太阳能电动车关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济迅猛发展,全世界汽车保有量迅速增加,这在对环境造成巨大破坏的同时也使石油资源面临枯竭。世界各国为了解决日趋严重的环境和能源问题,争先恐后的开发清洁能源,以期实现良性循环。
     太阳能是一种巨大能源,每秒的辐射量相当于500万吨煤。我国地处北半球欧亚大陆东部,幅员辽阔,太阳能资源十分丰富,随着太阳能光电技术的日趋成熟和推广应用,太阳能电池板转换效率大幅提高的同时价格日趋下降,使得太阳能电动车的研究取得了飞速发展。电动车具有高效、节能、噪音低、零排放等显著优点,在环保和节能方面具有不可比拟的优势。太阳能电动车把太阳能技术、电动车技术和其他高科技结合在一起,解决了经济发展造成的能源短缺和环境污染之间的矛盾,将为人类发展做出巨大贡献。
     本文的主要工作是在小型化、轻量化的指导思想下完成了太阳能电动车整车设计,详细论述了太阳能电动车车身和车架的设计要点;对车身进行了外围流场的数值模拟;提出了一种高效廉价的提高太阳能电池转换效率的新方法;建立了太阳能阵列光伏充电的Simulink数字仿真模型,验证了此方法的有效性。
     论文主要研究内容如下:
     1、研究了太阳能电动车的关键技术,论证了发展太阳能电动车的可行性
     本文首先研究太阳能在我国的分布及可利用情况,从光伏系统、电池系统、动力系统、传动系统和车身-底盘系统五个方面综述了国内外太阳能电动车的研究现状,分析了太阳能电动车的关键技术并对开发太阳能电动车的可行性进行了分析。
     2、构建了太阳能电动车实验和测试平台
     本文完成的电动车设计是为将来进行太阳能充电实验提供测试平台,设计的总体原则是小型化,轻量化。根据设计要求参数,确定了太阳能电动车的整体方案,并详细论述了车身轻量化重点部位车身和底盘的设计方案。
     车身外壳由玻璃钢制成,轻便且坚固。顶部具有一较大的平面,用于安装太阳能电池板组件。具有流线外形,降低风阻系数。满足以上条件的前提下,兼顾美观;车架由高强度钢管焊接形成,采用边框式结构。局部具体形状在前后桥设计完成后确定,便于各部件安装及固定;整车的速度采用电控方式,通过输入电动机的电压和功率调节转速及转矩,省略了传统的机械式变速箱和离合器等装置,进一步简化了机构。
     3、对车身进行数值模拟,根据分析结果改进车身造型
     车辆的空气动力学已逐步发展成为空气动力学的一个独立分支。设计空气动力性能良好的车辆,是提高其动力性和经济性的重要途径。由于目前太阳能电池板的转换效率较低,太阳能电动车设计定位主要针对短途、车速低、单人使用的电动车。
     本文根据电动车实际行驶环境,进行了基于空气动力学的车身设计。应用ANSYS ICEM-CFD软件划分网格,选用标准κ-ε高雷诺数模型作为湍流模型,在N-S方程的基础上采用fluent软件进行计算,根据分析结果优化车身造型。从阻力和升力系数的对比可以看出优化后模型分析结果好于原始模型,行驶起来风阻小,动力性、经济性都有很大改善。
     4、研究了太阳能电池的工作原理和提高太阳能电池转换效率的几种方法
     本文从太阳能电池的结构、工作原理出发,研究了外界条件对电池的主要性能参数(短路电流、开路电压、填充因子和光电转换效率等)的影响,对现有的几种提高太阳能电池输出效率的方法进行了比较分析,指出了各方法的优缺点
     5、提出了提高太阳能电池转换效率的新方法
     目前,太阳能电池光电转换效率低和生产成本高是制约其实用化的关键因素。研究显示太阳能电池板的光伏转换效率随太阳光入射角度增大及工作温度升高而下降。因此减小太阳光入射角度,保证太阳能电池板在最佳的工作温度范围,是提高其转换效率的有效方法。
     现有太阳能电池系统普遍采用与空气接触,直接散热的方式,优点在于无附加结构,成本低。但散热效果差,电池板温度高,光伏转换效率低。
     本文提出了一种利用水冷系统提高太阳能电池转换效率的新方法,通过在电池板表面增加滴流装置降低电池的运行温度。用水流进行表面冷却的一个好处是通过热交换带走热量,另一方面由于水的折射使入射角减小,从而增加了辐射的吸收。实验证明,此方法能以较低的成本有效的提高电池的转换效率。
     研究表明表面水冷方式只适用于电池的静态发电,不能满足太阳能电动车在行驶中使用。由此进一步研究了一种具有微流控散热结构的车载太阳能电池系统。此系统由水泵带动水在迷宫流道中循环流动,使太阳能电池板散热迅速且均匀,不仅提高了转换效率而且能满足车辆行驶要求。
     以上研究结果表明,论文设计的太阳能电动车满足小型化、轻量化要求,车身外围流场的数值模拟结果显示空气阻力满足要求,得到了较为理想的车身设计方案。本文研究的通过水冷提高太阳能电池转换效率的方法成本低、效果明显,具有普遍推广应用的价值,推动了太阳能电动车的实用化进程。
With the explosive economic development and rapid increase in car ownership worldwide, the environment has suffered massive destruction in addition to the depletion of oil resources. In order to resolve the increasingly acute world environmental and energy issues, all nations rushed the development of clean energy in order to achieve a virtuous circle.
