggregate Structure and Size. Journal of Colloid and Interface Science. 1999, 212: 264-274
    83 T.D.Waite. Measurement and implications of floc structure in water and wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1999, 151: 27-41
    84 S. A. Lee, A. G. Fane, T. D. Waite. Impact of natural organic matter on floc size and structure effects in membrane filtration. Environ. Sci. Technol. 2005, 39: 6477-6486.
    85 P.-K. Park, C.-H. Lee, S. Lee. Determination of cake porosity using image analysis in a coagulation-microfiltration system. Journal of Membrane Science 2007, 293: 66-72
    86 P.-K. Park, C.-H Lee, S Lee. Variation of specific cake resistance according to size and fractal dimension of chemical flocs in a coagulation-microfiltration process. Desalination. 2006, 199(1-3): 213-215
    87 M.H. Cho, C.H. Lee, S.H. Lee. Effect of coagulation of conditions on membrane permeability in coagulation-microfiltration. Desalination. 2006, 191: 386-396.
    88 M.-H Cho, C.-H. Lee, S. Lee. Effect of flocculation conditions on membrane permeability in coagulation–microfiltration. Desalination. 2006, 191(1-3): 386-396
    89 X. Wu, X. Ge, D. Wang, H. Tang. Distinct mechanisms of particle aggregation induced by alum and PACl: Floc structure and DLVO evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2009, 347(1-3): 56-63
    90 J. Wang, J. Guan, S.R. Santiwong, T. D. Waite. Characterization of floc, size and structure under different monomer and polymer coagulants onmicrofiltration membrane fouling. Journal of Membrane Science. 2008, 321: 132-138
    91 X. Huang, C.-H. Wei, K.-C. Yu. Mechanism of membrane fouling control by suspended carriers in a submerged membrane bioreactor. Journal of Membrane Science. 2008, 309: 7-16
    92 P. Choksuchart, M.Heran, A.Grasmick. Ultrafiltration enhanced by coagulation in an immersed membrane system. Desalination, 2002, 145: 265-272
    93 Y. Chen, B.Z. Dong, N.Y.Gao, J.C. Fan. Effect of coagulation pretreatment on fouling of an ultrafiltration membrane. Desalination. 2007, 204: 181-188
    94 C.F. Lin, T.Y. Lin, O.J. Hao. Effects of humic substance characteristics on UF performance. Water Res. 2000, 34: 1097-1106.
    95 K.J.Howe, M.M. Clark. Fouling of Microfiltration and Ultrafiltration Membranes by Natural Waters. Environ. Sci. Technol. 2002, 36: 3571-3576
    96 J. Gregory, D.W. Nelson, Monitoring of aggregates in flowing suspensions. Colloids Surf., 1986,18: 175-188.
    97 J. Gregory. Monitoring particle aggregation processes. Adv. Colloid Interface Sci. 2009, 147-148: 109-123.
    98 J. Gregory. Optical monitoring of particle aggregates. J. Environ. Sci. 2009, 21 (1): 2-7.
    99 M. Hermawan, G.C. Bushell, V. S. J. Craig, W. Y. Teoh, Amal R. Floc Strength Characterization Technique. An Insight into Silica Aggregation. Langmuir, 2004, 20(15): 6450-6455.
    100 A.Masion, A.V.Ritter, J. Rose, W.E.Stone, B.J. Teppen, D. Rybacki, J.-Y. Bottero. Coagulation-Flocculation of Natural Organic Matter with Al Salts: Speciation and Structure of the Aggregates. Environ. Sci. Technol. 2000, 34 (15): 3242-3246
    101 B.E. Logan, J.R. Kilps. Fractal dimensions of aggregates formed in different fluid mechanical environments. Water Res. 1995, 29: 443-448.
    102 K. Grijspeerdt, W. Verstraete. Image analysis to estimate the settle ability and concentration of activated sludge. Water Res. 1997, 31: 1126-1131.
    103 R.K. Chakraborti, J.F. Atkinson, J.E. Benschoten. Characterization of Alum Floc by Image Analysis. Environ. Sci. Technol. 2000, 34: 3969-3974.
    104 N. Park, B. Kwon, S.-D. Kim, J. Cho. Characterizations of the colloidal and microbial organic matters with respect to membrane foulants Journal ofMembrane Science, 2006, 275: 29-36
    105 M. Kobayashi, Y. Adachi, S. Ooi. Breakup of Fractal Flocs in a Turbulent Flow. Langmuir. 1999, 15: 4351.
    106 J. Gregory. Rates of flocculation of latex particles by cationic polyelectrolytes. J. Colloid Interface Sci. 1973, 42: 448-456.
