医用NiTi合金表面TiO_2膜层的制备及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用微弧氧化法对NiTi合金进行表面改性,提高其耐腐蚀性,降低Ni离子的析出量,改善NiTi合金的生物活性。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱(EDS)和X射线光电子谱(XPS)研究膜层的相结构、形貌和膜层组成成分。利用电化学方法和Hank’s溶液浸泡实验测试和评价了微弧氧化膜层的耐腐蚀性和对镍离子析出的抑制作用。通过SBF浸泡和成骨细胞培养研究了微弧氧化膜层诱导磷灰石的能力和膜层表面的细胞生长行为,评价微弧氧化膜层的生物活性。在SEM和荧光显微镜下观察了细胞在膜层表面的生长状态和繁殖行为,评价膜层的生物相容性。另外还通过对碱性磷酸的监测,评价细胞在膜层表面的活性。
     以浓硫酸为电解液对NiTi合金进行微弧氧化处理,在NiTi合金表面制备了一层厚度大约在0.4-0.5μm之间、与基体结合良好、能有效抑制镍离子析出的多孔TiO_2膜层。以浓磷酸为电解液对NiTi合金进行微弧氧化处理时,在合金表面形成了含P元素的TiO_2膜层。膜层内的TiO_2成分主要是以非晶态形式存在,水热处理之后,非晶态的TiO_2可以晶化形成锐钛矿型TiO_2。膜层厚度随着微弧氧化时间的增长先增大后减小,粗糙度随着处理时间的增长而增大。电流密度的增大使膜层厚度增厚。在浓磷酸中形成的微弧氧化膜层其耐腐蚀性能和抑制镍离子析出的能力都随着微弧氧化时间的增长或电流密度的增大先增大后减小。
     在含氧化钛溶胶的乙二醇电解液(Ti-Sol)中对NiTi合金进行微弧氧化,表面形成含有P元素的TiO_2膜层,膜层厚度相对于浓酸体系明显增厚。膜层内各物质是以非晶态形式存在的,水热处理之后,膜层内部非晶态形式的TiO_2结晶形成锐钛矿型TiO_2。随着微弧氧化时间的增长或者电流密度的增大,膜层的厚度和粗糙度显著增加。膜层的耐腐蚀性、抑制Ni离子析出能力以及膜层与基体间的结合强度随着微弧氧化时间的增长或电流密度的增大先提高后降低。在进一步添加甘油磷酸钙(Ca-Gp)的电解液(TiO_2-Sol-Ca)中对NiTi合金进行微弧氧化,制备的TiO_2膜层中含有Ca、P元素。XRD结果显示膜层中存在Ca_2P_4O_(12)4H_2O。电解液中Ca元素的添加使制备的微弧氧化膜层厚度和粗糙度增大,耐腐蚀性和抑制Ni离子析出能力降低,膜层与基体间的结合强度降低。
     NiTi合金在不同电解液中制备的微弧氧化膜层均能在SBF溶液中诱导形成羟基磷灰石,说明微弧氧化处理能够提高NiTi合金表面的生物活性。XRD、EDS、XPS和FT-IR结果表明诱导生成的磷灰石是一种含有碳酸根的类骨磷灰石。膜层中Ca、P元素可以提高膜层的诱导磷灰石沉积的能力。不同电解液中制备的膜层诱导磷灰石沉积能力由高到低依次为:TiO_2-Sol-Ca>TiO_2-Sol>浓磷酸>浓硫酸。
     NiTi合金表面生成的微弧氧化膜层有利于成骨细胞繁殖。成骨细胞培养结果表明,随着培养时间增长,成骨细胞在微弧氧化膜层表面增殖良好,细胞数量增多。和未处理的NiTi合金基体相比,成骨细胞在微弧氧化膜层表面的增殖速度上升,细胞生长更为旺盛。SEM观察发现细胞很好地铺展于涂层表面,紧密贴壁,形态完整,呈现多边形形态。细胞染色后的荧光显微镜图片显示成骨细胞在膜层表面存活完好且成长旺盛,说明微弧氧化层具有良好的细胞相容性。成骨细胞繁殖行为和碱性磷酸酶检测结果显示,在浓硫酸、浓磷酸和TiO_2-Sol体系中制备的陶瓷膜表面成骨细胞活性较高,繁殖能力较强,说明在这三种电解液体系中制备的膜层可以提高NiTi合金表面的细胞活性和生物相容性。但含钙TiO_2-Sol体系制备的微弧氧化膜层由于较高的Ni离子析出量抑制了成骨细胞在其表面的吸附和繁殖,和其他三种膜层相比生物相容性有所下降。
The micro-arc oxidation (MAO) method has been employed for the surfacemodification of NiTi alloy to improve its corrosion resistance, reduce the releasingamount of the Ni ions, and improve the biological activity of the NiTi alloy. Thesurface morphology, phase composition, element component and valence of thecoatings have been characterized by SEM, XRD, EDS, and XPS. The corrosionresistance and the Ni ion releasing rate of the samples have been evaluated byelectrochemical method and Hank's solution immersion test. SBF soakingexperiment has been employed to study the apatite-induce ability, and evaluate thebioactivity of the micro-arc oxidation coating. The osteoblast cell culture studyhas been employed to study the biocompatibility of the coating. The SEM andfluorescence microscopy have been employed to observe the growth andreproductive behavior of the cells on the surface of the MAO coating. The cellbioactivity on coating surface has been also evaluated by monitoring alkalinephosphatase activity.