     Solar energy is a tremendous energy with the amount of radiation per second equivalent to 500 tons of coal. Since China is located in northern Eurasia of the northern hemisphere with a vast territory and abundant solar energy resources, solar photovoltaic technology has been promoted into application as a result of its maturity. Substantial increase in conversion efficiency of solar panels combined with declining prices contribute to rapid development in the research of solar electric vehicles. Electric vehicles are characterized by high efficiency, energy saving, low noise, zero emissions and other unparalleled significant advantages in environmental protection and energy saving. The perfect combination of solar technology, electric vehicle technology and other high technology as well ensure that the solar electric cars can cope with the contradiction between energy shortage and environmental pollution caused by the economic development and will subsequently make a great contribution to human development.
     The main work is to achieve the design for the overall solar electric vehicle under the guiding ideology of being small in size, lightweight too. It introduces the key for design in detail as to the body and frame. On this basis, the body is optimized for the design and performance simulation analysis. It, consequently, puts forward a new and cheap method to improve solar cell conversion efficiency. Meanwhile, it establishes the digital model of solar cell Simulink. The feasibility has been confirmed. The main work can be summarized as follows:
     1. Of the key technologies and feasibility analysis of solar electric car
     This paper studies the distribution and availability of solar energy in China, summarizing the current research of domestic and international solar electric car from five aspects, namely the PV systems, battery systems, power systems, transmission and body-chassis systems, analyzing the key technologies of solar electric vehicle in addition to the feasibility of solar electric vehicles.
     2. Construction of experiment and test platform for a solar electric car
     The coming design of electric car aims to provide a test platform for the future experiment associated with solar-based power supply. The overall principle is small in size, lightweight. The overall program of solar electric vehicles is determined according to the parameters in the design. Furthermore, it discusses the design program for the significant parts like body and chassis so as to achieve lightweight in detail.
     Steel body shell is made from glass, light and strong, which has streamlined shape and can reduce the drag coefficient. The top has a larger plane for installing solar panels components. This car might satisfy the premise of the above conditions, taking aesthetic quality into consideration. The frame will be formed by the welding of high strength steel together with the use of frame-type structure. The local shape is to be determined by the completion of the design for bridge.This is easy to install and fix parts. Driven by electronic control means, the input voltage and power the motor speed and torque regulation, it omits the traditional mechanical gearbox and clutch and other devices, further simplifying the organization.
     3. Of the body to simulate and shape optimization based on the analysis results
     Aerodynamics of the vehicle has gradually developed into an independent branch of aerodynamics. Good aerodynamic design of vehicles is an important way to increase its power and economy. Due to the low efficiency of current conversion of solar panels, solar electric cars are designed mainly for short-distance, low speed, single-use electric vehicles.
     In view of the actual driving environment, the electric vehicles were based on aerodynamic body design. ANSYS ICEM-CFD software will be applied to mesh, with a standard model as a high Reynolds number turbulence model, using fluent software for calculation based on the NS equations. The body shape is optimized based on the analysis. Seen from the comparison of drag coefficient, the optimized model can be better than the original model due to the fact that the wind resistance is smaller and powers as well as economy have been greatly improved.
