青藏高原东部地区马先蒿属植物繁殖特征和种子萌发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马先蒿属是北温带被子植物中的大属之一,其在狭窄的遗传基础上演化出如此丰富的物种,多样化的花冠形式以及专一的传粉者等特点已经吸引了许多研究者的关注。他们在该属植物的传粉生物学,传统系统分类,花部适应性进化等方面取得了很多研究成果,为进一步深入研究奠定了基础。但截止目前,在物种水平上,对该属植物具体环境下的繁殖生态学和种子萌发研究却很少见,尤其在青藏高原这一独特的区域内。
     本研究以青藏高原东部地区为研究地点(甘南藏族自治州),着眼于以下几个问题:1.)马先蒿属植物种间的单花性分配与给予传粉者的报酬类型、海拔以及个体大小的关系;2.)该属植物的全株雌雄性繁殖成功率与花冠类型、海拔、生活史周期以及个体大小的关系;3.)该属两年生植物的繁殖性状是否会对其幼苗期所受的光照强度作出响应;4.)一些关键生态因子和生活史特征是否会对种间种子萌发变异产生影响。通过几年的研究,取得了一些初步成果,具体如下:1.)通过对该地区12个马先蒿物种26个种群种间单花性分配的研究分析,发现该属植物给予传粉者熊蜂的报酬类型对其单花性分配有显著影响,与花蜜花粉报酬并举型植物相比,纯花粉报酬类型植物的单花性分配明显偏雌。这和以前认为的纯花粉报酬型植物可能表现出偏雄倾向以补偿花粉散失,吸引传粉者这一猜想相悖,然而结合以前该属植物的传粉生物学研究和性分配理论,我们认为这一结果亦是合情合理的。海拔差异对该属植物的种间单花性分配差异也有显著影响而植株的个体大小则没有。
     2.)全株雌雄性繁殖成功率(每株总花数和每株种子总重量)是测量植物适合度最直接的指标。通过对该地区12个马先蒿物种30个种群全株雌雄性繁殖成功率的研究分析,发现该属植物中属于较原始花冠类型的植物的这两个适合度指标并不比属于较进化花冠类型的低,这意味着以前所测量的较进化花冠类型物种花期的那些所谓“进化特征”在具体环境下未必真正起作用。虽然海拔差异对这两个繁殖性状没有直接的显著效应,但可以作用于植物个体大小来间接影响它们,这说明马先蒿植物能通过调整其个体大小与这两个繁殖性状的关系来适应环境梯度的变化。在本研究中,植物的生活史周期差别(一年生植物和多年生多次开花结果植物)和个体大小对这两个适合度指标影响最大,从权衡(Trade-off)理论的角度来看,这也是理所当然的。
     3.)通过对两年生植物扭旋马先蒿苗期里的不同光照强度处理,我们发现这种差异对其以后大部分繁殖性状有显著影响,亦可以作用于个体大小间接影响植株总花数这一性状。据我们所知,这是第一次报道该现象。
     4.)在对该地区马先蒿植物的种子萌发种间变异研究中,我们发现,温度和冷藏处理(干冷和湿冷)这两个外部因素并不会对该属植物的种子萌发能力造成影响。种子大小这一生活史特征和海拔差异也仅在特定条件下对其有显著效应。而生活史周期和种子贮放时间则对其作用力显著,我们认为这可能是该属植物的种子在此环境下进化出的风险平摊机制。
     此外,我们对以前研究者公布的数据进行了再分析,发现基本花冠类型和雌蕊长度与一些基本性投资指标显著相关,而雌蕊长度在发育上与花冠管、喙的长度直接关联,这意味着马先蒿属植物多样化的花冠形式不仅仅导致了繁殖隔离,而且也直接作用于与适合度相关的性投资指标,从而丰富了马先蒿多样性花冠的适应意义。
Pedicularis L.(Orobanchaceae), one of the largest genus in angiosperm in North Temperate Zone, has being focused on by numerous researchers due to so diverse species, rapid floral variation from a narrow genetic basis and their single and exclusive bumblebees pollinators. Many fruitful achievements have been acquired at the aspects of pollination biology, traditional taxonomy, floral adaptive evolution and so on in the genus, which offer basis for future study. However, until now, few studies focus on the studies of reproductive ecology and seed germination of the genus in special region, especially in Qinghai-Tibet Plateau.