     After NiTi alloy had been MAO treated in the concentrated sulfuric acidelectrolyte, a porous TiO_2ceramic coating with the thickness of0.4-0.5μm couldbe prepared on its surface. The coating was tightly adherented to the NiTi alloy,and could effectively inhibit the Ni releasing. When the concentrated phosphoricacid was employed as the MAO electrolyte to treat the NiTi alloy, a P-containingTiO_2coating could be formed on the surface of NiTi alloy. TiO_2in the film wasmainly in the amorphous state, and the amorphous TiO_2could be transformed toanatase after the hydrothermal treatment. The thickness of the MAO coating firstincreased and then decreased with the increase of the MAO processing time, andthe roughness increased with the growth of the processing time. The increase ofcurrent density could make the coating thickness thicker. Both the corrosionresistance and Ni ions inhibition ability of the MAO coating formed inconcentrated phosphoric acid electrolyte first increased and then decreased withthe increase of the MAO processing time or the increase of current density.
     When the NiTi alloy was MAO treated in the ethylene glycol electrolytewhich contained TiO_2Sol (TiO_2-Sol), a P-containing TiO_2coating could form onthe surface of the alloy, and the thickness of the coating was significantly thickerthan the coating formed in the concentrated acid system. The substance in thecoating was mainly in the amorphous state, and the amorphous TiO_2in the coatingcould be transformed to anatase after the hydrothermal treatment. The thicknessand roughness of the MAO coating increased with the increase of MAO processing time or the increase of current density. The corrosion resistance and Ni ionsinhibition ability of the MAO coating first increased and then decreased with theincrease of the MAO processing time or the increase of current density. When thecalcium glycerophosphate was added to the Ti-Sol electrolyte, Ca and P elementscould be found in the prepared TiO_2coating. The XRD results showed thatCa_2P_4O_(12)4H_2O had been formed in the coating. The addition of the Ca elementsin the MAO electrolyte increased the thickness and roughness of the MAO coating,reduced the corrosion resistance and the Ni ions inhibition ability of the MAOcoating, and also reduced the binding-strength between the coating and substrate.
     All the MAO coatings prepared in different electrolytes could induce theformation of hydroxyapatite when soaked in SBF solution, which indicated theMAO treatment could improve the bioactivity of the NiTi alloy. XRD, EDS, XPS,and FT-IR results showed that the induced apatite was a kind of carbonatecontaining bone-like apatite. Ca and P elements combination could improve theapatite-induced ability of the MAO coating. The order of the apatite-inducedability of the coatings form in different electrolytes was: TiO_2-Sol-Ca> TiO_2-Sol>concentrated phosphoric acid> concentrated sulfuric acid.
     The MAO coatings had the appropriate condition for the cell proliferation.The results of in-vitro cell culture showed that the proliferation of osteoblast cellhas rosen with the increase of the incubation time, and the proliferation ofosteoblasts was significantly higher than the untreated NiTi alloy substrate. SEMshowed that the cells spread well on the surface of the coating and tightlyadherented to the surface and it could also be found that the cells were intact andfull. Fluorescence microscopy revealed that the cells lived well in the surface ofthe coating and growed strongly. That indicated the micro-arc oxidation layer hasgood cell compatibility. Osteoblasts multiplication behavior and alkalinephosphatase results showed that osteoblasts had good bioactivity and proliferationablity on the MAO coatings prepared in concentrated sulfuric acid, concentratedphosphoric acid, and the TiO_2-Sol electrolyte. It could be included that NiTi alloysafter MAO treatment in these three electrolyte can improve its activity andbiocompatibility. But due to the high amount of Ni ions released from the MAOcoating prepared in TiO_2-Sol-Ca electrolyte, the osteoblast adsorption andreproduction was inhibited, and the biocompatibility of the coating declined.
引文
1. Li J. Behaviour of Titanium and Titania-based Ceramics in Vitro and in Vivo.Biomaterials,1993,14:229~232.
    2. Zhang F, Zheng Z, Chen Y, Liu X., Chen A., Z. Jiang, In Vivo Investigation ofBlood Compatibility of Titanium Oxide Films. J. Biomed.Mater. Res.1998,42:128–133.
    3. Shabalovskaya S, Anderegg J, Humbee V J, Critical Overview of NitinolSurface and Their Modifications for Medical Applications. Acta Biomater.2008,4:447~467
    4. Stupp S I, Baun P V. Molecular Manipulation of Microstructures: BiomaterialsCeramics and Semiconductors. Science.1997,277:1242~1247
    5. Williams D F. On the Nature of Biomaterials. Biomaterials.2009,30:5897-5909
    6. Leeuwenburgh S C G, Wolke J G C, Siebers M C, Schoonman J, Jansen J A, InVitro and in Vivo Reactivity of Porous, Electrosprayed Calcium PhosphateCoatings. Biomaterials.2006,27:3368–3378.
    7. Scholz M S, Blanchfield J P, Bloom L D, Coburn B H, Elkington M, Fuller J D,Gilbert M E, Muflahi S A, Pernice M F, Rae S I. The Use of CompositeMaterials in Modern Orthopaedic Medicine and Prosthetic Devices: A Review.Composites Science and Technology.2011,71:1791–1803.
