粪尿废水的单独厌氧处理试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的快速发展,我国污水排放量急剧增加,水污染问题开始影响人们的生活与健康。尽管近些年政府已加大了污水处理的投资量,在污水治理方面有了长足的发展,但传统集中式污水处理系统表现出很大的弊端,相比之下,分散式污水处理的优势则不断的显现出来。分散式污水处理系统的核心是源分离(Source Separation)或源管理(Source Management),即将人粪尿污水与生活杂排水分开处理并进行能量和资源的回收,而将受污染程度低的杂排水和雨水分散资源化。由于粪尿废水含有大量有机物、氮磷以及病原菌,因此成为分散式型污水处理研究的一大热点。尽管其处理方法从最早的粪便堆肥到后来的厌氧化粪池(Septic Tank),再到后来,国外开发出了应用广泛的上流式厌氧污泥床化粪池(UASB septic tank),但纵观国内外多年来关于粪尿废水处理的研究和实践,粪尿废水的处理还存在一些问题,反应器的性能和处理效率有待进一步提高,屎尿废水中可能含有大量病原微生物,而厌氧处理对废水的病原菌的去除规律并不清楚,有待研究。
     为了提高粪尿废水厌氧处理反应器的性能和净化效率(COD和病原微生物),本课题在外循环UASB反应器中改进了反应器内部搅拌方式,增强了混合程度,考察了了中温(35℃)条件下反应器处理粪尿废水的性能。
     试验结果表明:
     1.粪尿废水的pH、COD、SS、氨氮等指标均存在较大的波动。其中pH值在7.30~8.6之间,呈现弱碱性,这对厌氧反应器的正常运行很不利,需要人工调节进水pH。原水中悬浮态的COD_(ss)含量约占总进水COD的45%,较高的悬浮物会影响厌氧反应器的稳定运行。但通过调节回流量可以提高反应器抗冲击负荷的能力。
     2.在反应器启动初期,厌氧污泥尚未驯化,开启回流会扰动污泥,产生上浮,不利于反应器稳定。当反应器开始稳定产气时,污泥床又会因上升流速过小而产生短流或活塞式推流,导致浮泥现象,不利于反应器的稳定运行。此时开启混合液回流装置,提高上升流速,则浮泥现象消失,去除效率上升。
     3.采用厌氧絮体污泥接种,通过回流装置不断增大上升流速,污泥的颗粒化进程明显加快,并最终实现污泥颗粒化。
     4.厌氧反应器内形成的颗粒污泥形状较规则,颜色呈黑色和灰黑色;表面较光滑致密,大量丝状菌网状缠绕,短杆菌和少量球菌镶嵌其中;颗粒污泥内部结构密实,含有大量丝状菌,球菌和少量短杆菌;污泥粒径主要分布在0.6~0.9mm。
     5.当污泥颗粒化后,反应器内的SLR为0.15~0.36kgCOD/(kgVSS·d),上升流速为1.16~1.27m/h时,反应器对COD的去除效率更好,去除率在72%左右。研究同时发现,在此上升流速下增大污泥负荷对反应器的产气率并没有显著提高,每去除1gCOD的产甲烷量平均为183mL。
     6.以粪大肠杆菌为指示,反应器主要依靠污泥的粘附作用去除病原菌,且絮状污泥对原水中游离态病原菌的去除效果比颗粒污泥好,而对悬浮态病原菌则无显著差异;污泥颗粒化后,HRT与粪大肠杆菌去除率呈正相关性。外循环UASB反应器处理黑水时,有机物的快速高效去除同病原菌的去除并不同步。
With rapid development of economy and serious lack of resources, traditional centralized wastewater treatment system shows more and more drawbacks. By contrast, decentralized system has many advantages. In decentralized wastewater treatment system,key piont is Source Seperation or Source Management. In decentralized system faecal wastewater is separated from ordinary domestic wastewater. Black water treatment is the hotpot in decentralized system, and the methods are manure compositing, septic tank and UASB septic tank, which is most widely used abroad. The research about black water treatment at home and abroad mainly pay close attaintion to improving the reactor and efficiency by stirring, wastewater’s well distributing, designing good three phase seperater and so on.
