星鲽生殖生理和内分泌特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国重要海水养殖经济鱼种—星鲽为研究对象,以建立稳定的星鲽人工繁育技术体系为研究目的,以脑垂体、性腺发育规律、性类固醇激素表达、配子发育成熟、GnRH克隆表达为研究核心和主线,综合运用组织学、电镜技术、组织化学、放射免疫技术、分子克隆技术、基因定量表达和激素诱导技术等方法,全面认识了星鲽生殖生理和内分泌特征。以此为参考,在生产实践中成功诱导星鲽亲鱼性腺成熟产卵,为建立稳定的星鲽人工繁育技术提供了参考依据和技术支持。本文各部分研究结果简述如下:
     首次系统研究和认识了星鲽亲鱼卵巢发育规律、性类固醇激素表达与温光调控的关系。星鲽卵巢发育属非同步分批发育模式,一年一次成熟分批产卵类型。卵巢年周期发育过程中可见5个发育时相的卵母细胞,卵巢发育相应划分为5个发育时期。性腺指数(GSI)、肝脏指数(HSI)和肥满度(CF)在亲鱼的年周期发育中呈现规律性的变化。血浆性类固醇激素水平呈现周期性变化,并与性腺成熟周期具有密切的藕联关系。水温和光周期对卵巢发育具有明显的影响并显著影响性类固醇激素的表达。圆斑星鲽和条斑星鲽卵巢发育的有效积温分别为1050日·度和1180日·度,研究结果可为亲鱼促熟和激素催产提供技术依据。首次研究了外源激素sGnRH、LHRHa对2龄雌性圆斑星鲽后备亲鱼性腺发育的诱导效果:2龄亲鱼对外源激素的诱导应答效应较性成熟亲鱼弱,卵母细胞发育可达到5时相早中期但未能达到水合成熟,性类固醇激素表达水平显著升高,但未能引发排卵。
     探明了星鲽精巢年周期发育的生理和内分泌特征:精巢年周期发育过程中可见5个时相的生殖细胞,精巢发育相应分为5期。研究中首次发现圆斑星鲽雄鱼存在雌雄同体现象,但机制不明。认识了星鲽精巢年周期发育过程的性类固醇激素表达变化规律。圆斑星鲽和条斑星鲽精子具有相似的共同结构,都具有头部、中段和鞭毛3部分,其结构与其它高等鱼类精子结构相似。精子不具顶体,但具有开口于核前端稍偏处呈不规则状的核前部凹陷及核内核泡。圆斑星鲽精子活力最适宜温度8 - 12℃,最适宜盐度25 - 35,最适宜pH 7 - 8。超低温冷冻保存了圆斑星鲽精子,以12%GLY+10%YK及12%MeOH+10%YK保存精子的效果较好,解冻后受精率和孵化率较高,与新鲜精液无显著差异。外源激素GnRH和HCG处理都可以显著提高条斑星鲽精液质量,精液流动性和液化能力增强、精子活动率和快速活动率显著提高、快速活动时间和精子寿命延长,性类固醇激素表达水平明显升高,表明缓释激素诱导可有效提升条斑星鲽雄鱼的精液质量。
     首次观察了条斑星鲽脑垂体组织和超微结构:脑垂体呈背腹型,包括神经垂体和腺垂体两部分。神经垂体为一束神经纤维,中间夹杂两种垂体细胞和有两种不同的胶质。腺垂体分为前腺垂体(RPD)、中腺垂体(PPD)和后腺垂体(PI)。腺垂体内鉴别出6种内分泌细胞。前腺垂体表达3种,中腺垂体表达3种,后腺垂体表达1种。
     采用分子克隆技术,首次系统研究了圆斑星鲽GnRH信号系统及其可能的生理功能。在圆斑星鲽脑中克隆到3种GnRH基因,分别是:cGnRH-Ⅱ、sGnRH和sbGnRH。每一种GnRH都包括一个信号肽、一个Gly-Lys-Arg连接序列和一个GnRH相关肽。分析了3种GnRH基因的氨基酸序列与其它脊椎动物的同源性。系统进化分析表明圆斑星鲽3种不同分子形式的GnRH分别归属于3个不同分支:cGnRH-Ⅱ分支、sGnRH分支和鱼类特异性GnRH分支(如sbGnRH、cfGnRH等)。GnRH基因都在脑中表现出最高表达水平且具有性别特异性表达模式:雌性中不同组织的GnRH mRNA表达水平都相应高于雄性。cGnRH-Ⅱ的mRNA仅在脑中表达,而sbGnRH在各个组织都有表达,sGnRH仅在脑、垂体和性腺中表达。sbGnRH mRNA的表达水平变化与卵巢年周期发育过程具有最密切的关系,表明sbGnRH可能是性腺成熟调控的关键GnRH基因。
     综合采用温度、光照、激素诱导等技术,成功诱导条斑星鲽亲鱼性腺发育成熟和排卵,获得了良好的产卵效果,筛选了一种有效地性腺促熟剂,利用该技术可在繁殖季节稳定获取受精卵,为星鲽养殖业发展提供技术支持。
The physiological and endocrine characteristics of reproduction of farmed Spotted halibut and Barfin flounder were investigated and elucidated in this thesis. This thesis aimed at construction of stable technology for artificial breeding of farmed Spotted halibut and Barfin flounder. The contents mainly focused on pituitary structure, gonadal maturation cycle, sex steroids expression pattern, gametes characteristics, structure and function of GnRH system. Multiple and combined methods including histological observation, electron microscopy technique, immunohistochemistry, radioimmunoassay (RIA), molecular cloning, quantitative real time PCR and exogenous hormone induction etc. were employed. Based on results from this study, successful control of gonadal maturation, ovulation and batches of embryos with high quality from barfin flounder were obtained. Results from this study would be helpful to better understand the physiological and endocrine mechanisms underlying the reproductive cycle of spotted halibut and barfin flounder, also would facilitate the artificial control of gonadal maturation and obtain spawnings from broodstocks under farming conditions.
     The annual ovarian maturation cycle and related serum sex steroids levels variation, the relationships between gonadosomatic index (GSI), condition factor (CF), hepatosomatic index (HSI), sex steroids expression levels and photothermal regulation were investigated and elucidated for farmed Spotted halibut and Barfin flounder. These two species feature asynchronous oocyte development and batch spawnings. In sexually matured females, the oocyte growth could be divided into five phases and ovary maturation cycle was divided into five stages accordingly. GSI, HSI and CF values were all found to increase prior to, or during the peak phase of vitellogenic growth corresponding to the gonad development. Sex steroids levels fluctuated with the gonadal maturation cycle and closely related with photothermal regimes based on expression results and statistical analysis. The effective accumulated temperatures for Spotted halibut and Barfin flounder broodstocks were 1050 and 1180 d·℃respectively. The effects of exogenous hormone (sGnRH and LHRHa) on gonadal development of immatured females (2 year old) were studied. The results showed that the immatured females exhibited weak endocrine response compared with sexually matured broodstocks, which was manifested by the fact that the oocyte could attain the late vitellogenic stage but could not experience hydration and final maturation. Although the serum sex steroids levels increased significantly, the ovulation failed. These results would highlight the physiological and endocrine mechanism of annual reproductive cycle of captive female broodstocks of spotted halibut and barfin flounder, also could serve as useful tools for broodstocks breeding and hormonal induction of spawning of broodstocks.