    8. Iafisco M, Bosco R, Leeuwenburgh S C G, Beucken J J J P, Jansen J A, Prat M,Roveri N. Electrostatic Spray Deposition of Biomimetic NanocrystallineApatite Coatings onto Titanium. Adv. Eng. Mater.2012,14: B13–B20.
    9. Wang M. Developing Bioactive Composite Materials for Tissue Replacement.Biomaterials.2003,24:2133~2151
    10. Petty O, Zanotto E D. Hench L L. Highly Bioactive P2O5-Na2O-CaO-SiO2Glass-Ceramics. J Non-crystalline Solids.2001,292:115-126
    11. Guo D G, Xu K W, Zhao X Y, Han Y. Development of a Strontium-ContainingHydroxyapatite Bone Cement. Biomaterials.2005,26:4073-4083
    12. Kalpana S K. Biomaterials in Total Joint Replacement. Colloids and Surfaces B:Biointerfaces.2004,39:133-142
    13. Domanski M, Winnubst L, Luttge R, Lamers E, Walboomers X F, Jansen J,Gardeniers H. Production and Characterization of Miro-and Nano-Features inBiomedical Alumina and Zirconia Ceramics Using a Tape Casting Route.Journal of Materials Science: Materials in Medicine.2012,23:1637-1644
    14. Alghazzawi T F, Lemons J, Liu P R, Essig M E, Bartolucci A A, Janowski G M.Influence of Low-Temperature Environmental Exposure on the MechanicalProperties and Structural Stability of Dental Zirconia. Journal of Prosthodontics.2012,21:363-369
    15. Bai B S, Rahaman M N. Orthopedic Applications of Silicon Nitride Ceramics.Acta Biomaterialia.2012,8:2889-2898
    16. Amaral M, Lopes M A, Silva R F, Santos J D. Densification Route andMechanical Properties of Si3N4–Bioglass Biocomposites. Biomaterials.2002,23:875-862
    17.赵成如,夏毅然,史文红.医用高分子材料在医疗器械中的应用.中国医疗器械信息.2006,12:9-16
    18.李宝玉.生物医学材料.北京:化学工业出版社,2003:222
    19.刘鹏,陈亚芍.聚氯乙烯表面共价键合肝素及抗凝血性的研究.功能高分子学报.2004,17: B35~40.
    20.刘爱堂,高桂芝.医用硅橡胶的最新进展.特种橡胶制品.2003,24:60-61
    21.钱清.甲壳质纤维的制备及应用.合成技术及应用.2001,16:29~32
    22.刘潇,李彦锋,崔彦君,赵光辉.脂肪族聚酯类可生物降解医用高分子材料的研究进展.化学通报.2010,3:220-226
    23. Gunatillake P A, Adhikari R. Polymers for tissue engineering. European Cellsand Materials.2003,5:1~16
    24.戈进杰.生物降解高分子材料及其应用.化学工业出版社,2002:281-289
    25. Kokubo T, Kim H M, Kawashita M, Nakamura T. Bioactive Metals: Preparationand Properties. J. of Materials Science: Materials in Medicine.2004,15:99~107
    26. Biehl V, Breme J. Metallic Biomaterials. Materialwissenschaft UndWerkstofftechnik.2001,32:137-141
    27.徐祖耀.形状记忆材料.上海交通大学出版社.2000:401-437.
    28. Zurbitu J, Castillo G, Urrutibeastua I. Low-Energy Trnsile-Impact Behavior ofSuperelastic NiTi Shape Memory Alloy Wires. Mechanics of Materials,2009,41:1050-1058
    29. Kohn F J G. Metal in Medical Applications. Current Opinion in Solid State&Materials Science,1998,3:309-316
    30.杨大志,吴明雄. Ni-Ti形状记忆合金在生物医学领域的应用.冶金工业出版社.2003:57-60
    31. Civjan S, Huget E F, Desimon L B. Potential Applications of CertainNickel-Titanium (nitinol) Alloys. Dent Res,1975,54(1):89-96
    32. Krishna B V, Bose S, Bandyopadhyay A. Laser Processing of Net-Shape NiTiShape Memory Alloy. J Metal Mater Trans A.2007,38:1096–103
    33. Puleo D A, Huh W W. Acute Toxicity of Metal Ions in Cultures of OsteogenicCells Derived from Bone Marrow Stromal Cells. Journal of AppliedBiomaterials.1995,6:109-116
    34. Jacobs J J, Gilbert J L, Urban R M. Corrosion of Metal Orthopaedic Implants.Jounal of Bone and Joint Surgery.1998,80:268-282
    35. Poehler O E M, Degradation of Metallic Orthopedic Implants: Biomaterials inReconstructive Surgery, C. V. Mosby Company, St. Louis,1983,158-228
    36. Shabalovskaya S A. Surface, Corrosion and Biocompatibility Aspects of Nitinolas an Implant Materials. Bio-Medical Materials and Engineering.2002,12:69-109
    37. Speck K M, Fraker A C, Anodic Polarization Behavior of Ti-Ni and Ti-6A1-4Vin Simulated Physiological Solutions. Journal of Dental Research,1980,59:1590-1595
    38. Sarkar N K, Redmond W, Schwaninger B, Goldberg A J, The chloride corrosionbehaviour of four orthodontic wires. Journal of Oral Rehabilitation,1983,10:121-128
    39. Cragg A H, Jong D S C, Barnhart W H, Landas S K, Smith T P, Radiology,Nitnol Intravascular Stent: Results of Preclinical Evaluation.1993,189:775-778