     This test investigated the treatment of blackwater from classroom building by using an Externally Circular UASB reactor, and the system was operated at 35℃. During the experiment, several index were monitored to check the performance of this system such as pH value, COD, SS, NH4 N, TN,VFA, with the quantity of influent and mixed liquid returning changing. The results indicated that:
     1. Several index of the raw wastewater such as pH, COD, SS and ammonia nitrogen fluctuated widely. pH value of wastewater was between 7.30 to 8.6, and showed a weak alkaline. This is not conducive to the operation of the reactor, and need to manually adjust the influent pH value. The CODss content of raw water is about 45% of total COD, and this has great effects on high rate anaerobic reactors. But the reactor’s ability to loading shock has been strengthened by changing the quantity of reflux.
     2. During the starting up of reactor, the anaerobic sludge has not been domesticated. if starting reflow, it would disturb the sludge and floatation. That was not good for the stabilization of reactor. When the reactor had stably producted gas, the sludge bed would have short flow or plug flow because of low Vup(velocity of up flow), which resulting in mud flotation. This was bad for the reactor’s stabilization. At this time, opening the back flow devices to improve Vup has made removal efficiency increased.
     3. Inoculating with anaerobic sludge flocs in the UASB reactor, floc sludge granulation has increased by improving upflow velocity through the back flow devices, and, floc sludge has achieved granulation at last.
     4. Anaerobic reactor formed regular shape of granular sludge, which was black and gray black and dense smooth surface. A large number of filamentous bacteria was wrapping a few cocci and Brevibacterium. The internal of granular sludge is containing a large number of filamentous bacteria, cocci and a small amount of Brevibacterium. Sludge particle size was distributed in the 0.6 ~ 0.9mm.
     5. After the granulation of sludge,the SLR and V_(up) were 0.15~0.36kgCOD/(kgVSS·d)and 1.16~1.27 m/h respectively, the removal efficiency of COD was better. At the same time, increasing sludge loading of reactor has little effect on gasification efficiency. The average output of CH4 was 183mL when 1gCOD has been removed.
     6. With fecal coliform as indicator, the reactor mainly depended on the adhesion of sludge to remove pathogens, and the removal efficiency of Pre columri prior pathogen was better than removed by the granular saudge. While the suspended bacteria showed no significant difference. After granulation, HRT and fecal coliform removal was positively correlated. The results indicated that treatment with UASB Blackwater outside the circle, fast and efficient removal of organic matter with the efficient removal of pathogens could not coexist
引文
[1]马伟辉,陈洪斌,屈计宁.生活污水源分离、分质处理与资源化[J].中国沼气,2008,26(4):15 19
    [2] P·伦斯,G·泽曼,G·莱廷格主编;王晓昌,彭党聪,黄廷林译.分散式污水处理和再利用—概念、系统和实施[M].北京:化学工业出版社,2004
    [3]张建,高世宝,章菁等.生态排水的理念与实践[J].中国给水排水,2008,24(2):10 14
    [4] Helvi Heinonen Tanski,Christine van,Wijk Sijbesma. Human excreta for plant production[J]. Biores Technol.2004,96:403 411
    [5]李子夫,金璠.生活污水的分类收集与处理系统[J].中国给水水,2001,17(1):64 65
    [6]郝晓地,宋虹苇.生态卫生——可持续、分散式污水处理新概念[J].给水排水,2005,31(6):42– 45
    [7] Luostarinen S,Sanders W,Kujawa Roeleveld K,et al. Effect of temperature on anaerobic treatment of black water in UASB septic tank systems[J].Biores Technol,2007,98:980 986
    [8] [瑞典]雨诺·温布拉特,梅林·新普生·赫勃特主编.朱强,肖钧译.生态卫生原则、方法和应用(原著第二版)[M].北京:中国建筑工业出版社,2006