     In this study, we had chosen many Pedicularis species from eastern edge of Qinghai-Tibet Plateau to focus on the questions as following:(1) the relationships between the patterns of sex allocation per flower and rewarding types for pollinator, elevation and plant size at the level of species; (2) the relationships between male/female reproductive success per plant and floral types, elevation, period of life history and plant size at the level of species; (3) Plasticity of reproductive traits responding to variation in light quantity at rosette stage of the first year in the strict biennials species, Pedicularis torta; and, (4) whether some primary environmental factors and life history characteristics have significant effect on seed germination of the genus interspecificlly. The results showed:
     (1) In this study, we investigated the variation in sex allocation per flower with respect to two distinct rewarding types for pollinators in 12 Pedicularis species (26 populations) in alpine regions, controlling for the effects of elevation, species and plant size simultaneously. We found that the rewarding types affected sex allocation significantly, and there was a female-biased sex allocation pattern in pure pollen rewarding species relative to nectar rewarding ones. The finding is inconsistent with traditional hypothesis, which predicted that the sex allocation in pollen rewarding species is expected to be male-biased for compensating the loss of pollen in pollination and attracting pollinators and provides a new insight into variation in sex allocation. It is reasonable relating with activities and foraging behavior of pollinators in the genus and with theory of sex allocation. Moreover, environmental conditions (elevation) may also play relatively important role in determining patterns of variation in sex allocation per flower, whereas plant size may not.
     (2) Male/female reproductive success per plant (i.e. indicated by the total number of flower per plant and the total seed weight per plant, respectively) is the most direct index measuring fitness of plant. In this experiment, we investigated the variation in male/female reproductive success per plant with respect to differences of basic floral types, elevation, period of life history and plant size in 12 Pedicularis species (30 populations) in alpine regions. We found that male/female reproductive success per plant belonging to primary floral types was less low than one of derived floral types. It means that these so-called advantages of floral characteristics in derived floral types in previous studies are not obvious in actual environments at the level of species. Although the differences of elevation had not obvious direct effect on variation in the two reproductive traits, it may affect them indirectly through its effect on plant size. It means that plants adjust the relationships between plant size and the two reproductive traits for adapting the variable environment. In addition, the two variables of period of life history (monocarpic plant vs. polycarpic plant) and plant size contributed greatly to variation in the two reproductive traits.
     (3) We performed a pot experiment to investigate the effect of light quantity at rosette stage of plants on following reproductive traits, plant size and its relationships for the strict biennials species (P. torta). The results showed that the light differences significantly affected variation in following reproductive traits at all stages of development except for mean individual seed mass, plant size and the relationship between total number of flowers per plant and plant size among treatments. To our knowledge, this is the first time to study effect of light quantity during specific rosette stage on reproductive traits using the approach like this.
     (4) In the study of seed germination among Pedicularis species in the region, we found that the two external factors of temperature and treatment of cold storage for seed (dry cold storage vs wet cold storage) gave little effect on difference of final germination percentage among species in the genus. In the specific conditions, seed size and elevation had significant effect on it. The two internal factors of period of life history and length of seed deposited significantly affected it in the two experiments, which may be adaptive mechanism of risk evenness under alpine environment.
     In addition, former published data was reanalyzed under the background of integrating previous studies and personal field observations. We found that there were significant relationships between some traits of primary sexual investments and basic floral types, length of pistil related with diverse floral forms directly at the level of species in the genus. It indicated that diverse floral forms do not only coadapt with pollination behaviors of bumblebees for prezygotic reproductive isolation interspecificaly as considered by pollination biologists, but have correlation with several components of the two primary sexual investments and may accelerate speciation in the Pedicularis genus.
引文
1. 陈学林,景国海,郭辉.(2007)青藏高原东缘高寒草甸19种马先蒿植物种皮纹饰特征及其生物学意义。草业学报16(2):60-68.
    2. 崔显亮(2008)青藏高原东部木本植物种子萌发特性的研究。硕士学位论文,兰州大学.
    3. 樊宝丽,孟金柳,赵志刚,杜国祯.(2008)海拔对青藏高原东部毛莨科植物繁殖特征和资源分配的影响。西北植物学报,28(4):0805-0811.
    4. 李兰兰硕士学位论文(2003)滇西北马先蒿属植物繁殖特性的初步研究.武汉大学
    5. 苏梅,齐威,阳敏,杜国祯.(2009)青藏高原东部大通翠雀花的花特征和繁殖分配的海拔差异。兰州大学学报(自然科学版),45(2):61-65.
    6. 田大伦.(2008)高级生态学.北京:科学出版社
    7. 王红,李德株.(1998)滇西北马先蒿属传粉生物学的初步研究.植物学报40:204-210.
    8. 王红,李文丽,蔡杰(2003)马先蒿属花冠形态的多样性与传粉式样的关系.云南植物研究,25(1):63-70.
    9. 王慧春,赵久忠,周华坤(2008)温度和土壤水分对甘肃马先蒿种子萌发的影响。安徽农业科学,36(34):14873-14875.
    10.王桔红,崔现亮,陈学林等.(2007)中、旱生植物萌发特性及其与种子大小关系的比较研究.植物生态学报,31(6):1037-1045.