     4. Studying the working principle of solar cells and presenting a couple of methods to improve the efficiency of solar cells conversion.
     This article intends to study the effects upon the main parameters of the battery (short circuit current, open circuit voltage, fill factor and energy conversion efficiency, etc.) from the solar cell structure, working principle, and the external conditions. It also compares several solar cell output efficiency, pointing out their strengths and weaknesses respectively.
     5. Proposing a new method to improve the conversion efficiency of solar cells
     Currently, the low solar cell conversion efficiency plus the higher production costs is the key factor to restrict it pragmatically. Studies have shown that solar conversion efficiency of photovoltaic solar panels decease with the increase of incident angle and rising working temperature. It is an effective method, therefore, to improve the conversion efficiency through reducing the incidence angle of sunlight and ensuring the best operating temperature range for solar panels.
     The existing solar cell systems commonly used employ the way of being in contact with air and direct cooling. The advantage lies in no additional structure in addition to low cost. But it is apparent that cooling effect is poor, solar panels have high temperature, and photovoltaic conversion efficiency is low.
     This paper proposes a use of water-cooling system to improve the conversion efficiency of solar cells as a new method. Additional trickle device is attached to the surface of solar panels to reduce operating temperature. One of the advantages concerning Surface cooling with water flow is that the heat become minimized through the heat exchange. On the other part, with the angle of water refraction decreasing, the absorption of radiation increase. Experiments show that this method can effectively improve the conversion efficiency of the battery at a low cost.
     The results show that surface water cooling is only available for battery static electricity, while it can not supply the solar electric vehicle in motion. Thus, a further cooling with micro fluidic structure of solar car battery system is explored. This system is driven by the water pump in the water circulation in the labyrinth, which guarantees the quick and even heat flow of solar panels. It can not only improve efficiency but also meet driving requirements.
     The study suggests that the solar electric vehicles designed by this paper can meet the small-in-size, lightweight standard. The simulation statistics on the part of flow field around solar electric car reveal that air resistance can meet the requirements. It would definitely be an ideal body design. This study further confirms that it is an effective and economical method to increase the efficiency of solar cells through water cooling. With The value of universal application, the practical process of solar electric vehicles can be highly promoted.
引文
[1]马海军,蒋祖华,朱训生.太阳能车[J].太阳能,2004,3:27-30.
    [2]滨川圭弘.太阳能光伏电池及其应用[M].北京:科学出版社.2008.
    [3]冯逸,陈礼璠,杜爱民.太阳能汽车发展现状及其实用化对策研究[J].上海汽车,2006,(12):2-5.
    [4]王薇,邱大雄,顾树华.我国开发太阳能资源的综述[J].中国管理科学,1997,5(2):42-49.
    [5]卢磊,陈效华,严伟等.一种在汽车上应用太阳能技术的设计方案[J].新材料产业,2010,1:71-73
    [6]李兴虎.电动汽车概论[M].北京:北京理工大学出版社.2005.8
    [7]C C Chan,K T Chau.Modern Electric Vehicle Technology[M].Oxford:Oxford University Press.2001
    [8]万沛霖.电动汽车的关键技术[M].北京:北京理工大学出版社,1998.12
    [9]谢建生,李金华.太阳电池研究的象征与发展前景[J].江苏工业学院学报,2008,20(3):69-73
    [10]Allen Barnett,Douglas Kirkptrick,Christiana Honsberg,et al.Milestones Toward 50% Efficient Solar Cell Modules [A].22nd European Photovoltaic Solar Energy Conference [C]. Milan:European Environment Agency,2007
    [11]王建华、吴季平、徐伟.太阳能应用研究进展[J].水电能源科学,2008,8.
    [12]李文婷,刘宏,陈慧玲.国内外太阳能光伏发电发展综述[J].青海电力,2004,23(4):3-6
    [13]杨金焕等.一种光伏系统设计的新方法[J].太阳能学报,1995,16(4):407-414
    [14]Kalaitazakis K.Stavralakis C.S.Size optimization of a PV system installed close to sun obstacles.Solar Energy,1996,57(4):291-199.