     The physiological and endocrine characteristics during annual maturation cycle of male spotted halibut and barfin flounder were elucidated. The spermatogenesis could be divided into five phases and testis maturation cycle was divided into five stages. The hermaphroditism phenomenon was found in one male spotted halibut, but the mechanism remained unclear. The serum steroids expression patterns during testis maturation cycle were also determined. Spotted halibut sperm shared similar structure with that of barfin flounder, and exhibited similar general structure including spherical head, the reduced mid piece with numerous round unmodified small mitochondria, and the typical‘9+2’pattern of the flagellum with quite simple structure. These common structure features meant that the spermatozoon of spotted halibut and barfin flounder can be considered to be of primitive type, which is found in most of the advanced fish taxa. There is no acrosome in the sperm. Anterolateral to the nucleus, there is a chromatin-free, electron-lucent area, that we named the anterior pit of the nucleus. Within and in front of the pit, there is a triangular shaped structure and some vesicles of different size that are encapsulated in a layer of membrane were found. With regarding to acrosome and acrosome vestige present in some other euteleosts, we presume the vesicles may represent acrosome vestiges though they may also function to release nuclear material, whilst the riangular shaped structure in front the nucleus may be caused by the improper manipulation. Study on relationship between sperm and environmental factors indicated that when salinity at 25-35, temperature at 8-12 and pH at 7-8, the spotted halibut spermatozoa showed best motility and longest life span. The sperm of spotted halibut was cryopreserved by a simple and convenient protocol. The sperm was cryopreserved in the different extenders. The fertilization rates of this sperm ranged from 59±2.4% to 70±3.0% with the sperm cryopreserved in the extender containing Gly + egg yolk giving the highest fertility, while the hatching rates of eggs fertilized with this sperm were from 11±3.0% to 18±2.6% with the eggs fertilized by the sperm cryopreserved in Gly + egg yolk producing the highest hatching rate. The effects of exogenous hormones including human chorionic gonadotropin (HCG) and salmon gonadotropin releasing hormone analogue (sGnRHa) on milt quality in male barfin flounder were investigated in the present study. Results showed that exogenous hormone can greatly improve the milt quality of males with milt of high viscosity, including improved milt fluidity, sperm motility and sperm life span. Meanwhile, the sex steroids elevated and remained at a relatively higher level after the exogenous hormone treatment, which was in accordance with the sperm quality elevation. The GnRH induction showed better results although there was no significant difference was observed between GnRH and HCG treatment. This study can serve as useful tool in acquiring milt with high quality and be beneficial to artificial insemination in barfin flounder culture. The histological structure and ultrastructure of barfin flounder pituitary was observed. The pituitary belongs to dorsoventral style, consists of two parts: neurohypophysis and adenohysis. Six types of secretory cells were identified in pituitary: Prolactin hormone (PROL) cell, adrenocorticotopic hormone (ACTH) cell, thyrotropic hormone (TSH) cell, growth hormone (GH) cell, gonadotropin hormone (GtH) cell, melanotropic stimulating hormone (MSH) cell.
     The present study cloned and sequenced the gonadotropin-releasing hormone (GnRH) genes from spotted halibut by isolating their cDNAs. This species expressed three molecular forms of GnRH in the brain: chicken type GnRH-Ⅱ(cGnRH-Ⅱ), seabream type GnRH (sbGnRH) and salmon type GnRH (sGnRH). Each GnRH cDNA encoded a signal peptide (SP), GnRH and a GnRH-associated peptide (GAP), which was connected to GnRH by a Gly–Lys–Arg sequence. Phylogenetic analysis divided multiple molecular forms of GnRHs into three branches: cGnRH-Ⅱbranch, sGnRH branch and the fish specific GnRH branch. The tissue and sex specific expression of these three genes were determined using real time PCR, they all showed the highest expression levels in brain for both sexes. cGnRH-Ⅱwas exclusively detected in brain while sbGnRH had a global expression pattern in all examined tissues for both sexes. sGnRH was detected in pituitary, gonad besides brain tissue in females but not in gonad of males. All these three GnRH genes exhibited sex-specific expression pattern with females expressed higher mRNA levels than that of males. The seasonal changes of GnRH mRNA expression levels in brains of females during ovary maturation cycle were investigated. During ovary maturation cycle, sbGnRH mRNA level increased significantly (P<0.05) since August (vitellogenic stage), peaked in December (prespawning stage) 2009, and then decreased in April 2010 (postspawning stage). On the contrary, neither sGnRH nor cGnRH-ⅡmRNA levels showed significant changes (P>0.05) correlated with ovary maturation cycle in this study. These results will be helpful to better understand the reproductive endocrine mechanism of spotted halibut.
     The successful control of gonadal maturation, ovulation and batches of embryos with high quality were obtained in barfin flounder by using photothermal control in combination with hormonal induction during the spawning season in 2008. A stable technique for inducing maturation and ovulation of barfin flounder was constructed and applied to practical production of seedlings, which is beneficial for sustainable and healthy development of culture industry of barfin flounder.
引文
[1]中华人民共和国农业部渔业局. 2010年中国渔业年鉴.北京:中国农业出版社,2010.
    [2] Zohar Y, Mylonas CC. Endocrine manipulations of spawning in cultured fish: from hormones to genes. Aquaculture, 2001, 197: 99-136
    [3]邓景耀,孟田湘,任胜民.渤海鱼类组成及数量分布.海洋水产研究,1988,9:11-46
    [4]窦硕增,杨继明,陈大刚.渤海石鲽、星鲽、高眼鲽及焦氏舌鳎的食性.水产学报,1992,16(2):162-166
    [5] Toshiji Kmahara. Coloured illustrations of the fishes of Japan (Ⅱ), Takashi Miyamoto Taneo Hayashi, OSAKA, Japan, 1961, 1263-1269
    [6]渡辺研一.北海道太平洋沿岸で漁獲されたマツカワの排卵状況から推定した産卵期.水産増殖, 1998, 46,589-590
    [7] Watanabe Ken-ichi, Takashi Minami. Fecundity of Hatchery-reared Barfin flounder. Nippon Suisan Gakkaishi, 2000, 66(6): 1068-1069
    [8] Yamaguchi Sonoko. Reproductive biology of spotted halibut, Verasper variegutus, in Tachibana Bay, Nagasaki Prefecture. Science Bulletin of the Faculty of Agriculture Kyushu University, 2001, 55 ( 2 ): 179-184
    [9] Koya Y, Watanabe H, Soyano K, et al. Testicular development and serum 456 steroid hormone levels in captive male spotted halibut Verasper variegatus. Fish. Sci., 2003, 69: 792-799
    [10]日本栽培渔业协会.圆斑星鲽栽培渔业技术开发推进研讨会报告书. 2002.
    [11] Ando M. Valuation of cultured spotted halibut Verasper variegatus by comparing with cultured plaice Paralichthys olivaceus. Nippon Suisan Gakkaishi, 1998, 64(6):1027-1033
    [12] Kazuya Furuhata. Effect of LH-RHa cholesterol pellet on gonadal maturation in spotted halibut Verasper variegatus. Bull. Chiba Pref. Fish. Res. Cen., 2002, 1: 61-62.
    [13]冲山宗雄,高桥伊武.日本海产カレイ亚科鱼类の幼期.日水研报,1976, 27: 11-34.
    [14]渡边研一.北海道太平洋沿岸で渔获されたマツカワの排卵状况から推定した产卵期.水产增殖,1998b, 46: 589-590
    [15]中川亨.マツカワの穜苗生產.水產の研究, 1989, 8: 71-77
    [16] Takaaki Kayaba, Takashi Sugimoto, Tatsunari Mori, et al. Induced spontaneous spawning using an increased temperature stimulus in the cultured barfin flounder Verasper moseri. Fisheries Science, 2003a, 69: 663~669
    [17] Takaaki Kayaba, Takashi Sugimoto, Shiniji Adachi, et al. Effects of residual over-ripened eggs on egg quality deterioration in barfin flounder Verasper moseri. Nippon Suisan Gakkaishi, 2003b, 69(3):414~416
    [18] Bromage N, Porter M. The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture, 2001, 197: 63-98.