    107 J. Gregory. Polymer adsorption and flocculation in sheared suspensions. Colloids and Surfaces. 1988, 31: 231-251.
    108 J. Gregory, H.J. Chung. Continuous monitoring of floc properties in stirred suspensions. J. Water Supply: Res. Technol., AQUA 1995, 44: 125-131.
    109 J.Gregory. The role of floc density in solid-liquid separation. Filtn. Sepn. 1998, 35: 571-575.
    110 X. Li, B.E. Logan. Collision frequencies between fractal aggregates and small particles in a turbulently sheared fluid. Environ Sci Technol. 1997, 31: 1237-42.
    111 J. E. Van Benschoten, J. K. Edzwald. Chemical aspects of coagulation using aluminum salts—I. Hydrolytic reactions of alum and polyaluminum chloride. Water Res., 1990, 24(12): 1519-1526.
    112 A. Amirtharajah, K.M. Mills. Rapid-mix design for mechanism of alum coagulation, J. Am. Water Works Assoc. 1982, 74(4): 210-216.
    113 Rank Brothers Ltd., Photometric Dispersion Analyzer THE PDA 2000 Operating Manual, Cambridge, UK.
    114 S.K. Dentel. Application of the precipitation-charge neutralization model of coagulation. Environ. Sci. Technol. 1988, 22: 825-830.
    115 B.H. Tan, P. Ravi, L. N. Tan, K. C. Tam. Synthesis and aqueous solution properties of sterically stabilized pH-responsive polyampholyte microgels. Journal of Colloid and Interface Science. 2007, 309: 453–463
    116 H. W. Walker, M. M. Bob. Stability of particle flocs upon addition of natural organic water under quiescent conditions. Water Res., 2001, 35: 875-882
    117 R. J. Fran?oise. Growth kinetics of hydroxide flocs. Journal of American Water Works Association 1988, 6: 92-96.
    118 B. Batchelor, J.B. McEwan, Perry, R. Kinetics of aluminum hydrolysis: measurement and characterization of hydrolysis products. Environ. Sci. Technol. 1986, 20: 891-894.
    119 S.J. Duffy, G.W. vanLoon. Characterization of amorphous aluminum hydroxide by the Ferron method. Environ. Sci. Technol. 1994, 28: 1950-1956.
    120 D. Wang, W. Sun, Y. Xu, H. Tang, J. Gregory. Speciation stability of inorganic polymer flocculant-PACl. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2004, 243 (1-3): 1-10
    121 Z.K. Chowdhury, G.L. Amy. Coagulation of submicron colloids in water treatment by incorporation into aluminum hydroxide floc, Environ. Sci. Technol. 1991, 25: 1766-1773.
    122 R. Klute. Destabilization and aggregation in turbulent pipe flow, in: H.H. Hahn, R. Klute (Eds.), Chemical Water and Wastewater Treatment, Springer-Verlag, Berlin, Heidelberg, 1990: 33–54.
    123 Y. Matsui, A. Yuasa, Y. Furuya, T. Kamei, Dynamic analysis of coagulation with alum and PACl, J. Am. Water Works Ass. 1998, 90: 96-106
    124 C. Ye, D. Wang, B. Shi, J. Yu, J. Qu, M. Edwards, H. Tang. Alkalinity effect of coagulation with polyaluminum chlorides: Role of electrostatic patch. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007, 294(1-3): 163-173
    125 J.Y. Bottero, M. Axelos, D. Tchoubar and J.M. Cases et al., Mechanism of formation of aluminum trihydroxidy from keggin Al13 polymers. J. Colloid Interface Sci. 1987, 117: 47–57
    126 P.M. Bertsch, Conditions for Al13 polymer formation in partially neutralized aluminum solutions, Soil Sci. Soc. Am. J. 1987, 51: 825–828
    127 H. Stechemesser, B. Dobias. Coagulation and flocculation (second edition). Taylor & Francis[M], 2005, 193-195
    128 V.L. Snoeyink, D.Jenkins. Water Chemistry, John Wiley and Sons, New York, 1980 (chapter VI).
    129 S. Lee, P.-K.Park, J.-H.Kim, K.-M. Yeon, C.-H.Lee. Analysis of filtration characteristics in submerged microfiltration for drinking water treatment. Water Research. 2008, 42: 3109-3121
    130 T. W. Healy, A. P. Herring, D. W. Fuerstenau. The effect of crystal structure on the surface properties of a series of manganese dioxides. Journal of Colloid and Interface Science. 1966, 21: 435-444.
    131 H. Yamamura, K. Kimura, Y. Watanabe. Mechanism Involved in the Evolution of Physically Irreversible Fouling in Microfiltration and Ultrafiltration Membranes Used for Drinking Water Treatment. Environ. Sci. Technol. 2007, 41: 6789-6794

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700