    [15]Egido M.Lorenzo E.The sizing of stand-alone PV-systems,a review and proposed new method.Solar Energy Materials and Solar Cells,1992,26:51-69
    [16]李春鹏,张廷元等.太阳能光伏发电系统综述[J].电工材料,2006,3:45-48
    [17]赵为.太阳能光伏并网发电系统的研究[D].合肥:合肥工业大学,2003
    [18]莫松平,陈则韶等.太阳电池中光电转换的有效能[J].工程热物理学报,2008,29(11):1821-1825.
    [19]韩延民,太阳能高倍聚光能量传输利用理论及试验研究[D].上海:上海交通大学,2007.
    [20]纯电动汽车.智库在线,www.zikoo.com.
    [21]陈妙农.国内外电动汽车发展概况.电器工业,2003,2.
    [22]徐鹏威、段善旭、刘飞、刘邦银.几种光伏系统MPPT方法的分析与比较[J].武汉:华中科技大学.
    [23]龙腾飞,丁宣浩,蔡如华,太阳电池最大功率点跟踪的三点比较法理论分析[J].节能,2007,8:14-17
    [24]陈兴峰,曹志峰,许洪华,等.光伏发电的最大功率跟踪算法研究[J].可再生能源,2005(1):8-9.
    [25]李炜,朱新坚.光伏系统最大功率点跟踪控制仿真模型[J].计算机仿真,2006,23(6):240.
    [26]张焱.基于DSP的无刷直流电机高性能调速系统的研究[D].西安:西安电子科技大学,2007.
    [27]綦慧、郝亚川.电动汽车功率驱动单元设计[J].计算机测量与控制,2008,16.
    [28]傅周兴、王秋妍、芦刚.基于DSP的电动汽车轮毂电机控制器设计[J].电气应用,2007,26(6)
    [29]辜承林.电动车轮毂永磁电机实用技术探讨[J].微电子,2008,41(2)
    [30]窦国珍等,节能型电动车驱动系统的研究[J].电力电子技术,2003,37(2):4-6
    [31]Benedyk J.Light metals in automotive applications[J].Light Metal Age,2000, 58(9-10):34-34
    [32]崔新涛.多材料结构汽车车身轻量化设计方法研究[D].天津:天津大学,2007
    [33]Yoshimi Tamaki. Research into achieving a lightweight vehicle body utilizing structure optimizing analysis:aim for a lightweight and high and rigid vehicle body[J]. JSAE Review,1999,20:555-561
    [34]王永华编译.太阳能车开发的现状及未来动向[J].山东交通科技,1999(1):95-98
    [35]胡兴军.探索中的太阳能汽车[J].交通与运输,2009(1):56-57
    [36]史玉茜.绿色环保汽车——太阳能汽车[J].节能技术,2009(1):78-82.
    [37]徐顺余.太阳能电动车电子电气设备研究及动力性分析[D].南京:南京理工大学.2004
    [38]周勋,徐明.太阳电池的研究和应用进展[J].贵州师范大学学报(自然科学 版).2000,18(2):101-105
    [39]汤会香,严密,张辉,杨德仁.太阳能电池材料CulnSZ的研究现状[J].材料导报.2002,16(8):60-65
    [40]席珍强,陈君,杨德仁.太阳能电池发展现状及展望[J].新能源.2000,22(12):73-75
    [41]冯美斌.汽车轻量化技术中新材料的发展及应用[J].汽车工程.2006,28(3):213-220
    [42]Pan Tsung-Yu, Pan Jwo. Applications of Polymeric Materials in Automotiv Body Structure [C]. Automotive Body Seminar, Detroint:Mar 7,2004.
    [43]羊秋林等,汽车用轻量化材料,北京:机械工业出版社,1991
    [44]T.Yaegashi,S.Sasaki, T.Abe, "Toyota hybrid system:It's concept and technologies", CDROM,15th Electric Vehicle Symp.,Brussels,Belgium,1998
    [45]K. Rajashekara, "History of electric vehicles in general motors", IEEE Trans.Ind.Applicat.,Vol.30,pp897-904,Aug.1994
    [46]T.Kikuchi, H.Morita,E.Inada, T.Aso, "Evaluation tests of Nissan hybrid electric vehicle", CDROM,14th Electric Vehicle Symp., Orlando,Florida,1997
    [47]S.Imai, N.Tskeda, Y.Horri, "Total efficiency of a hybrid electric vehicle", in Proc.IEEE Power Conversion,1997:947-950
    [48]W.Buschhaus, L.R.Brandenburg, R.M.Stuntz, " Hybrid electric vehicle development at Ford", CDROM,15th Electric Vehicle Symp., Orlando, Florida,1997
    [49]严岚.永磁无刷直流电机弱电磁技术研究[D].杭州:天津大学,2007.