    40. Rondelli G. Corrosion Resistance Tests on NiTi Shape Memory Alloy.Biomaterials.1996,17:2003-2008
    41. Rondelli G, Vcentini B, Cigada A. The Corrosion Behaviour of Nickel TitaniumShape Memory Alloys. Corrosion Science.1990,30:805-812
    42. Rondelli G, Vicentini B. Localized Corrosion Behaviour in Simulated HumanBody Fluids of Commercial Ni-Ti Orthodontic Wires. Biomaterials.1999,20:785-792
    43. Assad M, Lemieux N, Rivard C H, Yahia L H. Comparative in VitroBiocompatibility of Nickel-Titanium, Pure Nickel, Pure Titanium, and StainlessSteel: Genotoxicity and Atomic Absorption Evaluation. Bio-Medical Materialsand Engineering.1999,9:1-12
    44. Hu T, Xin Y C, Wu S L, Chu C L, Lu J, Guan L, Chen H M, Hung T F, Yeung KW K, Chu P K, Corrosion Behavior on Orthopedic NiTi Alloy withNanocrystalline/amorphous Surface. Materials Chemistry and Physics.2011,126:102–107
    45. Sun Z L, Wataha J C, Hanks C T. Effects of Metal Ions on Osteoblastlike CellMetabolism and Differentiation. Biomed Mater Res,1997,34:29-37
    46. Yamamoto A, Honma R, Sumita M. Journal of Biomedical Materials Research,1998,39:331-340
    47. Laing P G, Ferguson A B J, Hodge E S. Journal of Biomedical MaterialsResearch,1967,1:135-149
    48. Takamula K, Hayashi K, Ishinshi N, Yamada T, Sugioka Y, Journal ofBiomedical Baterials Research,1994,28:583-589
    49. Es-Souni M, Fischer-Brandies H. Assessing the Biocompatibility of NiTi ShapeMemory Alloys Used for Medical Applications. Analytical and BioanalyticalChemistry,2005,381:557-56750. Shih C C, Lin S H, Chen Y L. The Cytotoxicity of Corrosion Products of NitinolStent Wire on Cultured Smooth Muscle Cells. J. Biomed. Mater. Res.2007,82A:731-739
    51. Virtanen S, Milo ev I, Gomez-Barrena E, Treb e R, Salo J, Konttinen Y T.Special Modes of Corrosion under Physiological and Simulated PhysiologicalConditions. Acta Biomaterialia.2008,4:468-476
    52. Shabalovskaya S, Anderegg J, Rondelli G, Vanderlinden W, Feyter S D.Comparativ e in Vitro Performances of Bare Nitinol Surfaces.BiomedicalMaterials Engineering.2008,18:1-14
    53. Shabalovskaya S, Anderegg J, Humbeeck V J. Critical Overview of NitinolSurfaces and Their Modifications for Medical Applications. Acta Biomaterialia.2008,4:447-467
    54. Shabalovskaya S A, Rondelli G C, Undisz A, Anderegg J W, Burleigh T D,Rettenmayr M. The Electrochemical Characteristics of Native Nitinol Surfaces.Biomaterials.2009,30:3662–3671.
    55. Pichugin V F, Surmenev R A, Shesterikov E V, Ryabtseva M A, Eshenko E V,Tverdokhlebov S I, Prymak O, Epple M. The Preparation of CalciumphosphateCoatings on Titanium and Nickel–Titanium by RF-Magnetron-SputteredDeposition: Composition, Structure and Micromechanical Properties. Surfaceand Coatings Technology.2008,202:3913-3920
    56. Choi J, Bogdanski D, K ller M, Esenwein S A, Müller D, Muhr G, Epple M.Calcium Phosphate Coating of Nickel–Titanium Shape-Memory Alloys.Coating Procedure and Adherence of Leukocytes and Platelets. Biomaterials.2003,24:3689–3696
    57. Prymak O, Bogdansk D, Esenwein S A, K ller M, Epple M. NiTi ShapeMemory Alloys Coated with Calcium Phosphate by Plasma-Spraying. Chemicaland Biological Properties. Mat.-wiss. u. Werkstofftech.2004,35:346-351
    58. Bogdanski D, Epple M, Esenwein S A, Muhr G, Petzoldt V, Prymak O, WeinertK, K ller M. Biocompatibility of Calcium Phosphate-Coated and ofGeometrically Structured Nickel-Titanium (NiTi) by in Vitro Testing Methods.Materials Science and Engineering A.2004,378:527–531
    59. Chen D Y, Jordan E H, Gell M, Ma X Q, Dense TiO2Coating Using the SolutionPrecursor Plasma Spray Process. J. Am. Ceram. Soc.2008,91:865–872
    60. Chen D Y, Jordan E H, Gell M, Wei M. Apatite Formation on Alkaline-TreatedDense TiO2Coatings Deposited Using the Solution Precursor Plasma SprayProcess. Acta. Biomater.2008,4:553–559
    61. Chu P K. Bioactivity of Plasma Implanted Biomaterials. Nuclear Instrumentsand Methods in Physics Research Section B: Beam Interactions with Materialsand Atoms,2006,242:1-7
    62. Cheng Y, Zheng Y F, Formation of TiN films on biomedical NiTi shapememory alloy by PIIID. Materials Science and Engineering: A.2006,434:99-104