    11.王桔红(2008)河西走廊干旱区和青藏高原东缘植物种子萌发对策研究。博士学位论文,兰州大学.
    12.王一峰,高宏岩,施海燕,王剑虹,杜国祯.(2008)小花风毛菊的性器官在青藏高原的海拔变异。植物生态学报,32(2):379-384.
    13.钟补求.(1955)马先篙蒿属的一个新系统。植物分类学报4:71-147.
    14.钟补求。(1956 a,b,)马先蒿属的一个新系统。植物分类学报5:19-73,205-278.
    15.钟补求.(1961)马先蒿属的一个新系统。植物分类学报9:230-274.
    16.钟补求.(1963)中国植物志第六十八卷.北京:科学出版社.
    17.钟补求,张金谈.(1965a,1965b)马先蒿属的花粉形态和其与分类系统的关系I.B. 植物分类学报,10(3):257-281.10(4):357-374
    18.宗文杰,刘坤,卜海燕等.(2006)高寒草甸51种菊科植物种子大小变异及其对种子萌发的影响研究.兰州大学学报(自然科学版),42(5):52-55.
    19. Ando T, Nomura M, Tsukahara J, Watanabe H, Kokubun H, Tsukamoto T, Hashimoto G, Marchesi E, Kitching I. J. (2001) Reproductive isolation in a native population of Petunia sensu Jussieu (Solanaceae). Ann Bot 88:403-413.
    20. Arroyo M T K, Primack R, Armesto J J. (1982) Community studies in pollination ecology in the high temperate Andes of Central Chile. Ⅰ. American Journal of Botany 69:82-97.
    21. Arroyo M T K, Armesto J J, Primack R.1985. Community studies in pollination ecology in the high temperate Andes of Central Chile. Ⅱ. Effect of temperature on visitation rates and pollination possibilities. Plant Systematics and Evolution 149:187-203.
    22. Ashman T.L., Pacyna J., Diefendefer C.,Leftwich T. (2001) Size-dependent sex allocation in a gynodioecious wild strawberry:the effects of sex morph and inflorescence architecture. International Journal of Plant Sciences,162,327-334.
    23. Ashman TL, Majetic CJ (2006) Genetic constraints on floral evolution:a review and evaluation of patterns. Heredity 96:343-352
    24. Armbruster WS (1993) Evolution of plant pollination systems:hypotheses and test with the Neotropical vine Dalechampia. Evolution 47:1480-1505
    25. Armbruster WS, Stilio VSD, Tuxill JD, Flores TC, Runk JLV (1999) Covariance and decoupling of floral and vegetative traits in nine neotropical plants:a reevaluation of Berg's correlation-pleiades concept. Am J Bot 86:39-55
    26. Baskin C. C., Baskin J. M. (1998) Seeds:Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego.Bell B.G (1985) On the function of flowers. Proceedings of the Royal Society of London 224,223-265.
    27. Berg RL (1960) The ecological significance of correlation pleiades. Evolution 14:171-180
    28. Biernaskie J. M., Cartar R.V. (2004) Variation in rate of nectar production depends on floral display size:a pollinator manipulation hypothesis. Functional Ecology 18: 125-129.
    29. Bingham R. A, Orthner A. R. (1998) Efficient pollination of alpine plants. Nature 391: 238-239.
    30. Brunet J. (1992) Sex allocation in hermaphrodite plants. Trends in Ecology and Evolution 7:79-84.
    31. Bu H. Y, Chen X. L., Xu X. L., Liu K., Wen S. J., Du G. Z. (2007) Community-wide germination strategies in an alpine meadow on the eastern Qinghai-Tibet plateau: phylogenetic and life-history correlates. Plant Ecol 191:127 - 149.
    32. Cai J, Liang HX, Wang H (2003) Floral organogenesis of Pedicularis (Orobanchaceae) with erostrate corolla. Acta Bot Yunn 25:671-679
    33. Campbell DR, Waser NM, Price MV (1996) Mechanisms of hummingbird-mediated selection for flower width in Ipomopsis aggregate. Ecology 77:1463-1472
    34. Cao G.X., Kudo G, Ida T.Y. (2007) Floral sex allocation in a hermaphrodite herb with 1-day flowers, Hosta rectifolia (Liliaceae). Plant Species Biology 22:191-196.
    35. Cao G X., Kudo G (2008) Size-dependent sex allocation in a monocarpic perennial herb, Cardiocrinum cordatum (Liliaceae). Plant Ecol 194:99-107.
    36. Charlesworth D., Charlesworth B. (1981) Allocation of resources to male and female functions in hermaphrodites. Biological Journal of the Linnean Society 14:57-74.
    37. Charlesworth D. (1989) Evolution of low female fertility in plants:pollen limitation, resources allocation and genetic load. Trends Ecol Evol 4:289-292.