    [50]郭孔辉.汽车技术的变革[J].交通运输工程学报,2002(3):1-6.
    [51]胡居琦.电动车蓄电池电量监测技术研究[D].北京:北方工业大学,2002.
    [52]Han H.N., Clark J.P., Lifetime costing of the body-in-white:steel vs. aluminium, JOM,1995,47(5):22-28.
    [53]Jambor A.,Beyer M., New cars-new materials, Materials&Design,1997, 18(3-4):203-209.
    [54][54]迟汉之,世界汽车轻量化及轻质材料应用趋势,轻型汽车技术,2001(4):54-56.
    [55]羊军,叶永亮,汪侃磊,车身轻量化系数的决定因素及其优化[J],汽车技术,2010(2):28-32.
    [56]史践.电动汽车与轻量化技术[J].汽车工艺与材料,2011(1):24-29.
    [57]王智文,汽车轻量化技术发展现状初探,汽车工艺与材料,2009(2):1-5.
    [58]Sobieszczanski-Sobieski J., Kodiyalam S.,Yang R.Y., Optimization of car body under constraints of noise, vibration, and harshness (NVH), and crash, Structural and Multidisciplinary Optimization,2001,22(4):295-306.
    [59]Yang R.J., Tho C.H., Gu L., Recent Development in Multidisciplinary Design Optimization of Vehicle Structures, AIAA-2002-5606,2002.
    [60]Kodiyalam S., Yang R.J., Gu L.et al. Multidisciplinary design Optimization of a vehicle system in a scalable, high performance computing environment, Structural and Multidisciplinary Optimization,2004,26(3-4):256-263.
    [61]Craig K.J., Stander N., Dooge D.A., et al., Automotive crashworthiness design using response surfaee-based variable screening and optimization, Engineering Computations(Swansea, Wales),2005,22(1):38-61.
    [62]Broge J.L., The battle of the metals, Automotive Engineering Intenational(USA),2000,108(8):36-38.
    [63]Ludke B., Woltmann R., Functional design of a light weight body in-white taking the new BMW generation as an example, Proeeedings of Chinese-German Ultralight Symposium, Beijing,2001:101-118.
    [64]高云凯.汽车车身结构分析[M].北京:北京理工大学出版社,2006.
    [65]王彦张晓胜谢文才等,一汽轿车奔腾B50轻量化技术[J],汽车工艺与材料,2010(4):1-3.
    [66]敖炳秋,轻量化汽车材料技术的最新动态[J],汽车工艺与材料,2002,(8-9):1-21.
    [67]Hahn O., KurZok J.R., Timmermann R., Joining of multi material constructions. proceedings of Chinese-German Ultralight Symposium, Beijing, China,2001,151-162.
    [68]赵玉东.太阳能电动车动力系统参数匹配及仿真研究[D].长春:吉林大学,2007.
    [69]American solar Car Challenge 2003 Regulations.2002.7.
    [70]王毅,熊大庆,“轻便型”太阳能电动车造型设计研究[J].包装工程,2008,29(5):123-125.
    [71]王好战,李华宇,王建飞等,“思源”号太阳能电动车的研制[J].上海汽车,2002,(12):20-22.
    [72]王桂姣,电动车汽车轮毂电机驱动系统的运动特性与能量分配[D].上海汽车,2002,(12):20-22.
    [73]傅立敏.汽车空气动力学[M].北京:机械工业出版社,1998.
    [74]Evans L. Causal Influence of CarMass and Size on Driver FatalityRisk[J]. Am J Pub Health,2001 (91):1076-1081.
    [75]杜广生.汽车空气动力学[M].北京:中国标准出版社,1999.
    [76]黄向东.汽车空气动力学与车身造型[M].北京:人民交通出版社,2000.
    [77]沈俊,傅立敏,范士杰.CFD在汽车空气动力学设计中的应用[J].汽车技术2000(10):1-4.
    [78]Pia L.CFD as a Tool in Styling Vehicles.Second CFDS international User Conference[C].1994.9.
    [79]张琪.微型轿车车身造型及其外部流场研究[D].武汉:武汉理工大学,2002.