    63. Sui J H, Cai W, Formation of ZrO2Coating on the NiTi Alloys for ImprovingTheir Surface Properties. Nuclear Instruments and Methods in Physics ResearchSection B: Beam Interactions with Materials and Atoms,2006,251:402-406
    64. Tan L, Dodd R A, Crone W C, Corrosion and wear-corrosion behavior of NiTimodified by plasma source ion implantation. Biomaterials,2003.24:3931-3939
    65. Poon R W Y. Anti-Corrosion Performance of Oxidized and Oxygen Plasma-Implanted NiTi Alloys. Materials Science and Engineering A,2005,390:444-451
    66. Poon R W Y. Improvement on Corrosion Resistance of NiTi OrthopedicMaterials by Carbon Plasma Immersion Ion Implantation. Nuclear Instrumentsand Methods in Physics Research Section B: Beam Interactions with Materialsand Atoms,2006.242:270-274
    67. Mandl S, Fleischer A, Manova D, Rauschenbach B. Wear Behavior of NiTiShape Memory Alloy after Oxygen-PIII Treatment. Surface and CoatingsTechnology,2006,200:6225-6229
    68. Cheng Y, Zheng Y F. Characterization of TiN, TiC and TiCN Coatings onTi-50.6at.%Ni Alloy Deposited by PIII and Deposition Technique. Surface andCoatings Technology,2007.201:4909-4912
    69. Poon R W Y. Carbon Plasma Immersionion Implantation of Nickel-TitaniumShape Memory Alloys. Biomaterials,2005.26:2265-2272
    70. Muguruma T, Iijima M, Brantley W A, Mizoguchi I. Effects of a Diamond-LikeCarbon Coating on the Frictional Properties of Orthodontic Wires. AngleOrthod.2011,81:141–148
    71. Cui Z D, Man H C, Yang X J. The Corrosion and Nickel Release Behavior ofLaser Surface-Melted NiTi Shape Memory Alloy in Hanks’ Solution. Surfaceand Coatings Technology.2005,192:347-353
    72.崔振铎.杨贤金.等.激光表面重熔NiTi形状记忆合金组织及腐蚀性能.材料热处理学报.2003,24:66-69
    73. Man H C, Cui D Z, Yue T M. Corrision Properties of Laser Surface Melted NiTiShape Memory Alloy. Scripta Materialia.2001,45:1447-1453
    74. Cui Z D, Man H C, Yang X J. Characterization of the Laser Gas NitridedSurface of TiNi Shape Memory Alloy. Applied surface science.2003,208:388-393
    75.刘福,徐吉林,王福平等.医用NiTi合金的表面改性研究进展.稀有金属材料与工程,2008,4:748-752
    76. Man H C, Zhang S, Cheng F T, et al. In Situ Formation of a TiN/Ti Metal MatrixComposite Gradient Coating on NiTi by Laser Cladding and Nitriding. Surface&Coatings Technology,2006,200:4961-4966
    77. Wong M H, Cheng F T, Man H C. Laser Oxidation of NiTi for ImprovingCorrosion Resistance in Hanks’ Solution. Materials Letters,2006,7:1-4
    78. Firstov G, Votchev R, Kumar H, Blanpain B, Humbeeck V J. Surface Oxidationof NiTi Shape Memory Alloys. Biomaterials.2002,23:4863–71
    79. Shabalovskaya S, Wataha J, Anderegg J, Hauch K, Cunnick J. Surfacetreatments and biocompatibility of Nitinol. In: Proceedings of internationalconference on shape memory and superelastic technologies. Germany:Baden-Baden,2004.367-373
    80. Shabalovskaya S, Anderegg J, Laabs F, Thiel P, Rondelli G. Surface Conditionsof Nitinol Wires, Tubing, and as-Cast Alloys: the Effect of Chemical Etching,Aging in Boiling Water, and Heat Treatment. J. Biomed. Mater. Res.2003,65B:193-203
    81. Gu Y W, Tay B Y, Lim C S, Yong M S. Biomimetic Deposition of ApatiteCoating on Surface-Modified NiTi Alloy. Biomaterials.2005,26:6916-6923
    82. W.D. Miao, X.J. Mi, M.N. Zhu. Surface Oxidation Behavior of a TiNi A1loy.Rare Metals.2000,19:654-658
    83. Sun T, Wang M, Lee W C. Surface Characteristics, Properties and in VitroBiological Assessment of a NiTi Shape Memory Alloy after High TemperatureHeat Treatment or Surface H2O2-Oxidation: A Comparative Study. MaterialsChemistry and Physics.2011,130:45–58
    84. Gu Y W, Tay B Y, Lim C S, Yong M S. Characterization of Bioactive SurfaceOxidation Layer on NiTi Alloy. Applied Surface Science.2005,252:2038–2049
    85. Yang X J, Hu R X, Zhu S L. Accelerating the Formation of a CalciumPhosphate Layer on NiTi Alloy by Chemical Treatments. Scripta Materialia.2006,54:1457-1462
    86. Chen M F, Yang X J, Liu Y, Study on the Formation of an Apatite Layer onNiTi Shape Memory Alloy Using a Chemical Treatment Method. Surface andCoatings Technology.2003,173:229-234