    [19] Bromage N. Broodstock management and seed quality–general considerations. In: Bromage N, Roberts R J, eds. Broodstock Management and Egg and Larval Quality. Oxford:Blackwell Science Ltd., 1995,. pp. 1–24
    [20]雷霁霖.海水鱼类养殖理论与技术.北京:中国农业出版社, 2005,20-60
    [21]林浩然.鱼类生理学(第二版).广州:广东高等教育出版社, 2007,152-264
    [22] Nagahama Y, Yoshikuni M, Yamashita M, et al. Regulation of oocyte growth and maturation in fish. Curr. Top. Dev. Biol., 1995, 30: 103–145
    [23] Pati?o R, Sullivan C R. Ovarian follicle growth, maturation and ovulation in teleost fish. Fish Physiol. Biochem., 2002, 26: 57–70
    [24] Tyler C R, Sumpter J P. Oocyte growth and development in teleosts. Rev. Fish Biol. Fish. , 1996, 6: 287–318
    [25] Wootton R J. Ecology of teleost fishes. 2nd ed. London: Kluwer Academic Publishers, 1998
    [26]МейенВАΚ.вопросуогοдовомциклекостистыхрыσ.цэв. AHCCCP.Бцол, 1939, 3:389~420
    [27] Bromage N R, Cumaranatunga R R T. Egg production in rainbow trout. In Muir J E and Roberts, R J, eds. Recent Advances in Aquaculture. London and Sydney: Croom Helm, 1988, 65-138
    [28] Tam W H, Roy R J J, Makaran R. Ovarian cycle and plasma concentration of oestrogen and vitellogenin in the brook trout (Salvelinus fontinalis, Mitchell). Can. J Zool., 1986, 64: 744-51
    [29] Tyler C R, Sumpter J E, Witthames P R. The dynamics of oocyte growth during viteIlogenesis in the rainbow trout, Salmo gairdneri. Biol. Reprod. 1990, 43, 202-209
    [30] Tyler C R, Nagler J J, Pottinger T G et al. Effects of unilateral ovariectomy on recruitment and growth of follicles in the rainbow trout, Oncorhynchus mykiss. Fish Physiol.Biochem.,1994, 13: 309-16
    [31] Wallace R A, Selman K. Physiological aspects of oogenesis in two species of sticklebacks, Gasterosteus aeuleatus (L.) and Apeltes quadracus (Mitchill). J Fish Biol.,1979, 14: 551-64
    [32] Wallace R A, Boyle S M, Grier H J, et al. Preliminary observations on oocyte maturation and other aspects of reproductive biology in female snook, Centropomus undecimalis. Aquaculture,1993, 116: 257-73
    [33] Hsiao H M, Greerley M S, Wallace R A. Reproductive cycling in female Fundulus heterocIitus. Biol. Bull., 1994, 186, 271-84
    [34] Webb M A H, Van Eenennaam J P, Feist G W, et al. Effects of thermal regime on ovarian maturation and plasma sex steroids in farmed white sturgeon, Acipenser transmontanus. Aquaculture, 2001, 201:137–151
    [35] Clark R W, Henderson-Arzapalo A, Sullivan C V. Disparate effects of costant and annually-cycling daylenght and water temperature on reproductive maturation of striped bass (Morone saxatilis). Aquaculture, 2005, 249: 497–513
    [36] Witthames P R, Greer Walker M. Determinancy of fecundity and atresia in sole (Solea solea) from the Channel, the North Sea and the Irish Sea. Aquatic Living Resources,1995, 8: 91–109
    [37]董玉兰,王树迎.泰山螭霖鱼卵巢年周期中卵母细胞发育及其性腺类固醇激素作用.中国农业科学, 2006, 39(6): 1264-1271
    [38] Kjesbu O S, Klungs?yr J, Kryvi H, et al. Fecundity, atresia, and egg size of captive Atlantic cod (Gadus morhua) in relation to proximate body composition. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48:2333–2343
    [39] Billard R, Fostier A. Endocrine Control of Spermatogenesis in Teleost Fish. Can. J. Fish. Aquat. Sci., 1982, 39(1): 65 - 79
    [40] Peter R E, Yu K L. Neuroendocrine regulation of ovulation in fishes: basic and applied aspects. Rev. Fish Biol. Fish.,1997, 7:173–197
    [41] Merson R R, Casey C S, Martinez C, et al. Oocyte development in summer flounder: seasonal changes and steroid correlates. Journal of Fish Biology, 2000, 57: 182-196
    [42] Specker J L, Sullivan C V. Vitellogenesis in fishes: status and perspectives, In Davey K G, Peter R E and Tobe S S, eds. Perspectives in Comparative Endocrinology. Ottawa, Canada: National Research Council of Canada, 1994, pp. 304-15
    [43] García-Lópezá, Couto E, Canario A V M, et al. Ovarian development and plasma sex steroid levels in cultured female Senegalese sole Solea senegalensis. Comparative Biochemistry and Physiology, Part A, 2007, 146: 342-354
    [44] Ramsay K, Witthames P. Using oocyte size to assess seasonal ovarian development in Solea solea (L.). Journal of Sea Research,1996, 36, 275–283
    [45] Maddock D M, Burton P M. Gross and histological observations of ovarian development and related condition changes in American plaice. J. Fish Biol., 1999, 53: 928–944
    [46] Htun-Han M. The reproductive biology of the dab Limanda limanda (L.) in the North Sea: seasonal changes in the ovary. Journal of Fish Biology, 1978, 13: 351–359
    [47] Janssen P A H, Lambert J G D, Goos H J Th. The annual ovarian cycle and the influence of pollution on vitellogenesis in the flounder, Pleuronectes flesus. J. Fish Biol.,1995, 47, 509–523
    [48] Yamamoto K. Studies on the formation of fish eggs. I. Annual cycle in the development of ovarian eggs in the flounder, Liopsetta obscura. Journal of the Faculty of Science Hokkaido University Series VI,1956, 12, 362–374
    [49] Harmin S A, Crim L W, Wiegand M D. Plasma sex steroid profiles and the seasonal reproductive cycle in male and female winter flounder, Pleuronectes americanus. Mar. Biol.,1995, 121: 601–610
    [50] Scott A P, Witthames P R, Turner R J, et al. Plasma concentrations of ovarian steroids in relation to oocyte final maturation and ovulation in female plaice sampled at sea. J. Fish Biol., 1998, 52, 128–145.
    [51] Sun B, Pankhurst N W. Patterns of oocyte growth, vitellogenin and gonadal steroid concentrations in greenback flounder. J. Fish Biol., 2004, 64, 1399–1412
    [52] Sol S Y, Olson O P, Lomax D P, et al. Gonadal development and associated changes in plasma reproductive steroids in English sole, Pleuronectes vetulus, from Puget Sound,Washington. Fish. Bull.,1998, 96: 859–870
    [53]温海深,林浩然.环境因子对硬骨鱼类性腺发育成熟及其排卵和产卵的调控.应用生态学报,2001,12(1):51-55
    [54]宋海霞,温海深.养殖牙鲆卵巢发育及其调控的组织学研究.海洋湖沼通报,2005,4: 75-81.
    [55]林浩然.鱼类生理学.广州:广东高等教育出版社,1999,146-191
    [56] Pierantoni R. Regulation of the testicular activity in the marine teleost fish,Gobius paganellus. Gen. Comp. Endocrinol.,1990,80: 1-8
    [57] Simona Rainis, Constantinos C. Mylonas, Yiannos Kyriakou, et al. Enhancement of spermiation in European sea bass (Dicentrarchus labrax) at the end of the reproductive season using GnRHa implants. Aquaculture, 2003, 219: 873–890
    [58] Vermeirssen E L M, Scott A P, Mylonas C C et al. Gonadotrophin-releasing hormone agonist stimulates milt fluidity and plasma concentrations of 17,20β-dihydroxylated and 5β-reduced, 3α-hydroxylated C21 steroids in male plaice (Pleuronectes platessa). Gen. Comp. Endocrinol.,1998, 112: 163–177
    [59] Miura T, Yamauchi K, Takahashi H, Nagahama Y. The role of hormones in the acquisition of sperm motility in salmonid fish. J. Exp. Zool.,1992, 261: 359–363
    [60] Nagahama Y. Endocrine regulation of gametogenesis in fish. Int. J. Dev. Biol.,1994, 38: 217–229
    [61] Harmin S A, Crim L W. Influence of gonadotropic hormone-releasing hormone analog (GnRH-A) on plasma sex steroid profiles and milt production in male winter flounder, Pseudopleuronectes americanus (Walbaum). Fish Physiol. Biochem.,1993, 10: 399–407
    [62] Mylonas C C, Scott A P, Vermeirssen E L M, et al. Changes in plasma gonadotropin II and sex steroid hormones, and sperm production of striped bass after treatment with controlled-release gonadotropin-releasing hormone agonist-delivery systems. Biol. Reprod., 1997, 57: 669–675
    [63] Methven D A, Crim L W, Norberg B, et al. Sexual reproduction and plasma levels of sex steroids and vitellogenin in Atlantic halibut (Hippoglossus hippoglossus), Can. J Fish. aquat. Sci.,1992, 49: 754-9
    [64] Bieniarz K, Epler P. Advances in reproductive endocrinology of fish. J. Physiol. Pharmacol., 1992, 43:215–222