    [80]张义慧.客车外围三维流场的数值模拟计算[D].大连:大连理工大学,2001.
    [81]江贤军.轿车空气动力学数值模拟及优化[D].武汉:武汉理工大学,2003.
    [82]窦国仁.紊流力学[M].高等教育出版社.1981.
    [83]倪浩清.工程湍流模式理论综述及展望[J].力学进展.1996,2.
    [84]张英朝.基于仿真与试验的汽车风洞修正研究[D].长春:吉林大学,2010.
    [85][85] P. Rollet-Miet. D. Laurence, J.Ferziger. LES and RANS of turbulent flow in tube bundles [J]. International Journal of Heat and Fluid Flow.1999,20 (3):241-254.
    [86]B.E.Launder,D.B.Spalding,Lectures in Mathematical Models of Turbulence [M]. Academic Press, London,1972.
    [87]K.Suga, M.Nagaoka,etc, application of a three-equation Cubic eddy viscosity model to 3-D turbulent flows by the unstructured grid method.International Journal of Heat and Fluid Flow,2001,22(3):259-271
    [88]Ramnefors M, Benstyd R Perzon S. Accuracy of Drag Predictions on Cars Using CFD-effect of Grid Refinement and Turbulence Models[C]. SAE paper 960681
    [89]Xiaoyi He, Li-Shi Luo, Micah Dembo. Some Progress in Lattice Boltzmann Method:Part I.Non-uniform Mesh Grids[J]. Journal of Computational Physics,1996,129:357-363
    [90]耿新华,孙云,等.薄膜太阳电池的研究进展[J].物理,1999,(2):96-102
    [91]徐耀敏,高转换效率太阳能电池仿真设计[D].武汉:武汉理工大学,2010
    [92]王远,太阳能电池及其应用技术研究[D].武汉:华中科技大学,2006
    [93]江小涛,高效率低成本太阳能电池发电系统的研究[D].武汉:湖北工业大学,2005
    [94]吴海涛,孔娟,夏东伟,基于MATLAB/Simulink的光伏电池建模与仿真,青岛大学学报(工程技术版),2006,21(4):74-77
    [95]Mehmet Akbaba Isa Qamber Adel Kemal,Matching of Separately Excited DC Motors to Photovoltaic Generators for Maximum Power Output,Solar Energy,1998,62(2):375-385
    [96]Bernard Bekker H.J.Beukes,Finding on optimal PV panel maximum power point tracking method,IEEE 2004:1125-1129
    [97]康华光,陈大钦.电子技术基础(模拟部分)[M].高等教育出版社,2001
    [98]邓志杰.Si基太阳电池发展现状[J].世界有色金属,2001(3):7
    [99]袁镇,贺立龙.太阳能电池的基本特性[J].现代电子技术,2007(16):163-165
    [100]M.A.Green等.应用光伏学[M].上海:上海交通大学出版社,2008。
    [101]Green M A.Solar Cells-Operating Principle,Technology and System Application [M].N.J.Prentice Hall,Inc.Englewood Cliffs,1982
    [102]Liu.X.,Lopes.L.A.C.,An improved perturbation and observation maximum power point tracking algorithm for PV arrays[J],Power Electronics Specialists Conference,2004,3:2005-2010
    [103]毛爱华.太阳能电池研究和发展现状[J].包头钢铁学院学报,2002,(21)94-98
    [104]沈宗存,沈辉,李邵洪.太阳能电池研究进展[J].能源工程,2000,(4):8-11
    [105]Linzhang Wu,wei Tian,xiaotao Jiang.Silicon-based solar cell system with a hybrid PV module.Solar Energy Materials and Solar cells.2005 (87):637
    [106]邢治存.数控匹配器[J].太阳能学报,1996,17(4):353-357
    [107]程启明,程尹曼,汪明媚,倪仁杰.光伏电池最大功率点的跟踪方法[J].上海电力学院学报,2009,25(4):346-352
    [108]KOUTROULIS E, KALAK, VOULGARIS C. Development of a micro-controller-based photovoltaic maximum power point tracking control system[J].IEEE Trans on PowerElectronics,2001,16(1):46-54.
    [109]栗秋华,周林,刘强,等.光伏并网发电系统最大功率跟踪新算法及其仿真[J].电力自动化设备,2008,28(7):21-24.