    38. Charnov E.L. (1979) Simultaneous hermaphroditism and sex selection. PNAS 76: 2480-2484.
    39. Charnov E. L. (1982) The theory of sex allocation. Princeton University Press, Princeton, New Jersey, USA.
    40. Conner J, Via S (1993) Patterns of phenotypic and genetic correlations among morphological and life-history traits in wild radish, Raphanus raphanistrum. Evolution 47:704-711
    41. Conner J, Sterling A (1995) Testing hypotheses of functional relationships:A comparative survey of correlation patterns among floral traits in five insect-pollinated plants. Am J Bot 82:1399-1406
    42. Cruden R.W. (1977) Pollen-ovule ratios:a conservative indicator of breeding systems in flowering plants. Evolution 31:32-46.
    43. Cruden R.W. (2000) Pollen grains:why so many? Plant Systematics and Evolution 222:143-165.
    44. Darwin C (1862) On the various contrivances by which British and Foreign Orchids are fertilized. London:Murray 365pp
    45. de Jong T.J., Klinkhamer P.GL. (1989) Size-dependency of sex-allocation in hermaphroditic, monocarpic plants. Functional Ecology 3:201-206.
    46. Delph LF, Galloway LF, Stanton ML (1996) Sexual dimorphism in flower size. Am Nat 148:299-320
    47. Donohue K., Dorn L., Griffith C. et al. (2000) The evolutionary ecology of seed germination of Arabidopsis thaliana:variable natural selection on germination timing. Evolution 59:758-770.
    48. Dudash M. R. (1991) Plant size effects on female and male function in hermaphroditic Sabatia angularis (Gentianaceae). Ecology 72(3):1004-1012.
    49. Evenri M., Koller D., Gutterman Y. (1996) Effects of the environment of the mother plant on germination by control of seed-coat permeability to water in Ononissicula Guss.Aust.J.Biol.Sci.19:1007-1016.
    50. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375-403
    51. Gardner M, Macnair M. (2000) Factors affecting the co-existence of the serpentine endemic Mimulus nudatus Curran and its presumed progenitor,Mimulus guttatus Fischer ex DC. Biol J Linn Soc 69:443-459
    52. Goulson D. (1999) Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspectives in Plant Ecology, Evolution and Systematics 2(2):185-209.
    53. Grant V. (1994a) Mechanical and ethological isolatioin between Pedicularis groenlandica and P. attllens (Scrophulariaceae). Biol Zentralbl 113:43-51.
    54. Grant V. (1994b) Modes and origins of mechanical and ethological isolation in angiosperms. Proc Natl Acad Sci USA 91:3-10.
    55. Greenway CA, Harder L (2007) Variation in ovule and seed size and associated size-number trade-offs in angiosperms. Am J Bot 94:840-846
    56. Grime J. P., Mason G. S. Curtis A., et al. (1981) Acomparative study of germination characteristics in a local flora. Journal of Ecology 69:1017-1059.
    57. Gross K. L., Smith A. D. (1991) Seed mass and emergence time effects on performance of Panicum dichotomiflorum Michx. across environments. Oecologia,87: 270-278.
    58. Guitian J., Medrano M., Herrera C.M., Sanchez-Lafuente A.M. (2003) Variation in structural gender in the hermaphrodite Helleborus foetidus (Ranunculaceae):within-and among-population patterns. Plant Systematics and Evolution 241:139-151.
    59. Guitian J., Medrano M., Oti J. (2004) Variation in floral sex allocation in Polygonatum odoratum (Liliaceae). Annals of Botany 94:433-440.
    60. Harder L.D., Thomson J.D. (1989) Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. The American Naturalist 133(3):323-344.
    61. Harder L.D. (1990) Pollen removal by bumblebees and its implications for pollen dispersal. Ecology 71(3):1110-1125.
    62. Harper J. L., Lovell P. H.& Moore K. G (1970) The shapes and sizes of seeds. Annual Review of Ecology and Systematics 1:327-356.
    63. Harper J. L. (1977) Population Biology of Plants. Academic Press, New York.
    64. Heilmeier H.& Whale D. M. (1986) Partitioning of 14C labeled assimilates in Arctium tomentosum. Annals of Botany 57:655-666.
    65. Heilmeier H., Schulze E. D.& Whale D. M. (1986) Carbon and nitrogen partitioning in the biennial monocarp Arctium tomentosum Mill. Oecologia 70:466-474.
    66. Hong D. Y. (1983) The distribution of Scrophulariaceae in the Holarctic in reference to the floristic relationships between Eastern Asia and Eastern North America. Ann Missouri Bot Gard 70:701-712.
    67. Huang S.Q., Fenster C.B. (2007) Absence of long-proboscid pollinators for long-corolla-tubed Himalayan Pedicularis species:implications for the evolution of corolla length. International Journal of Plant Sciences 168:325-331.