    [65] Hunter G A, Donaldson E M. Hormonal sex control and its application to fish culture. In: Hoar W S, Randall J D, Donaldson E M. Fish Physiology Vol. IX, Part B Behaviour and Fertility Control, New York: Academic Press, 1983, pp. 223–303
    [66] Rothbard S, Moav B, Yaron Z. Changes in steroid concentrations during sexual ontogenesis in tilapia. Aquaculture, 1987,61:59–74
    [67] Nakamura M, Nagahama Y. Differentiation and development of Leydig cells, and changes of testosterone levels during testicular differentiation in tilapia, Oreochromis niloticus. Fish. Physiol. Biochem., 1989, 7: 211–219
    [68] Feist G, Schreck C B, Fitzpatrick M S, et al. Sex steroid profiles of coho salmon, Oncoorhynchus kisutch, during early development and sexual differentiation. Gen. Comp. Endocrinol., 1990, 80:299–313
    [69] Kagawa H, Moriyama S, Kawauchi H. Immunocytochemical localization of IGF-I in the ovary of the red seabream, Pagrus major. Gen. Comp. Endocrinol., 1995, 99:307–315
    [70] Le Gac F, Loir M, Le Bail P Y, Ollitrault M. Insulin-like growth factor (IGF-I) mRNA and IGF-I receptor in trout testis and in isolated spermatogenic and Sertoli cells. Mol. Reprod. Dev., 1996, 44:23–35
    [71] Bell W R. Studies on the endorcrines of the teloests. 1:The morphology of the hypophysis of goldfish, Carassius auratus. Anat. Res., 1937, 70(1):122
    [72] Matthews S A. The pituitary gland of Fundulus. J. Anat. Res., 1936, 65: 357–367
    [73] Sokol H W. Selective staining of the pituitary gland of the teleost fishes dermonstrating at least six tinctorial cell types in the adeno-hypophysis. J.Anat.Res., 1953, 117
    [74] Nagahama Y. Histophysiological studies on the pituitary glands of some teleost fishes with special reference to the classification of hormone-producing cells in the adenohypophysis .J. Mem.Fac. Fish Hokkaido University, 1973, 21:1–63
    [75] Boddinguis J. The cell types of the adenohypophysis in the rainbow trout.A histogical study. Oxford: Holywell Press Ltd, 1975
    [76]方永强.赤点石斑鱼脑垂体组织生理学的研究.台湾海峡,1990,9 (1):69–72
    [77]鲁双庆,刘筠,陈淑群.草鱼脑垂体的起源和发生的研究.湖南农业大学学报,1996,2 (22):182–186
    [78]刘筠.中国养殖鱼类繁殖生理学.北京:农业出版社,1993,29-55
    [79]方永强,汪敏.丘脑下部促黄体素释放激素类似物(LRH-A)的作用机制Ⅲ.对罗非鱼脑垂体促性腺激素分泌细胞超微结构的影响.动物学报,1983,29(2):124–128
    [80]汪小东,严安生,秦玉丽,等.保安湖鳜鱼脑垂体周年变化的组织学观察.华中农业大学学报,1996,5 (15): 470–474
    [81]戴艳玉,陈蕾,方永强.鲈鱼脑垂体促性腺激素分泌细胞与性腺发育的关系.台湾海峡,1998,2 (17):139–142
    [82]吴嘉敏,姜仁良,张继平.长吻鮠人工催产及脑垂体促性腺激素细胞的超微结构的变化.水产学报,1999,3 (23):248–253
    [83] Mylonas C C, Zohar Y. Use of GnRHa-delivery systems for the control of reproduction in fish. Rev Fish Biol Fisher, 2001, 10:463–491
    [84] Millar R P, Troskie B, Sun Y M, et al. Plasticity in the structural and functional evolution of GnRH: a peptide for all seasons. In: Proc. 13th Int. Conf. Comp. Endocrinology, Yokohama, Japan, 1997, pp. 15–27
    [85] Michael Conn P, Craig A Mcardle, William V Andrews, et al. The Molecular Basis of Gonadotropin-Releasing Hormone (GnRH) Action in the Pituitary Gonadotrope. Biology Of Reproduction, 1987, 36: 17-35
    [86] Coy D H, Seprodi J, Vilchez-Martinez J A, Pedroza E. Structure- function studies andprediction of conformational requirements for LH-RH. In: Collu R, Barbeau A, Ducharme J R, Rochefort J-G, eds, Central Nervous System Effects of Hypothalamic Hormones and Other Peptides. New York: Raven Press, 1979, 317
    [87] Dubois E A, Zandbergen M A, Peute J, et al. Evolutionary development of three gonadotropin-releasing hormone (GnRH) systems in vertebrates. Brain Res Bull, 2002, 57:413–418
    [88] Adams B A, Vickers E D, Warby C, et al. Three forms of gonadotropin-releasing hormone, including a novel form, in a basal salmonid, Coregonus clupeaformis. Biol Reprod, 2002, 67:232–239
    [89] Montaner A D, Mongiat L, Lux-Lantos V A R, et al. Structure and biological activity of gonadotropin-releasing hormone (GnRH) isoforms isolated from rat and hamster brains. Neuroendocrinology, 2001b, 74:202–212
    [90] Somoza Gustavo M, Leandro A Miranda, Pablo Strobl-Mazzulla. Gonadotropin-Releasing Hormone (GnRH): From Fish to Mammalian Brains. Cellular and Molecular Neurobiology, 2002, 22(5/6): 598-508
    [91] Nelson J S. Fishes of the World. Tokyo: Wiley, Inc. 1994, 60
    [92] Amano M, Yoshitaka O, Yamanome T. Three GnRH systems in the brain and pituitary of a pleuronectiform fish, the barfin flounder Verasper moseri. Cell Tissue Res, 2002, 309:323–329
    [93] Grober M S, Myers T R, Marchaterre M A, et al. Structure, localization and molecular phylogeny of a GnRH cDNA from a paracanthopterygian fish, the plainfin midshipman (Porichthys notatus). Gen Comp Endocrinol, 1995, 99:85–99
    [94] Pati D, Habibi H R. Presence of salmon gonadotropin-releasing hormone (GnRH) and compounds with GnRH-like activity in the ovary of goldfish. Endocrinology, 1998, 139:2015–2024
    [95] Nabissi M, Pati D, Polzonetti-Magni A. Presence and activity of compounds with GnRH-like activity in the ovary of seabream, Sparus aurata. Am J Physiol, 1997, 272:R111-R117
    [96] Kristian R von Schalburg, Carol M Warby, Nancy M Sherwood. Evidence for Gonadotropin-Releasing Hormone Peptides in the Ovary and Testis of Rainbow Trout. Biology of Reproduction, 1999, 60: 1338–1344
    [97] Muske L E. Organization of multiple molecular forms of GnRH. In: Parhar I S, Sakuma Y, eds, GnRH Neurons. Gene to Behavior, Brain Shuppan, Tokyo, 1997, 145–180
    [98] Muske L E, Moore F L. The amphibian nervous terminalis: Anatomy, chemistry and relationship with the hypothalamic LHRH system. Brain Behav Evol, 1998, 32:141–150
    [99] Gonzalez-Martinez D, Zmora N, Zanuy S. Developmental expression of three different prepro-GnRH (Gonadotrophin-releasing hormone) messengers in the brain of the European sea bass (Dicentrarchus labrax). J Chem Neuroanat, 2002, 23:255–267
    [100] Parhar I S, Soga T, Sakuma Y. Spatio-temporal expression of gonadotropin-releasing hormone receptor subtypes in gonadotropes, somatotropes in the cichlid fish. JNeuroendocrinol, 2002, 14:657–665
    [101] Okuzawa K, Granneman J, Bogerd J, et al. Distinct expression of GnRH genes in the red seabream brain. Fish Physiology and Biochemistry, 1997, 17: 71–79
    [102] Holland M C, Hassin S, Zohar Y. Seasonal fluctuations in pituitary levels of the three froms of gonadotropin-releasing hormone in striped bass, Morone saxatilis (Teleostei), during juvenile and pubertal development. J Endocrinol, 2001, 169: 527–538
    [103] Carolsfeld J, Powell J F F, Park M, et al. A novel form of gonadotropin-releasing hormone (GnRH) in herring sheds light on evolutionary pressures. Endocrinology, 2000, 141:505–51
    [104] Amano M, Aida K, Okumoto N. Changes in salmon GnRH and chicken GnRH-II in the brain and pituitary, and GTH contents in the pituitary in female masu salmon, Oncorhynchus masou, from hatching through ovulation. Zool Sci, 1992, 9: 375–386
    [105] Amano M, Hyodo S, Kitamura S, et al. Salmon GnRH synthesis in the preoptic area and the ventral telencephalon is activated during gonadal maturation in female masu salmon. Gen Comp Endocrinol, 1995, 99: 13–21
    [106] Oka Y, Matsushima T. Gonadotropin-releasing hormone (GnRH)-immunoreactive terminal nerve cells have intrinsic rhythmicity and project widely in the brain. J Neurosci, 1993, 13: 2161–2176
    [107] Kim M H, Kobayashi M, Oka Y, et al. Effects of olfactory tract section on the immunohistochemical distribution of brain GnRH fibers in the female goldfish, Carassius auratus. Zool Sci, 2001, 18:241–248
    [108] Kudo H, Hyodo S, Ueda H, et al. Cytophysiology of gonadotropin-releasing hormone neurons in chum salmon (Oncorhynchus keta) forebrain before and after upstream migration. Cell Tissue Res, 1996, 284: 261–267
    [109] Coe I R, Von Schalburg K R, Sherwood, N M. Characterization of the pacific salmon gonadotropin-releasing hormone gene, copy number and transcription start site. Mol Cell Endocrinol, 1995, 115:113–122.