    [110]赵庚申,王庆章,许盛之.最大功率点跟踪原理及实现方法的研究[J].太阳能学报,2006,127(10):997-1001.
    [111]庾莉萍.提高太阳能电池效率的主要措施[J].光源与照明,2009(4):39-40
    [112]余海.太阳能利用综述及提高其利用率的途径[J].新能源研究与利用,2004,3:34.37.
    [113]缪仁杰,李淑兰.太阳能利用现状与发展前景[J].应用能源技术,2007,5:28.33.
    [114]胡兴军.全球光伏产业的加速发展[J].华通技术,2007,26(3):36-39.
    [115]成志秀,王晓丽.太阳能光伏电池综述[J].信息纪录材料,2007,8(2):4147.
    [116]宁铎,高继春.发展太阳能光伏发电的意义及前景[J].西北轻工业学报,2002,20(1).82-84.
    [117]成松,刘晓晖,成佰新等.高倍聚光光伏的系统构成概述[J].太阳能,2010,(7).29-32.
    [118]Luque A. Solar cells and optics for photovoltaic concentration. England:IOP Publilshing Ltd,1989.103—111..
    [119]Marti A,Luque A.Next Generation Photovoltaics,High Efficiency through Full Spectrum Utilization.Institute of Physics Publishing,2002,108-112.
    [120]薛国良.非成像光学及其应用[J].物理通报,1995,4:1-2.
    [121]DAVIES PA. Edge-ray principle of nonimaging optics[J]. Opt. Soc. Am. A, 1994,11:1256-1259.
    [122]Brinkworth, J., Cross, M., Marshall, H., and Hongxing, Y.,Thermal Regulation of Photovoltaic Cladding, Solar Energy,1997,61:169-178.
    [123]Sweelem,E.A.,Fahmy,F.H.,Aziz,M.A.,Zacharias,P.,andMahmoudi,A, Increased Efficiency in the Conversion of Solar Energy to Electric Power,Energy Sources,1999,21:367-378.
    [124]Krauter,S.,Ara u jo,R.G.,Schroe,S.,Hanitsch,R.,Salhi,M.J., Triebel, C.,and Lemoine,R.,Combined Photovoltaic and Solar Thermal Systems for Fa cade Integration and Building Insulation, Solar Energy,1999, (67):239-248.
    [125]Brinkworth,B.J.,Marshall, R. H., and Ibrahim, Z., A Validated Model of Naturally Ventilated PV Cladding,Solar Energy,2000, (69):67-81.
    [126]Tripanagnostopoulos,Y.,Nousia,T.,Souliotis, M.,and Yianoulis, P.,Hybrid Photovoltaic-Thermal Solar Systems, Solar Energy,2002 (72):217-234.
    [127]Cucumo,M.,De Rosa,A.,Ferraro,V.,Kaliakatsos,D.,andMarinelli,V., Theoretical-Experimental Analysis of an Air-Cooled Thermo- photovoltaic Collector, EuroSun 2004, (1),:199-206
    [128]Athienitis,A.,Tzempelikos,A.,and Poissant,Y, Investigation ofthe Performance of a Double Skin Fa cade with Integrated Photo- voltaicPanel, EuroSun 2004, (2):529-536.
    [129]Pellegrino, M., Flaminio, G, Bolognesi, S., and Privato, C., What Has Been Wrong with the PV/TTechnology, EuroSun,2004, (1):551-557.
    [130]Tripanagnostopoulos, Y, Souliotis, M.,Battisti,R., and Corrado,A., Application Aspects of Hybrid PVT/Air Solar Systems, EuroSun 2004, (1):744-753.
    [131]M. K. El-Adawi and I. A. Al-Nuaim. The temperature functional dependence of VOC for a solar cell in relation to its efficiency new approach. Desalination,2007,209(1-3):91-96.
    [132]B.Marion. A method for modeling the current-voltage curve of a PV module for outdoor conditions. Progress in Photovoltaics:Research and Applications, 2002,10(3):205-214.
    [133]李春芳,左春柽,张玉梅,王君,张舟.快速制作迷宫流道工艺研究[J].农业机械学报,2009,40(10):81-85
    [134]张波,毛华杰,郭淑兰,孟正华,陈文峰.聚合物材料在快速原型制造技术中的应用[J].金属成形工艺,2004,22(1):65-68
    [135]沈辉,曾祖勤.太阳能光伏发电技术[M].化学工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700