    [9]王士芬,夏群.城市粪便处理技术及方法[J].环境卫生工程,2000,8(1):14 16
    [10]胡纪萃.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2002
    [11]王绍康.关于城市生活粪便处理工艺方案的探讨[J].城市管理与科技,2003,5(3):121 122
    [12]梅小乐,沈德中,杜兵等.人粪尿生物处理技术的发展及应用[J].给水排水,2005,31(5):88 91
    [13] Luostarinen S,Rintala J. Anaerobic on site treatment of black water and dairy parlour wastewater in UASB septic tanks at low temperatures[J].Water Res,2005,39:436 448
    [14] Halalsheh M.,Sawajneh Z,Zeeman G., et al. Treatment of strong domestic sewage in a 96 m3 UASB reactor operated at ambient temperatures: two stage versus single stage reactor. Biores. Technol[J],2005,96:577 585
    [15] Luostarinen S,Rintala J. Anaerobic on site treatment of kitchen waste incombination with black water in UASB septic tanks at low temperatures[J].Biores Technol,2007,98:1734 1740
    [16] Shayah N M.,Mahmoud N. Start up of an UASB septic tank for community on site treatment of strong domestic sewage[J].Biores Technol,2008,99:7758 7766
    [17]魏东斌,胡洪营等.污水再生回用的水质安全指标体系[J].中国给水排水,2004,20(1):36 39
    [18]郑祥,吕文洲等.膜技术对污水中病原微生物去除的研究进展[J].工业水处理, 2005,25(1):1 6
    [19]段位平,叶秀雯.天津城市污水中大肠菌群属与沙门氏菌的关系[J].环境与健康杂志,2001,18(1):25 26
    [20]周巧红,王亚芬等.人工湿地系统中微生物的研究进展[J].环境科学与技术,2008,31(7):58 61
    [21] Thurston J A,Gerba C P,Foster K E,et al. Fate of indicator microorganisms,giardia and cryptosporidium in subsurface flow constructed wetlands[J]. Water Research,2001,35:1547 1551.
    [22] Perkins J,Hunter C. Removal of enteric bacteria in a surface flow constructed wetland in Yorkshire,England [J].Water Research,2000,34:1941 1947.
    [23] Vega E,Lesikar B,Pillai S D. Transport and survival of bacterial and viral tracers through submerged–flow constructed wetland and sand filter system[J] . Bioresource Technology,2003,89:49 56.
    [24] Khatiwada N R,Polprasert C. Kinetics of fecal coliform removal in constructed wetlands [J].Water Science and Technology,1999,40:109 116.
    [25] Karp iscak MM,Gerba CP,Watt PM,et al. Multispecies plant system s for wastewater quality improvements and habitat enhancement[J].Water Science and Technology,1996,33(10/11):231 236.
    [26]徐敏,宋志文等.人工湿地与环境卫生安全[J].生态学杂志,2007,27(11):1873 1877.
    [27] Decamp O,Warren A. Bacterivory in ciliates isolated from constructed wetlands(reed beds)used for wastewater treatment [J].Water Research,1998,32:1989 1996.
    [28] Decamp O,Warren A,Sanchez R. The role of ciliated protozoa in subsurface flow wetlands and their potential as bioindicators[J].Water Science and Technology,1999,40:91 98.
    [29]于荣丽,李亚峰等.人工湿地污水处理技术及其发展现状[J].工业安全与环保,2002,32(9):29 31.
    [30] lazarova V. Advanced wastewater disinfection technologies state of the art and perspectives[J].Wat sci Tech,1999,40(4 5):203 213.
    [31]郑祥,吕文洲等.膜技术对污水中病原微生物去除的研究进展[J].工业水处理,2005,25(1):1 6.
    [32]雷晓东,熊蓉春等.膜分离法污水处理技术[J].工业水处理,2002,22(2):1 4.
    [33] Otaki M , Yano K , Ohgaki S. Virus removal in amembrane separation process[J].Water Sci Technol,1998,37(10):107 116.
    [34] Steven W T,Judd S J,Mcloughlin B. Reduction of fecal coliform bacteria in sewage effluents using a microporous polymeric membrane[J].Water Research,1998,32(5):1417 1422.
    [35] Gunder B,Krauth K. Replacement of secondary clarification by membrane separation—results with plate and hollow fibre modules[J].Water Science and Technology,1998,38(4 5):383~393.
    [36] Chiemchaisri C. Organic stabilization and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment[J].Water Sci.Technol, 1992,25(10):231 240.
    [37]郑祥,刘俊新.膜生物反应器的技术经济分析[J].给水排水,2002,28(3):105 108.