    [110] Tsutsumi M, Zhou W, Millar R P, et al. Cloning and functional expression of a mouse gonadotropin-releasing hormone receptor. Mol. Endocrinol.,2001, 6:1163–1169
    [111] Illing N, Troskie B E, Nahorniak C S, et al. Two gonadotropin-releasing hormone receptor subtypes with distinct ligand selectivity and differential distribution in brain and pituitary in the goldfish (Carassius autatus). Proc. Natl. Acad. Sci. U.S.A.,1999, 96: 2256–2531
    [112] Okubo K, Amano M, Yoshiura Y, et al. A novel form of gonadotropin-releasing hormone in the medaka, Oryzias latipes. Biochem. Biophys. Res. Commun.,2001, 16: 298–303
    [113] Robison R R, White R B, Illing N. Gonadotropin-releasing hormone receptor in the teleost Haplochromis burtoni: structure, location, and function. Endocrinology, 2001, 142: 1737–1743
    [114] Gonzalez-Mart?nez D, Thierry Madigou, Evaristo Mananos, et al. Cloning and Expression of Gonadotropin-Releasing Hormone Receptor in the Brain and Pituitary of the European Sea Bass: An In Situ Hybridization Study. Biology of Reproduction,2004, 70, 1380–1391
    [115] Millar R M, Lowe S, Conklin D, et al. A novel mammalian receptor for the evolutionarily conserved Type II gonadotropin-releasing hormone. Proc. Natl. Acad. Sci., 2001, 98: 9636–9641
    [116]方之平,潘黔生,罗立廷,等. GnRH及其受体在性成熟前后鲇、黄颡鱼脑、垂体和卵巢中的免疫组织化学定位.水生生物学报, 2004, 28(1): 63-70
    [117]黎双飞,胡炜,汪亚平,等.鲤鱼sGnRH基因克隆及其在成熟个体的表达分析.遗传学报, 2004, 31 (10): 1072~108
    [118]曹丽萍,丁炜东.奥利亚罗非鱼促性腺激素释放激素cDNA的克隆及原核表达.上海水产大学学报, 2006, 15(3): 270-275
    [119]夏永娟,黄威权,吕葆真,等.牙鲆胃肠道及肝脏GnRH受体的免疫组织化学研究.海洋湖沼通报, 2002, 2:76-79
    [120]房保海,孙修勤,曲凌云,等.牙鲆促性腺激素释放激素基因cGnRH2II和sbGnRH的克隆与表达特征分析.高技术通讯, 2006, 16(5):529-533
    [121] Planas J V, Swanson P. Maturation-associated changes in the response of the salmon testis to the steroidogenic actions of gonadotropins (GtH I and GtH II) in vitro. Biol Reprod, 1995; 52:697–704
    [122] Gomez J M, Weil C, Ollitrault M, et al. Growth hormone (GH) and gonadotropin subunit gene expression and pituitary and plasma changes during spermatogenesis and oogenesis in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol, 1999, 113:413–428
    [123] Sumpter J P, Scott A P. Seasonal variations in plasma and pituitary levels of gonadotrophin in males and females of two strains of rainbow trout (Salmo gairdneri). Gen Comp Endocrinol, 1989, 75:376-388
    [124] Breton B, Sambroni E, Gillet C. Gonadotropin releasing hormone (GnRH) and gonadotropin (GTH) variations around the spawning period in a wild population of roach (Rutilus rutilus) from Leman lake. II-the male. Aquat Living Resour, 1988, 1:101-106
    [125] Miranda L A, Stru Ssmann C A, Guilgur L G, et al. Cloning of FSH-β, LH-βand glycoprotein hormone a subunits in pejerrey Odontesthes bonariensis (Valenciennes): expression profile and relationship with GnRH expression and plasma sex steroid levels in male fish. Journal of Fish Biology, 2007, 71: 1571–1589
    [126] Lam T T. Environmental influence on gonadal activity in fish.In:Hoar W S, Randall D J, Donaldson E M, eds. Fish Physiology. Vol.ⅨB. New York: Academic Press, 1983, 56~116
    [127] Stacey N E. Hormones and reproductive behavior in teleost. In: Rankin J C, Pitcher T J, Duggan R T, eds. Control Processes in Fish Physiology. London: Croom Helm Press,1983, 107~129
    [128] Anguis V, Ca?avate J P. Spawning of captive Senegal sole (Solea senegalensis) under a naturally fluctuating temperature regime. Aquaculture, 2005, 243: 133– 145
    [129] King H R, Pankhurst N W. Effect of short-term temperature reduction on ovulation and LHRHa responsiveness in female Atlantic salmon (Salmo salar) maintained at elevated water temperatures. Aquaculture, 2004, 238: 421-436
    [130] Zanug S, Carrillo M, Ruiz F. Delayed gametogenesis and spawning of sea bass (Dicentrarchus labrax) kept under different photoperiod and temperature regimes. Fish Physiol Biochem, 1986, 2:53~63
    [131] Cook A F, Peter R E. Plasma clearance gonadotropin in gold-fish Carassius auratus, during the annual reproductive cycle. Gen Comp Endocrinol,1980, 42:76~90
    [132] Pankhurst N W, Thomas P M. Maintenance at elevated temperature delays the steroidogenic and ovulatory responsiveness of rainbow trout Oncorynchus mykiss to luteinizing hormone releasing hormone analogue. Aquaculture, 1998, 166: 163–177
    [133] King H R, Pankhurst N W, Watts M, et al. Effect of elevated summer temperatures on gonadal steroid production, vitellogenesis and egg quality in female Atlantic salmon. J. Fish Biol., 2003, 63: 153–167
    [134] Dinis M T, Ribeiro L, Soares F, et al. A review on the cultivation potential of Solea senegalensis in Spain and in Portugal. Aquaculture, 1999, 176: 27—38
    [135] García-López, Anguis V, Couto E, et al. Non-invasive assessment of reproductive status and cycle of sex steroid levels in a captive wild broodstock of Senegalese sole Solea senegalensis. Aquaculture, 2006, 254: 583—593
    [136] Van Der Kraak G, Pankhurst N W. Temperature effects on the reproductive performance of fish. In: Wood C M, McDonald D G, eds, Global warming: Implications for freshwater and marine fish. Cambridge University Press, Cambridge, 1997, 159–176.
    [137]柳学周,孙中之,马爱军等.半滑舌鳎亲鱼培育及采卵技术研究.海洋水产研究, 2006, 27(2): 25—32
    [138] Hilder M L, Pankhurst N W. Evidence that temperature change cues reproductive development in the spiny damselfish, Acanthochromis polyacanthus. Env. Biol. Fish.,2003, 66: 187–196
    [139] Shimizu A. Effect of photoperiod and temperature on gonadal activity and plasma steroid levels in a reared strain of the mummichog (Fundulus heteroclitus) during different phases of its annual reproductive cycle. Gen. Comp. Endocrinol., 2003, 131:310–324.
    [140] Pankhurst N W, Purser G J, Van Der Kraak G, et al. Effect of holding temperature on ovulation, egg fertility, plasma levels of reproductive hormones and in vitro ovarian steroidogenesis in the rainbow trout Oncorhynchusmykiss. Aquaculture,1996, 146: 277–290
    [141] Okuzawa K, Furukawa K, Aida K, et al. Effects of photoperiod and temperature on gonadal maturation, and plasma steroid and gonadotropin levels in a cyprinid fish, the honmoroko Gnathopogon caerulescens. Gen. Comp. Endocrinol.,1989, 75: 139–147
    [142] Watanabe W O, Woolridge C A. Progress Toward Year-round Spawning of SouthernFlounder Broodstock by Manipulation of Photoperiod and Temperature. Journal of the world aquaculture society, 2006, 37(3): 256-274.