    68. Ida T. Y, Kudo G (2003) Floral colour change in Weigela(Caprifoliaceae): reduction of geitonogamous pollination by bumble bees. Amer. J. Bot.90: 1751-1757.
    69. Ishii H, Morinaga SI (2005) Intra-and inter-plant level correlations among floral traits in Iris gracilipes (Iridaceae). Evol Ecol 19:435-448
    70. Janzen D.H. (1977) A note on optimal mate selection by plants. American Naturalist,111(978):365-371.
    71. Johnson SD, Steiner KE (1997) Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Scrophulariaceae). Evolution 51:45-53
    72. Jurgens A., Witt T., Gottsberger G. (2002) Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae:correlation with breeding system, pollination, life form, style number, and sexual system. Sexual Plant Reproduction 14:279-289.
    73. Karrenberg S. and Jensen K. (2000) Effects of pollination and pollen source on the seed set of Pedicularis palustris. Folia Geobot.35:191-202.
    74. Kawai Y., Kudo G. (2009) Effectiveness of buzz pollination in Pedicularis chamissonis:significance of multiple visits by bumblebees. Ecological Research 24: 215-223.
    75. Kearns C. A, Inouye D. W. (1994) Fly pollination of Linum lewisii (Linaceae). American Journal of Botany 81:1091-1095.
    76. Klinkhamer P. G L.& de Jong T. J. (1993) Phenotypic gender in plants:effects of plant size and environment on allocation to seeds and flowers in Cynoglossum officinale. Oikos 67:81-86.
    77. Klinkhamer P.G.L., de Jong T.J., Metz H. (1997) Sex and size in cosexual plants. Trends in Ecology and Evolution 12:260-265.
    78. Kobayashi T., Okamoto K.& Hori Y. (2001) Variations in size structure, growth and reproduction in Japanese plantain (Plantago asiatica L.) between exposed and shaded populations. Plant Species Biology 16:13-28.
    79. Komer C. H., Neumayer M., Menendez-riedl S. P. et al. (1989) Functional morphology of mountain plant. Flora 182:353-383.
    80. Korner C. (1999) Alpine plant life-functional plant ecology of high mountain ecosystems. Berlin:Springer-Verlag.259-290.
    81. Lankinen A, Skogsmyr I (2001) Evolution of pistil length as a choice mechanism for pollen quality. Oikos 92:81-90
    82. Leishman MR (2001) Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos 93:294-302.
    83. Li B., Shibuya T., Yogo Y., Hara T.& Matsuo K. (2001) Effects of light quantity and quality on growth and reproduction of a clonal sedge, Cyperus esculentus. Plant Species Biology 16:69-81.
    84. Li H. L. (1948) A revision of the genus Pedicularis in China. Proc Acad Nat Sci Philadelphia 100:205-379.
    85. Li H. L. (1949) A revision of the genus Pedicularis in China. Proc Acad Nat Sci Philadelphia 101:1-214.
    86. Li H. L. (1951) Evolution in the flowers of Pedicularis. Evolution 5:158-164.
    87. Limpricht W. (1924) Studien uber die Gattung Pedicularis Repertorium Novarum Specierum Regni Vegetabilis,20:161-265
    88. Lloyd D.G. (1980) Sexual strategies in plants I. An hypothesis of serial adjustment of maternal investment during one reproductive session. New Phytologist 86:69-79.
    89. Lopez J., Rodriguez-Riano T., Ortega-Olivencia A., Devesa J.A., Ruiz T. (1999) Pollination mechanisms and pollen-ovule ratios in some Genisteae (Fabaceae) from southwestern Europe. Plant Systematics and Evolution 216:23-47.
    90. Lopez HA, Anton AM, Galetto L (2006) Pollen-pistil size correlation and pollen size-number trade-off in species of Argentinian Nyctaginaceae with different pollen reserves. PI Syst Evol 256:69-73
    91. Lord J.M. (1994) Variation in Festuca novae-zelandiae (Hack.)Cockayne germination behaviour with altitude of seed source. New Zealand Journal of Botany 32:227-235.
    92. MacArthur R.H., Wilson E.O. (1967) The theory of island biogeography. Princeton: Princeton University Press.
    93. Macior L. W. (1991) Pollination ecology of Pedicularis D. Don (Scrophulariaceae) in the Himachal Himalaya. Plant Spec. Biol.6:75-81
    94. Macior L. W. (1995) Pollination ecology of Pedicularis in the Teton Mountain region. Plant species Biol 10:77-82.
    95. Macior L.W., Tang Y. (1997) A preliminary study of the pollination ecology of Pedicularis in the Chinese Himalaya. Plant Species Biology 12:1-7.