    87.朱胜利,杨贤金等.化学表面处理对NiTi形状记忆合金耐蚀性的影响.功能材料.2002,33:172-175
    88. Mohanchandra K P, Chun Y, Prikhodko S V, Carman G P. TEM characterizationof super-hydrophilic Ni–Ti thin film. Materials Letters.2011,65:1184–1187
    89. Chu C, Chung C, Chu P. Surface oxidation of NiTi shape memory alloy inboiling aqueous solution containing hydrogen peroxide. Mater. Sci. Eng.2006,A417:104-109
    90. Chu C, Chung C, Zhou J, Pu Y, Lin P. Fabrication and characteristics ofbioactive film sodium titanate/titania graded film on NiTi shape memory alloy.J. Biomed. Mater. Res.2005,75A:595–602
    91. Shi P, Geng F, Cheng F T. Preparation of Titania-Hydroxyapatite Coating onNiTi via a Low-Temperature Route. Materials letters.2006,60:1996-1999
    92. Yang C L, Chen F L, Chen S W. Anodization of the Dental Arch Wires.Materials Chemistry and Physics.2006,100:268-274
    93. Cheng F T, Shi P, Pang G K H. Microstructural Characterization of Oxide FilmFormed on NiTi by Anodization in Acetic Acid. Journal of Alloys andCompounds.2007,438:238-242
    94. Wong M H, Cheng F T, Man H C. Characteristics, Apatite-Forming Ability andCorrosion Resistance of NiTi Surface Modified by AC Anodization, AppliedSurface Science.2007,253:7527-7534
    95. Shi P, Cheng F T, Man H C. Improvement in Corrosion Resistance of NiTi byAnodization in Acetic Acid. Materials Letters.2007,61:2385-2388
    96. Cheng F T, Shi T P, Man H C. Nature of Oxide Layer Formed on NiTi byAnodic Oxidationg in Methanol. Materials Letters.2005,59:1516-1520
    97. Redlich M, Gorodnev A, Feldman Y, Kaplan-Ashiri I, Tenne R, Fleischer N,Genut M, Feuerstein N. Friction Reduction and Wear Resistance of Electro-co-Deposited Inorganic Fullerene-Like WS2Coating for Improved StainlessSteel Orthodontic Wires. J. Mater. Res.2008,23:2909–2915
    98. Samorodnitzky-Naveh G R, Redlich M, Rapoport L, Feldman Y, Tenne R.Inorganic Fullerene-Like Tungsten Disulfide Nanocoating for FrictionReduction of Nickel-Titanium Alloys. Nanomedicine (Lond.).2009,4:943–950
    99. Abedin S Z E, Welz-Biermann U, Endres F A, Study on the Electrodeposition ofTantalum on NiTi Alloy in an Ionic Liquid and Corrosion Behaviour of theCoated Alloy. Electrochem. Commun.2005,7:941–946
    100. Maleki-Ghaleh H, Khalili V, Khalil-Allafi J, Javidi M. Hydroxyapatite coatingon NiTi shape memory alloy by electrophoretic deposition process. Surface&Coatings Technology.2012,208:57–63
    101.Qiu D, Wang A, Yin Y, Characterization and Corrosion Behavior ofHydroxyapatite/Zirconia Composite Coating on NiTi Fabricated byElectrochemical Deposition. Applied Surface Science.2010,257:1774–1778
    102.Qiu D, Yang L, Yin Y, Wang A, Preparation and characterization ofhydroxyapatite/titania composite coating on NiTi alloy by electrochemicaldeposition. Surface&Coatings Technology.2011,205:3280-3284
    103.刘敬肖,杨大智,蔡英骥等.医用NiTi合金表面溶胶—凝胶法制备TiO2-SiO2薄膜.无机材料学报.2001,16:75-80
    104.刘敬肖.316L不锈钢和NiTi合金表面薄膜的制备、结构及其生物相容性研究.大连理工大学博士论文.2001
    105.刘敬肖,杨大智,史非等.金属表面TiO2薄膜的溶月交凝胶法制备及其血液相容性研究.中国生物医学工程学报.2002,21:398-403
    106.Cheng F T, Shi P, Man H C. Anatase Coating on NiTi via a Low-Temperaturesol-gel Route for Importing Corrosion Resistance. Scripta Materialia,2004,51:1041-1045
    107.Chiu K Y, Wong M H, Cheng F T, Man H C. Characterization and CorrsionStudies of Titania-Coated NiTi Prepared by sol-gel Technique and SteamCrystallization. Applied Surface Science.2007,14:1-7
    108.Cheng F T, Shi P, Man H C. A Preliminary Study of TiO2Deposition on NiTi byHydrothermal Methord. Surface&Coatings Technology.2004,187:26-32
    109.Wong M H, Cheng F T, Man H C. In Situ Hydrothermal Synthesis of OxideFilm on NiTi for Improving Corrosion Resistance in Hanks’ Solution. ScriptaMaterialia.2007,56:205-208
    110.Markov G A, Mironava M K, Potapova O G, Izvetiya Akademii Nauk.Neogranicheskie Materialy.1983,19,7:110-115
    111.Wirtz G P, Brown S D, Kriven W M. Ceramic Coating by Anodic SparkDeposition. Manufprocess.1991,6:87-105
    112.Krysmann W, Kurze P, Dittrich K H, Procrss Characteristics and Parameters ofAnodic Oxidation by Spark Discharge. Cryst. Res. Technol.1984,19:973-979