    [38] J Ottoson,A Hansen, B Bjorlenius,et al. Removal of viruses,parasitic protozoa and microbial indicators in conventional and membrane processes in a wastewater pilot plant[J].Water Res,2006,40:1449–1457.
    [39] El Gohary F.A,Nasr F.A. Cost effective pre treatment of wastewater[J].Wat Sci Tech,30(5):97 103.
    [40]李绍衡.厌氧生物处理技术的原理及其在城市污水处理中的应用[J].湖南大学学报(自然科学版),2001,28(3):16 22.
    [41]毛羽,杨骥颖等.生活污水中公厕粪水处理的卫生指标检测研究[J].安徽农业科学,2009,37(22):10650–10652.
    [42] M.A. El Khateeb,A.Z. Al Herrawy,M.M. Kamel,et al. Use of wetlands as post treatment of anaerobically treated effluent[J]. Desalination,2009,245:50–59.
    [43] El Gohary F.A,Nasr F.A,Wahaab R.A. integrated low cost wastewater treatment for reuse in irrigation[J].resources and Environment,1998,14 16.
    [44] A Taw?k,A Ohashi,H Harada. Sewage treatment in a combined up ?ow anaerobic sludge blanket(UASB)–down?ow hanging sponge (DHS) system[J],Biochem Eng,2006,29:210 219.
    [45] A Taw?k,F El Gohary,A Ohashi,et al. The in?uence of physical–chemical and biological factors on the removal of faecal coliform through down ?ow hanging sponge (DHS) system treating UASB reactor ef?uent[J].Water Res,2006,40:1877 1893.
    [46]姚志麒.环境卫生学[M].第3版.北京:人民卫生出版社,1996:140.
    [47]孙立,管锡珺.厌氧反应器综述与展望[J].青岛建筑工程学院学报,2003,24(4):82 86.
    [48]赵立军,滕登用,刘金玲等.废水厌氧生物处理技术综述与研究进展[J].环境污染治理技术与设备,2001,2(5):58 66.
    [49]何连生,朱迎波.高效厌氧生物反应器研究动态及趋势[J].环境工程,2004,22(1):7 12.
    [50]陈坚,卫攻元.新型高效废水厌氧生物处理反应器的研究进展[J].无锡轻工大学学报,2001,20(3):324 329.
    [51]黄晓东,张存铎. UASB的主要设计问题[J].环境工程,1999,15(2):16 18.
    [52]毕蕾,吴静等.内循环厌氧反应器的污泥颗粒化过程[J].清华大学学报(自然科学版),2007,47(9):1485 1488.
    [53]刘永红,贺延龄等.悬浮颗粒污泥技术在高效厌氧反应器设计中的应用[J].中国沼气,2005,23(2):3 7.
    [54]管锡珺,涂剑成.UASB反应器的探讨[C].中国化学会第几届水处理化学大会暨学术研讨会论文集,2004:302 307
    [55]方战强,陈中豪等.外循环UASB的结构与设计方法[J].工业水处理,2003,23(4):72 75.
    [56]马秀娟,马利民,张选军等.改进型EGSB处置配置污水的小试研究[J].环境科学与技术,2006,29(11):5 8.
    [57]张选军,马秀娟,周雪飞等.常温下改进型EGSB处理城市污水的中试[J].环境工程,2007,25(2):7 10.
    [58]杨晓妮,袁林江,王晓昌.人粪尿污水的厌氧净化试验研究[J].环境科学与技术,2009,32(4):129 132.
    [59]国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [60] HJ/T347—2007.中华人民共和国环境保护行业标准[S].北京:中国环境科学出版社,2007.
    [61] Beun J.J,Hendriks A,van Loosdrecht,M.C.M,et sl. Aerobic granulation in a sequencing batch reactor[J].Water Research,1999,33:2283 2290.
    [62]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.
    [63]张自杰,张忠祥.废水处理理论与设计[M].北京:中国建筑工业出版社,2003.
    [64]徐宏英,李亚新,岳秀萍等.厌氧颗粒污泥对有机物的初期吸附[J].环境科学学报,2008,28(9):1807 1812.
    [65]温瑞媛,严世强,江洪等.化学工程基础[M].北京:北京大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700