    96. Macior L.W., Tang Y., Zhang J.C. (2001) Reproductive biology of Pedicularis (Scrophalariaceae) in the Sichuan Himalaya. Plant Species Biology 16:83-89.
    97. Mariko S., Koizumi H., Suzuki J., Furukawal A. (1993) Altitudinal variations in germination and growth responses of Reynoutria populations on Mt Fuji to a controlled thermal environment. Ecological Research 8:27-34.
    98. Marshall D. L., Levin D. A.& Fowler N. L. (1986) Plasticity in yield components in response to stress in Sesbania macrocarpa and Sesbania vesicaria (Leguminosae). American Naturalist 127:508-521.
    99. Marshall D. L., Abrahamson N. J., Avritt J. J., Hall P. M., Medeiros J. S., Reynolds J., Shaner M. G. M., Simpson H. L., Trafton A. N., Tyler A. P.& Walsh S. (2005) Differences in plastic responses to defoliation due to variation in the timing of treatments for two species of Sesbania (Fabaceae). Annals of Botany 95:1049-1058.
    100. Matthies D. (1990) Plasticity of reproductive components at different stages of development in the annual plant Thlaspi arvense L. Oecologia 83:105-116.
    101. Mazer S. J. (1989) Ecological, taxonomic, and life history correlates of seed mass among Indiana dune angiosperms. Ecol Monogr 59:153-175.
    102. Mazer S.J., Dawson K.A. (2001) Size-dependent sex allocation within flowers of the annual herb Clarkia unguiculata (Onagraceae):ontogenetic and among-plant variation. American Journal of Botany 88:819-831.
    103. Meyer S.E., Monsen S.H. (1991) Habitat-correlated variation in mountain big sagebrush (Artemisiatridentata ssp. Vaseyana) seed germination patterns. Ecology 72: 739-742.
    104. Mcintosh M.E. (2002) Plant size, breeding system, and limit s to reproductive success in two sister species of Ferocacus (Cactaceae). Plant ecology 162:273-288.
    105. Meekins J. F.& McCarthy B. C. (2000) Responses of the biennial forest herb Alliaria petiolata to variation in population density, nutrient addition and light availability. Journal Ecology 88:447-463.
    106. Mendez M., Traveset A. (2003) Sexual allocation in single-flowered hermaphroditic individuals in relation to plant and flower size. Oecologia 137:69-75.
    107. Meng JL, Zhou XH, Zhao ZG, Du GZ (2008) Covariance of floral and vegetative traits in four species of Ranunculaceae:a comparison between specialized and generalized pollination systems. J Inte PI Bio 50:1161-1170
    108. Michalski S.G, Durka W. (2009) Pollination mode and life form strongly affect the relation between mating system and pollen to ovule ratios. New Phytologist 183: 470-479.
    109. Mill RR (2001) Notes relating to the Flora of Bhutan:XLIII. Scrophulariaceae (Pedicularis). Edinburgh J Bot 58:57-98.
    110. Miller T. (1987) Effects of emergence time on survival and growth in an early old-field plant community. Oecologia 72:272-278
    111. Mione T., Anderson G.L. (1992) Pollen-ovule ratios and breeding system evolution in Solanum section Basarthrum (Solanaceae). American Journal of Botany 79:279-287.
    112. Molau U. (1993) Relationships between flowering phenology and life history strategies in tundra plants. Arctic and Alpine Research 25:391-402.
    113. Moles A. T., Ackerly, D. D., Webb C. O., Tweddle J. C., Dickie J. B., Pitman A. J.& Westoby M. (2005) Factors that shape seed mass evolution. PNAS 102:10540-10544.
    114. Murren CJ (2002) Phenotypic integration in plants. P1 Spec Biol 17:89-99
    115. Nakamura R. R., Stanton M. L.& Mazer S. J. (1989) Effects of mate size and mate number on male reproductive success in plants. Ecology 70:71-76.
    116. Nilsson (1988) The evolution of flowers with deep corolla tubes; Nature 334: 147-149
    117. Oberrath R., Bohning-Gaese K. (1999) Floral colour change and the attraction of insect pollinators in lun (Pulmonaria collina). Oecologia 121:383-392.
    118. Olmstead R. G, de Pamphilis C. W., Wolfe A. D., Young N. D., Elisons W. J., Reeves P. A.. (2001) Disintegration of the Scrophulariaceae. Am. J. Bot 88:348-361.
    119. Ornelas J.F., Lara C. (2009) Nectar replenishment and pollen receipt interact in their effects on seed production of Penstemon roseus. Oecologia,160:675-685.
    120. Partridge L, Harvey P. H. (1988) The ecological context of life-history evolution. Science 241:1449-1455.
    121.Pellmyr O. (1985) Pollination ecology of Cimicifuga arizonica (Ranunculaceae). Botanical Gazette 146(3):404-412.