    113.Kurze P, Krysmann W, Schreckenbach J. Colored ANOF Layerson Alumium.Cryst. Res. Technol.1987,22:53-58
    114.Kurze P. Magnesiumlegierungen Electrochemisch Beschichten. Metallober-flache.1994,48:104-105
    115.Güntherschlze A, Betz H. Die Electronenstromung in Isolatoren bei ExtremenFeldstarken. Z. Phys.1934,91:70-96
    116.Shen D, Zou J,Wu L, Liu F, Li G, Cai J, He D, Ma H, Jiang G, Effect of hightemperature oxidation prefab film on formation of micro-arc oxidation coatingson6061aluminum alloy. Applied Surface Science.2013,265:431-437
    117.Yerokhin A L, Shatrov A, Samsonov V, Shashkov P, Pilkington A, Leyland A,Matthews A. Oxide ceramic coatings on aluminium alloys produced by a pulsedbipolar plasma electrolytic oxidation process. Surface and Coatings Technology.2005,199:150-157
    118.Wang K, Kim G W, Park K Y, Byeon S S, Ahmed F, Koo B H. Effect of theNitrogen Inducing agents on the corrosion behavior of AlON-Al2O3coatingsprepared by electrolytic plasma processing on an Al6061alloy.2013,19:77-80
    119.Lim T S, Ryu H S, Hong S H. Plasma Electrolytic Oxidation/CeriumConversion Composite Coatings for the Improved Corrosion Protection ofAZ31Mg Alloys. The Journal of The Electrochemical Society.2013,160:C77-C82
    120.Laleh M, Kargar F, Rouhaghdam A S. Investigation of Rare Earth Sealing ofPorous Micro-Arc Oxidation Coating Formed on AZ91D Magnesium Alloy.Journal of Rare Earths.2012,30:1293-1297
    121.Blawert C, Sah S P, Liang J, Huang Y D, H che D. Role of Sintering and ClayParticle Additions on Coating Formation during PEO Processing of AM50Magnesium Alloy. Surface and Coatings Technology.2012,213:48-58
    122.Chu C L, Han X, Bai J, Xue F, Chu P K. Fabrication and Degradation Behaviorof Micro-Arc Oxidized Biomedical Magnesium Alloy Wires. Surface andCoatings Technology.2012,213:307-312
    123.Durdu S, Deniz F, Kutbay I, Usta M, Characterization and Formation ofHydroxyapatite on Ti6Al4V Coated by Plasma Electrolytic Oxidation. Journalof Alloys and Compounds.2013,551:422-429
    124.Krupa1D, Baszkiewicz1J, Zdunek1J, Sobczak J W, Lisowski W, Smolik J,Slomka Z. Effect of Plasma Electrolytic Oxidation in the Solutions ContainingCa, P, Si, Na on the Properties of Titanium. Journal of Biomedical MaterialsResearch Part B: Applied Biomaterials.2012,100B:2156–2166
    125.Abbasi S, Golestani-Fard F, Rezaie H R, Mirhosseini S M M, Ziaee A.MAO-Derived Hydroxyapatite–TiO2Nanostructured Bio-ceramic Films onTitanium. Materials Research Bulletin.2012,47:3407–3412
    126.Shin K R, Kob Y G, D.H. Shin, Surface Characteristics of ZrO2-containingOxide Layer in Titanium by Plasma Electrolytic Oxidation in K4P2O7Electrolyte. Journal of Alloys and Compounds.2012,536: S226–S230
    127.Petkovi a M, Stojadinovi a S, Vasili b R, Zekovi a L. Characterization ofOxide Coatings Formed on Tantalum by Plasma Electrolytic Oxidation in12-tungstosilicic Acid. Applied Surface Science.2011,257:10590–10594
    128.Stojadinovi S, Jovovi J, Petkovi M, Vasili R, Konjevi N. Spectroscopicand Real-time Imaging Investigation of Tantalum Plasma Electrolytic Oxidation(PEO). Surface and Coatings Technology.2011,205:5406–5413
    129.Yan Y Y, Han Y, Lu C G. The Effect of Chemical Treatment on Apatite-FormingAbility of the Macroporous Zirconia Films Formed by Micro-Arc Oxidation.Applied Surface Science.2008,254:4833-4839
    130.Ha J Y, Tsutsumi Y, Doi H, Nomura N, Kim K H, Hanaw T. Enhancement ofCalcium Phosphate Formation on Zirconium by Micro-Arc Oxidation andChemical Treatments. Surface and Coatings Technology.2011,205:4948-4955
    131.Yan Y Y, Han Y, Li D C, Huang J J, Lian Q. Effect of NaAlO2Concentrationson Microstructure and Corrosion Resistance of Al2O3/ZrO2Coatings Formed onZirconium by Micro-arc Oxidation. Applied Surface Science.2010,256:6359–6366
    132.Yan Y Y, Han Yong, Huang J J. Formation of Al2O3–ZrO2Composite Coatingon Zirconium by Micro-arc Oxidation. Scripta Materialia.2008,59:203-206