    [143] Bayarri M J, Rod?guez L. Effect of photoperiod manipulation on daily rhythms of melatonin and reproductive hormones in caged European sea bass (Dicentrarchus labrax). Fish Physiology and Biochemistry, 2003, 28: 37-38
    [144] Bonnet E, Montfort J. Effect of photoperiod manipulation on rainbow trout (Oncorhynchus mykiss) egg quality: A genomic study. Aquaculture, 2007, 268: 13-22
    [145] Karlsen ?, Norberg B. Effects of photoperiod and exercise on growth,liver size, and age at puberty in farmed Atlantic cod (Gadus morhua L.). ICES Journal of Marine Science, 2006, 63: 355-364
    [146] Huber M, Bengtson D A. Effects of photoperiod and temperature on the regulation of the onset of maturation in the estuarine fish Menidia beryllina (Cope) (Atherinidae). Journal of Experimental Marine Biology and Ecology, 1999, 240: 285-302
    [147] Norberg B, Weltzien F. Effects of photoperiod on sexual maturation and somatic growth in male Atlantic halibut (Hippoglossus hippoglossus L.). Comparative Biochemistry and Physiology Part B, 2001, 129: 357-365
    [148] Davies B, Bromage N, Swanson P. The brain-pituitarygonadal axis of female rainbow trout Oncorhynchus mykiss: Effects of photoperiod manipulation. Gen. Comp. Endocrinol.,1999, 115: 155–166
    [149] Amano M, Hyodo S, Kitamura S, Ikuta K, et al. Short photoperiod accelerates preoptic and ventral telencephalic salmon GnRH synthesis and precocious maturation in underyearling male masu salmon. Gen.Comp. Endocrinol., 1995, 99: 22–27
    [150] Kah O, Madigou D, Mazurais D, et al. Aspects of the central regulation of reproduction in teleost fish. In: Norberg B, Kjesbu O S, Taranger G L, Andersson E, Stefansson S O. Reproductive Physiology of Fish. John Grieg AS, Bergen, 2001, 27–34
    [151] Scott S G, Pankhurst N W. Interannual variation in the reproductive cycle of the New Zealand snapper Pagrus auratus (Bloch & Schneider) (Sparidae). J. Fish Biol., 1992, 41: 685–696
    [152] García-Lópezá, Couto E. Ovarian development and plasma sex steroid levels in cultured female Senegalese sole Solea senegalensis. Comparative Biochemistry and Physiology, Part A, 2007, 146: 342-354
    [153] Zohar Y, Goren A, Tosky M, et al. The bioactivity of gonadotropin-releasing hormones and its regulation in the gilthead seabream, Sparus aurata: in vivo and in vitro studies. Fish. Physiol. Biochem., 1989a, 7: 59–67
    [154] Zohar Y, Tosky M, Pagelson G, Finkelman Y. Induction of spawning in the gilthead seabream, Sparus aurata, using wD-Ala6-Pro9NEtx-LHRH: comparison with the use of HCG. Israeli J. Aquacult.—Bamidgeh, 1989b, 41: 105–113
    [155] Peter R E, Lin H R, van der Kraak G, Little M. Releasing hormones, dopamine antagonists and induced spawning. In: Muir J F, Roberts R J, eds, Recent Advances inAquaculture. Oxford: Blackwell Scientific, 1993, 25–30
    [156] Billard R. Endocrinology and fish culture. Fish Physiol. Biochem., 1989, 7, 49–58
    [157] Sumpter J P, Pottinger T G, Rand-Weaver M, et al. The wide-ranging effects of stress in fish. In: Davey K G, Peter R E, Tobe S S, eds, Perspectives in Comparative Endocrinology. Ottawa: National Research Council of Canada, 1994, 535–538
    [158] Pankhurst N W, Van der Kraak G. Effects of stress on reproduction and growth of fish. In: Iwama G K, Pickering A D, Sumpter J P, Schreck C B, eds, Fish Stress and Health in Aquaculture. Cambridge: Cambridge Univ. Press, 1997, 73–93
    [159] Battaglene S C, Selosse P M. Hormone-induced ovulation and spawning of captive and wild broodfish of the catadromous Australian bass, Macquaria no?emaculeata (Steindachner, Percichthyidae). Aqua. Res.,1996,27: 191–204
    [160] Ohta H, Tanaka H. Relationship between serum levels of human chorionic gonadotropin (hCG) And 11-ketotestosterone after a single injection of hCG and induced maturity in the male Japanese eel, Anguilla japonica. Aquaculture, 1997, 153: 123–134
    [161] Houssay B A. Accion sexual de la hipofisis en los pecesy reptiles. Rev. Soc. Arg. Biol., 1930, 106: 686–688
    [162] Von Ihering R. A method for inducing spawning in fish. Prog. Fish-Cult., 1937, 34, 15–16
    [163] Fontenele O. Injecting pituitary (hypophyseal) hormones into fish to induce spawning. Prog. Fish-Cult., 1955, 18: 71–75
    [164] Hasler A D, Meyes R K, Field H M. The use of hormones for the conservation of muskellunge, Esox masquinongy immaculatus Garrard. Copeia, 1940, 1: 43–46
    [165] Ball R C. Use of pituitary material in the propagation of minnows. Prog. Fish-Cult., 1954, 17: 108–113
    [166] Palmer D D, Burrows R E, Robertson O H, et al. Further studies on the reactions of adult blueback salmon to injected salmon and mammalian gonadotropins. Prog. Fish-Cult., 1954, 17, 99–107
    [167] Migita M, Matsumoto J, Kinoshita H, et al. Studies on the hypophyseal hormone of fish: I. Stimulating effect upon ovulation of trout. Bull. Jpn. Soc. Sci. Fish., 1952, 17: 25–31
    [168] Ohta H, Kagawa H, Tanaka H, et al. Artificial induction of maturation and fertilization in the Japanese eel, Anguilla japonica. Fish Physiol. Biochem., 1997, 17: 163–169
    [169] Fujino M, Kobayashi S, Obayashi M, et al. Structure-activity relationships in the C-terminal part of luteinizing hormone releasing hormone. Biochem. Biophys. Res. Commun., 1972, 49: 863–869
    [170] Goren A, Gustafson H, Doering D. Field trials demonstrate the efficacy and commercial benefit of a GnRHa implant to control ovulation and spermiation in salmonids. In: Goetz F W, Thomas P, eds. Reproductive Physiology of Fish, Fish Symposium 1995, Austin, Texas, pp. 99–101
    [171] Zohar Y, Pagelson G, Gothilf Y, et al. Controlled release of gonadotropin releasinghormones for the manipulation of spawning in farmed fish. Controlled Release Bioact. Mater., 1990, 17: 51–52
    [172] Mylonas C C, Woods III L C, Thomas P, et al. Endocrine profiles of female striped bass (Morone saxatilis) during post-vitellogenesis, and induction of final oocyte maturation via controlled-release GnRHa-delivery systems. Gen. Comp. Endocrinol., 1998, 110, 276–289
    [173] Poortenaar C W, Pankhurst N W. Effect of Luteinising Hormone-Releasing Hormone Analogue and Human Chorionic Gonadotropin on Ovulation, Plasma and Ovarian Levels of Gonadal Steroids in Greenback Flounder Rhombosolea tapirina. Journal of the world aquaculture society, 2000, 31(2): 175-186
    [174] Lim H K, Pankhurst N W. Effects of slow release gonadotropin releasing hormone analog on milt characteristics and plasma levels of gonadal steroids in greenback flounder, Rhombosolea tapirina. Aquculture, 2004, 240: 505-516
    [175] Komatsu T, Bhandari R K. GnRHa-accelerated spermatogenesis in the testes of underyearling golden rabbitfish, Siganus guttatus (Bloch). Aquaculture, 2006, 257: 558-565
    [176] Ryan R J. Some speculations of biochemical marks and mechanisms. In Schwartz N B, Hunziker-Dunn M, eds. Dynamics of Ovarian Function. New York: Plenum Press, 1981, pp. 1~12
    [177] Toshihiro Wada. Effects of low-salinity on the growth and development of spotted halibut Verasper variegatus in the larva-juvenile transformation period with reference to pituitaryprolactin and gill chloride cells responses. Journal of Experimental Marine Biology and Ecology, 2004, 308(1): 113-126
    [178] Hea Ja Baek, Yoon Kim, Cheul Min An, et al. Effects of hormonal treatment on induced maturation and ovulation in the spotted halibut, Verasper variegatus. Journal of Aquaculture, 2000, 13(1), 47~53
    [179] Toshitsugu Higashino, Takeshi Miura, Chiemi Miuraet al. Histological Studies on Early Oogenesis in Barfin Flounder (Verasper moseri). Zoological Science, 2002, 19: 557~563
    [180] Takaaki Kayaba. Studies on techniques for reliable production of seed of barfin flounder Verasper moseri. Sci.Rep.Hokkaido Fish. Exp. Stn, 2005, 69:1~116
    [181] Komatsu T, Bhandari R K, Kobayashi Y, et al. GnRHa-accelerated spermatogenesis in the testes of underyearling golden rabbitfish, Siganus guttatus (Bloch). Aquaculture, 2006, 257 : 558-565
    [182] Dahle R, Taranger G L, Karlsen ? K, et al. Gonadal development and associated changes in liver size and sexual steroids during the reproductive cycle of captive male and female Atlantic cod (Gadus morhua L.). Comparative Biochemistry and Physiology Part A, 2003, 136 : 641-653
    [183] Rickey M H. Maturity, spawning and seasonal movement of arrowtooth flounder, Atheresthes stomias, off Washington. Fishery Bulletin, 1995, 93, 127~138
    [184]柳学周,徐永江,刘乃真,等.半滑舌鳎卵巢发育的组织学和形态数量特征研究.渔业科学进展,2009,25~35
    [185]施瑔芳.鱼类生理学.北京:农业出版社, 1991, 300~319
    [186]方永强,林君桌,翁幼竹,等.池养鲻的卵巢发育和卵子发生过程.水产学报, 2004, 28(4):353~359
    [187]陈文银,张克俭.乌鳢卵巢发育的组织学.水产学报, 2003, 27(2):183~186
    [188] Chopra H C. Cytological and cytochemical study of the growing oocyte of the fish Boleophthalmus dussumerii. La Cellute., 1958, 60:303~318
    [189]何德奎,陈毅锋,蔡斌.纳木错裸鲤性腺发育的组织学研究.水生生物学报, 2001, 25(1):1~13.