    122. Pennell F.W. (1943) The Scrophulariaceae of the western Himalaya. Acad Nat Sci Philadelphia, Monogr 5:113-157.
    123. Philipp M., Woodell S. R. J., Boecher J., Mattsson O. (1996) Reproductive biology of four species of Pedicularis (Scrophulariaceae) in West Greenland. Arct. Alpi. Res. 28(4):403-413.
    124. Pitelka L. F., Ashmun J. W.& Brown R. L. (1985) The relationships between seasonal variation in light intensity, ramet size, and sexual reproduction in natural and experimental populations of Aster acuminatus (Compositeae). American Journal Botany 72:311-319.
    125. Pitelka L. F.& Curtis W. (1986) Photosynthetic responses to light in an understory herb, Aster acuminatus. American Journal. Botany 73(4):535-540.
    126. Prain D. (1890) The species of Pedicularis of the Indian Empire and its frontiers. Ann Roy Bot Gard, Calcutta 3:1-196.
    127. Pyke G.H. (1991) What does it cost a plant to produce floral nectar? Nature 350(7): 58-59.
    128. Ree RH (2005) Phylogeny and the evolution of floral diversity in Pedicularis (Orobanchaceae). Int J PI Sci 166(4):595-613
    129. Reznick D, Bryant M. J., Bashey F. (2002) r-and K-selection revisited:the role of population regulation in life history evolution. Ecology 83:1509-1520.
    130. Robakowski P., Montpied P.& Dreyer E. (2003) Plasticity of morphological and physiological traits in response to different levels of irradiance in seedlings of silver fir(Abies malba Mill). Trees (Berlin) 17:431-441.
    131.Robart B. W. (2000) The systematic of Pedicularis bracteosa:morphometrics, development, pollination ecology and molecular phylogenetics. Ph D. Dissertation, Illinois State University, USA.
    132. Roberts H. A., Neilson J. E. (1982) Role of temperature in the seasonal dormancy of seeds of Veronica hederifolia L.New Phytol 90:745-749.
    133. Roulston T.H., Cane J.H. (2000) Pollen nutritional content and digestibility for animals. Plant Systematics and evolution 222:187-209.
    134. Sakai S. (2000) Biased sex allocation in hermaphroditic plants. Journal of Plant Research 113:335-342.
    135. Samson D. A.& Werk K. S. (1986) Size-dependent effects in the analysis of reproductive effort in plants. American Naturalist 127:667-680.
    136. Sarkissian TS, Harder LD (2001) Direct and indirect responses to selection on pollen size in Brassica rapa L. J Evol Biol 14:456-468
    137. SAS INSTITUTE (2007) JMP 7.0. SAS Institute, Cary, NC, USA.
    138. Schlichting C. D. (1986) The evolution of phenotypic plasticity in plants. Annual Review Ecology Systematics 17:667-693.
    139. Sletvold N. (2002) Effects of plant size on reproductive output and offspring performance in the facultative biennial Digitalis purpurea. Journal Ecology 90: 958-966.
    140. Sprague E. F. (1962) Pollination and evolution in Pedicularis (Scrophulariaceae). Aliso 5:181-209.
    141. Stearns S.C. (1992) The evolution of life histories. Oxford:Oxford University Press.
    142. Stocklin J., Favre P. (1994) Effect s of plant size and morphological constraints on variation in reproductive components in two related species of Epilobium. Ecology 82:735-746.
    143. Sultan S. E.& Bazzaz F. A. (1993) Phenotypic plasticity in Polygonum persicaria. I. diversity and uniformity in genotypic norms of reaction to light. Evolution 47(4): 1009-1031.
    144. Sun S. G, Guo Y. H., Gituru R. W., Huang S. Q. (2005) Corolla wilting facilitates delayed autonomous self-pollination in Pedicularis dunniana (Orobanchaceae). Plant Syst. Evol.251:229-237
    145. Sun S. G, Liao K., Xia J., Guo Y. H.2005. Floral colour change in Pedicularis monbeigiana (Orobanchaceae). Plant Syst. Evol.255:77-85
    146. Tang Y, Xie H.S. (2006) A pollination ecology study of Pedicularis Linnaeus (Orobanchaceae) in a subalpine to alpine area of Northwest Sichuan, China. Arctic Antarctic Alpine Research 38:446-453.
    147. Tang Y, Xie JS, Sun H (2007) The pollination ecology of Pedicularis rex subsp. Lipkyana and P. rex subsp. Rex (Orobanchaceae) from Sichuan, southwestern China. Flora 202:209-217
    148. Thomson J.D., Plowright R.C. (1980) Pollen carryover, nectar rewards, and pollinator behavior with special reference to Diervilla lonicera. Oecologia 46:68-74.
    149. Thompson P. A (1975) Characterization of the germination responses of Silene dioica (L.) Clairv. populations from Europe. Annal of Botany 39:1-19.