    133.Norlin A, Pana J, Leygraf C. Fabrication of Porous Nb2O5by PlasmaElectrolysis Anodization and Electrochemical Characterization of the Oxide.The Journal of the Electrochemical Society.2013,160: B225-B230
    134.Ikonopisov S. Theory of electrical breakdown during formation of barrieranodic films. EIectrochim Acta,1977,22:1077-1082
    135.Ragalevicius R, Stalnionis G, Niaura G. Micro-Arc Oxidation of Ti in a Solutionof Sulfuric Acid and Ti3+Salt. Applied Surface Science,2008,254:1608-1613
    136.Nie X, Leyland A, Matthews A. Deposition of Layered BioceramicHydroxyapatite/TiO2Coatings on Titanium Alloys Using a Hybrid Technique ofMicro-Arc Oxidation and Electrophoresis. Surface and Coatings Technology.2000,125:407-414
    137.Tang G X, Zhang R J, Yan Y N. Preparation of Porous Anatase Titania Film.Materials Letters,2004,58:1857-1860
    138.Xu J L, Liu F, Wang F P, Yu D Z, Zhao L C. Formation of Al2O3Coatings onNiTi Alloy by Micro-Arc Oxidation Method. Current Applied Physics.2009,9:663-666
    139.Xu J L, Liu F, Wang F P, Zhao L C. Alumina Coating Formed on Medical NiTiAlloy by Micro-Arc Oxidation. Materials Letters,2008,62:4112-4114
    140.Xu J L, Liu F, Wang F P, Yu D Z, Zhao L C. The Corrosion Resistance Behaviorof Al2O3Coating Prepared on NiTi Alloy by Micro-arc Oxidation. Journal ofAlloys and Compounds.2009,472:276–280
    141.Liu F, Xu J L, Yu D Z, Wang F P, Zhao L C. Effects of Cathodic Voltages on theStructure and Properties of Ceramic Coatings Formed on NiTi Alloy byMicro-arc Oxidation. Materials Chemistry and Physics.2010,121:172–177
    142.Liu F, Xu J L, Wang F P, Yu D Z, Zhao L C. Microstructure and CorrosionResistance Behavior of Ceramic Coatings on Biomedical NiTi Alloy Preparedby Micro-arc Oxidation. Applied Surface Science.2008,254:6642–6647
    143.Liu F, Xu J L, Yu D Z, Wang F P, Zhao L C. Wear Resistance of Micro-arcOxidation Coatings on Biomedical NiTi Alloy. Journal of Alloys andCompounds.2009,487:391–394
    144.Liu F, Shimizu T, Yue Q, Xu J L, Wang F P. Structure and Tribological Propertiesof Micro-arc Oxidation Coatings for Reduction of Ni2+Iion Release on BiomedicalNiTi Alloy. Journal of the Ceramic Society of Japan.2010,118:357-361
    145.Liu F, Shimizu T. Effects of NaAlO2Concentrations on Structure and Characterizationof Micro-arc oxidation Coatings Formed on Biomedical NiTi Alloy. Journal of theCeramic Society of Japan.2010,118:113-117
    146.葛振东.钛及镍钛合金表面微弧氧化生物涂层的研究.大连理工大学硕士学位论文.2009
    147.徐吉林. NiTi合金表面微弧氧化改性研究.哈尔滨工业大学博士学位论文.2009
    148.Devilliers D, Dinh M T, Mahé E, Krulic D, Larabi N, Fatouros N. Behaviour ofTitanium in Sulphuric Acid-Application to DSAs. Journal of New Materials forElectrochemical Systems2006,9:221-232.
    149.Neo M, Kotani S, Erjita Y. Differences in Ceramic-bone Interface betweenSurface-active Ceramics and Resorbable Ceramics: a Study by Scanning andTransmission Electron Microscopy. J Biomed Mater Res,1992,26:255-267.
    150.B1ock M S, Kent J N, Kay J F. Evaluation of hydroxyapatite-coated titaniumdental implants in dogs. J Oral Maxillofac Surg,1987,45:601-607147.
    151.Müller L, Müller F A. Preparation of SBF with Different HCO3-Content and ItsInfluence on the Composition of Biomimetic Apatites. Acta Biomateriala.2006,2:181-189
    152.Kim H K, Kim Y J, Park S J. Thin Film of Low-crystalline Calcium PhosphateApatite Formed at Low Temperature. Biomaterials,2000,21:1129-1134
    153.Miyaji F, Iwai M, Kokubo T. Chemical Surface Treatmeng of Silicone forInducing its Bioactivity. J. Mater. Sci. Mater. Med.,1998,9:61-69.
    154.Mullin J W. Crystallization. Butterworth-Heinemann.2001:86-214
    155.魏大庆, Ti6Al4V表面微弧氧化生物涂层结构修饰与磷灰石形成动力学.哈尔滨:哈尔滨工业大学博士学位论文,2008.
    156.Core o J, Martínez A, Core o O, Bolarín A, Sánchez F. Calcium and PhosphateAdsorption as Initial Steps of Apatite Nucleation on Sol-gel-prepared TitaniaSurface. J. of Biomedical Materials Research.2003,64A:131~137
    157.Kim H M, Miyaji F, Kokubo T, Nakamura T. Preparation of Bioactive Ti and ItsAlloys via Simple Chemical Surface Treatment. J. of Biomedical MaterialsResearch.1996,32:409~417

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700