    [190] Micale V, Maricchiolo G, Genovese L. The reproductive biology of the amberjack, Seriola dumerilii (Risso 1810). I. Oocyte development in captivity. Aquac. Res., 1999, 30: 349~355
    [191] Lee W K, Yang S W. Relationship between ovarian development and serum levels of gonadal steroid hormones, and induction of oocyte maturation and ovulation in the cultured female Korean spotted sea bass Lateolabrax maculatus (Jeom-nong-eo). Aquaculture, 2002, 207:169~183
    [192] Johnson A K. Seasonal cycles of gonadal development and plasma sex steroid levels in Epinephelus morio, a protogynous grouper in the eastern Gulf of Mexico. J Fish Biol, 1998, 52:502~518
    [193] Ouellet P, Lambert Y, BérubéI. Cod egg characteristics and viability in relation to low temperature and maternal nutritional condition. ICES J. Mar. Sci., 2001, 58: 672~686
    [194] Zamarro J. Feeding behavior of the American plaice (Hippoglossoides platessoides) on the southern Grand Banks of Newfoundland. Netherlands Journal of Sea Research, 1992b, 29, 229~238
    [195] Shimisu A. Effect of photoperiod and temperature on gonadal activity and plasma steroid levels in a reared strain of the mummiehog (Fundulus heteroclitus)during different phases of its annual reproductive cycle. General and Comparative Endocrinology, 2003, 131:3l0~324
    [196] Modesto T, Canario A V M. Morphometric changes and sex steroid levels during the annual reproductive cycle of the Lusitanian toadfish, Halobatrachus didactylus.General and Comparative Endoc rjnoogy, 2003, 13:220~231.
    [197] Onuma T, Higashi Y, Ando H. Year-to-year differences in plasma levels of steroid hormones in pre-spawning chum salmon.General and Comparative Endocrinology, 2003, 33(2):199~215
    [198] Chang C F, Hung C Y, Chiang M C. The concentration of plasma sex steroids and gonadal aromatase during controlled sex differentiation in grey mullet, Mugil cephalus. Aquaculture, 1999, 177:37~45
    [199] Kjesbu O S, Klungs?yr J, Kryvi H. Fecundity, atresia, and egg size of captive Atlantic cod (Gadus morhua) in relation to proximate body composition. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48: 2333~2343
    [200] Comeau L A, Campana S E, Chouinard G A. Timing of Atlantic cod Gadus morhua seasonal migrations in relation to serum levels of gonadal and thyroidal hormones. Mar. Ecol. Prog. Ser., 2001, 221:245~253
    [201]胡健饶,杜继曾,计翔.中国石龙子繁殖季节血浆性类固醇激素水平的变化.实验生物学报, 2004, 37(6):443~448
    [202] Tomkiewicz J, Tybjerg L, Jespersen ?. Micro-and macroscopic characteristics to stage gonadal maturation of female Baltic cod. J. Fish Biol., 2003, 62: 253~275
    [203] Mommsen T P, Walsh P J. Vitellogenesis and oocyte assembly. In: Hoar W S, Randall D J, eds. Fish Physiology, vol. XIA. Academic Press, New York, 1988, pp. 347–406
    [204] Tyler C R, Santos E M, Prat F. Unscrambling the egg-cellular, biochemical, molecular and endocrine advances in oogenesis. In: Norberg B, Kjesbu O S, Taranger G L, Andersson E, Stefansson S O, eds. Reproductive Physiology of Fish. John Grieg Forlag AyS, Bergen, 2000, pp. 273–280.
    [205] Hyllner S J, Oppen-Berntsen D O, Helvik J V, et al. Oestradiol-17-b induces the major vitelline envelope proteins in both sexes in teleosts. J. Endocrinol., 1991, 131, 229–236
    [206] Oppen-Berntsen D O, Hyllner S J, Haux C, et al. Eggshell zona radiata-proteins from cod (Gadus morhua): extra-ovarian origin and induction by estradiol-17-b. Int. J. Dev. Biol., 1992, 36: 247–254
    [207] Karlsen ?, Holm J C, Kjesbu O S. Effects of periodic starvation on reproductive investment in first-time spawning Atlantic cod (Gadus morhua L.). Aquaculture, 1995, 133: 159–170
    [208] Guzmán J M, Ramos J, Mylonas C C, et al. Spawning performance and plasma levels of GnRHa and sex steroids in cultured female Senegalese sole (Solea senegalensis) treated with different GnRHa-delivery systems. Aquaculture, 2009, 291 (3-4): 200-209
    [209] Larsson D G J, Mylonas C C, Zohar Y, et al. Gonadotropin releasing hormone-analogue (GnRH-A) advances ovulation and improves the reproductive performance of a cold-water batch-spawning teleost, the yellowtail flounder (Pleuronectes ferrugineus). Can. J. Aquat. Fish Sci., 1997, 54, 1957–1964
    [210] Morehead D T, Pankhurst N W, Ritar A J. Effect of treatment with LHRH analogue on oocyte maturation, plasma sex steroid levels and egg production in female striped trumpeter Latris lineata (Latrididae). Aquaculture, 1998, 169: 315–331
    [211] Scott A P, Witthames P R, Vermeirssen E L M, et al. Prolonged-release gonadotrophin-releasing hormone analogue implants enhance oocyte final maturation and ovulation, and increase plasma concentrations of sulfated C21 steroids in North Sea plaice. J. Fish Biol., 1999, 55: 316–328
    [212] Barnett C W, Pankhurst N W. The effects of commom laboratory and husbandry practices on the stress response of greenback flounder Phombosolea tapirina (Günther, 1862). Aquaculture, 1998, 162:313-329
    [213] Greenwood L M, Scott A P, Vermeirssen E, et al. Plasma steroids in mature commondentex (Dentex dentex) stimulated with a gonadotropin releasing hormone agonist. Gen. Comp. Endocrinol., 2001, 123: 1–12
    [214] Vermeirssen R L M, Shileds R J, Mazorra de Quero C, et al. Gonadotropinreleasing hormone agonist raises plasma concentrations of progestogens and enhances milt fluidity in male Atlantic halibut (Hippoglossus hippoglossus). Fish Physiol. Biochem., 2000, 22: 77–87
    [215] Matsuyama M, Hamada M, Ashitant T, et al. Development of LHRH-a copolymer pellet polymerized by ultraviolet and its application for maturation in red sea bream in non-spawning season. Nippon Suisan Gakkai, 1993, 59(8):1361-1369
    [216] Jamieson B G M. Fish Evolution and Systematics: Evidence from Spermatozoa. Cambridge: Cambridge University Press, 1991
    [217] Morisawam S. Acquisition and initiation of sperm motility. Control of sperm motility: Biological and clinical aspects. Boca Raton: CRC Press, 1990. 137-151
    [218] Billard R, Cosson J, Crim L W. Motility of fresh and aged halibut sperm. Aquat Living Resour, 1993, 6:67-75
    [219] Berlinsky D L, King V W, Hodson R G, et al. Hormone induced spawning of summer flounder Paralichthys dentatus. J. World Aquacult. Soc.,1997, 28: 79–86
    [220]潘德博,许淑英,叶星,等.广东鲂精子主要生物学特性的研究.中国水产科学, 1999, 6(4):111-113
    [221]江世贵,苏天凤,俞达辉,等.中华乌塘鳢精子的生物学特性及其超低温保存.水产学报, 2000a, 24(2): 119-122
    [222] Zhang Y Z, Zhang S C, Liu X Z, et al. Cryopreservation of flounder Paralichthys olivaceus sperm with a practical methology. Theriogenology, 2003, 60: 989 -996.