    150. Torres C (2000) Pollen size evolution:correlation between pollen volume and pistil length in Asteraceae. Sex Plant Repro 12:365-370
    151. Tsoong P.C. (1955) A new system for the genus Pedicularis. Acta Phytotaxonomica Sinica 5:71-147.
    152. Ushimaru A, Itagaki T, Ishii HS (2003) Floral correlation in an andromonoecious species Commelina communis (Commelinaceae). PI Syst Evol 18:103-106
    153. Venable D.L. (1985) The evolutionary ecology of seed heteromorphism. Am Nat.126: 577-595
    154. Vera ML (1997) Effects of altiude and seed size on germination and seedling survival of heathland plants in north Spain. Plant Ecology 133:101-106
    155. Wagner GP (1996) Homologues, natural kinds and the evolution of modularity. Am Zool 36:36-43
    156. Wang H (1998) The pollination syndrome of Pedicularis rex (Orobanchaceae) and its biogeographic significance. Acta Bot Sin 40:781-785
    157. Wang H, Li DZ (2005) Pollination biology of four Pedicularis species (Orobanchaceae) in northwestern Yunnan, China Ann Mo Bot Gard 92:127-138
    158. Wang H, Mill R. R, Blackmore S. (2003) Pollen morphology and infra-generic evolutionary relationships in some Chinese pecies of Pedicularis (Scrophulariaceae). Plant Syst Evol 237:1-17
    159. Wang H, Yu WB, Chen JQ, Blackmore S (2009) Pollen morphology in relation to floral types and pollination syndromes in Pedicularis (Orobanchaceae) PI Syst Evol 277:153-162
    160. Weiner J. (1988) The influence of competition on plant reproduction. In:Lovett D. J. & Lovett D. L. (eds). Plant Reproductive Ecology.Oxford University Press, New York, pp.228-245.
    161. Weiss M. R. (1992) Ecological and evolutionary significance of floral color change.PhD. Thesis, University of California. Berkeley C. A.
    162. Weiss M. R. (1995) Floral color change:a widespread functional convergence. Amer. J. Bot.82:167-186.
    163. Westoby M., Jurado E.& Leishman M. (1992) Comparative evolutionary ecology of seed size. Trends in Ecology and Evolution 7:368-372.
    164. Willson M.F. (1979) Sexual selection in plants. Amer. Nat 113:777-790.
    165. Wright S.I., Barrett S.C.H. (1999) Size-dependent gender modification in a hermaphroditic perennial herb. Proceedings of the Royal Society of London 266: 225-232.
    166. Yang CF, Guo YH, Gituru RW, Sun SG (2002) Variation in stigma morphology-How does it contribute to pollination adaption in Pedicularis (Orobanchaceae)? PI Syst Evol 236:89-98
    167. Yang CF, Gituru RW, Guo YH (2007) Reproductive isolation of two sympatric louseworts, Pedicularis rhinanthoides and P longiflora (Orobanchaceae):how does the same pollinator type avoid interspecificaly pollen transfer? Bot J Lin Soci 90: 37-48
    168. Yang CF, Guo YH (2004) Pollen size-number trade-off and pollen-pistil relationships in Pedicularis (Orobanchaceae). PI Syst Evol 247:177-185
    169. Yang CF, Guo YH (2007) Pollen-ovule ratio and gamete investment in Pedicularis (Orobanchaceae). J Int P1 Bio 49(2):238-245
    170. Yang CF, Sun SG, Guo YH (2005) Resource limitation and pollen source (self and outcross) affecting seed production in two louseworts, Pedicularis siphonantha and P. longiflora (Orobanchaceae). Bot J Lin Soci 147:83-89
    171. Yang F. S., Wang X. Q., Hong D. Y. (2003) Unexpected high divergence in nrDNA ITS and extensive parallelism in floral morphology of Pedicularis (Orobanchaceae).Plant Syst Evol 240:91-105.
    172. Yang H., Holmgren N. H., Mill R. R. (1998) Pedicularis L. Raven P. H. Flora of China (18). Beijing:Science Press.97-209.
    173. Yu WB, Cai J, Wang H, Chen JQ (2008) Advance in floral divergence and reproductive adaptation in Pedicularis L. (Orobanchaceae). Chin Bull Bot 25: 392-400
    174. Zhao Z.G., Du G.Z., Zhou X.H., et al. (2006) Variations with altitude in reproductive trait s and resource allocation of three Tibetan species of Ranunculaceae. Australian Journal of Botany 54:691-700.
    175. Zhao Z.G., Meng J.L., Fan B.L., Du G.Z. (2008) Size-dependent sex allocation in Aconitum gymnandrum (Ranunculaceae):physiological basis and effects of maternal family and environment. Plant Biology 10:694-703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700