    [223] Billard R. Spermatogenesis and spermatology of some teleost fish species. Reprod. Nutr. Develop., 1986, 26(4): 877~892
    [224]高玲,温海深.野生石鲽精巢发育及注射LHRH-A对血浆T水平的影响研究.中国水产科学, 2007, 13 (5): 845-851
    [225] Koya Y, Watanabe H. Testicular development and serum steroid hormone levels in captive male spotted halibut Verasper variegatus. Fisheries Science, 2003, 69: 792-798
    [226]林鼎,林浩然.鳗鲡繁殖生物学研究Ⅲ.鳗鲡性腺发育组织学和细胞学研究.水生生物学集刊, 1984, 8(2): 157-170
    [227] Bye V J. The role of environmental factors in the timing of reproductive cycles. In: Potts G W, Wootton R J, eds. Fish Reproduction: Strategies and Tactics. Academic Press, London, 1984, 187–222
    [228] Burton M P, Idler D R. An experimental investigation of the non-reproductive, post-mature stage in winter flounder. J. Fish Biol., 1987, 30: 643–650
    [229] Billard R. Testis growth and spermatogenesis in teleost fish: the problem of the large interspecies variability in testis size. In: Idler D R, Crim LW, Walsh LW, eds. Proceedings of the 3rd International Symposium on the Reproductive Physiology of Fish; MemorialUniversity of Newfoundland, St John’s, Canada. Memorial University Press, St John’s, Canada, 1987, 183–186
    [230] Wingfield J C, Grimm A S. Seasonal changes in plasma cortisol, testosterone and oestradiol-17b in the plaice, Pleuronectes platessa L. Gen. Comp. Endocrinol., 1977, 31: 1–11
    [231] Miura T, Yamauchi K, Takahashi H, Nagahama Y. Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla japonica). Proc. Natl Acad. Sci. USA, 1991, 88: 5774–5778
    [232] Matsuyama M, Adachi S, Nagahama Y, et al. Testicular development and serum levels of gonadal steroids during the annual reproductive cycle of captive Japanses sardine. Jpn. J. Ichthyol. 1991, 37: 381–390
    [233] Liu H, Stickney R, Dickoff W. Changes in plasma concentrations of sex steroids in adult Pacific halibut, Hippoglossus stenolepis. J. World Aquacult. Soc., 1991, 22: 30–35
    [234] Gardiner D M. Fine structure of the spermatozoon of the viviparous teleost, Cymatogaster aggregata. J. Fish Biol., 1978, 13: 435~438
    [235] Grier H J. Cellular organization of the testes and spermatogenesis in fishes. Am. Zool, 1981, 21: 345~357
    [236]洪万树,张其永,倪子锦.西埔湾黄鳍鲷精子发生和形成.水产学报, 1991, 15(4): 302-307
    [237]永隆,林丹军.尼罗罗非鱼精子形成中核内囊泡的释放.动物学报, 1998, 44(3): 257-263
    [238] Mattei X. Spermiogenèse comparée des poissons. In: Baccetti Bed. Comparative Spermatology. New York : Academi Press, 1970, 57-70
    [239] Mattei X. Spermatozoon ultrastructure and its systematic implications in fishes. Can. J. Zool., 1991, 69: 3 038-3 055
    [240] Suquet M, Dorange G, Omnes MH, et al. Composition of the seminal fluid and ultrastructure of the spermatozoon of turbot Scophthalmus maximus. J. Fish Biology, 1993, 42: 509-516
    [241] Hara M, Okiyama M.An ultrastructural review of the spermatozoa of Japanese fishes.Bull Ocean Res Ins, Uni Tokyo, 1998, 33: 120-131
    [242] Jones P R, Butler R D. Spermatozoon ultrastructure of Platichthys flesus. J. Ultrastruct. Mol. Strut. Res., 1988, 98: 71-82
    [243] Afzelius B A. Fine structure of the garfish spermatozoon. J. Ultr. Res., 1978, 64: 309~324
    [244]王宏田,徐永立,张培军.牙鲆精子的超显微结构.海洋科学,1999,6:5-7
    [245]赵会宏,刘晓春,林浩然,等.斜带石斑鱼精子超微结构及盐度、温度、pH对精子活力及寿命的影响.中国水产科学, 2003, 10(4): 286-293
    [246]林丹军,尤永隆.褐菖鱼由精细胞晚期的变化及精子结构的研究.动物学研究, 1998, 19(15): 359-366
    [247] Poirier G R, Nicholson N. Fine structure of the testicular spermatozoa from the channel catfish, Ictalurus punctatus. J Ultrastruct Res, 1982, 80:104-110
    [248]吴莹莹,柳学周,王清印,等.半滑舌鳎精子的超微结构.海洋学报,2007,29(6):167-171
    [249]尤永隆,林丹军.鲤鱼精子超微结构的研究.动物学报, 1996,17(4): 377-383.
    [250]张耀光,罗泉笙,钟明超.长吻鮠精巢及精子结构的研究.水生生物学报, 1993,17(3): 246-257
    [251] Ohta H , Shinriki Y. Changes in osmotic pressure that trigger the ini-tiation of sperm motility in river sculp, Cottus hangiongensis. Fish Physiol Biochem, 1998, 18: 29-35
    [252] Toth G P, Christ S A, Mccarthy H W, et al. Computer-assisted motion analysis of semen from the common carp. J Fish Biol, 1995, 47: 986-1003
    [253]谢刚,叶星,苏植蓬,等.鳗鲡精子的主要生物学特性.上海水产大学学报, 1999, 8(1): 81-84
    [254] Billard R, Cosson M P. Some problems related to the assessment of sperm motility in freshwater fish. J Exp Biol, 1992, 261:122-131
    [255]江世贵,李加儿,区又君,等.四种鲷科鱼类的精子激活条件与其生态习性的关系.生态学报, 2000b, 20(3): 468-473
    [256]邓岳松,林浩然.鱼类精子活力研究进展.生命科学研究, 1999, 3(4): 271-278
    [257] Billard R, Cosson J, Perchec. G, et al. Biology of sperm and artificial reproduction in carp. Aquaculture, 1995, 129:95-112
    [258] Stoss J. Fish Gamete preservation and spermatozoon physiology. Fish Physiology. Vol. IX B, New York: Academic Press, 1983, 305-350
    [259] Cabrita E, Soares F, Dinis M T. Characterization of Senegalese sole, Solea senegalensis, male broodstock in terms of sperm production and quality. Aquaculture, 2006, 261: 967-975
    [260] Pankhurst N W, Poortenaar C W. Milt characteristics and plasma levels of gonadal steroids in greenback flounder Rhombosolea tapirina following treatment with exogenous hormones. Mar. Freshw. Behav. Physiol., 2000, 33: 141–159
    [261] King H R, Young G. Milt production by non-spermiating male Atlantic salmon (Salmo salar) after injection of a commercial gonadotropin releasing hormone analog preparation, 17α-dihydroxy-4-pregnen-3-one, alone or in combination. Aquaculture, 2001, 193, 179– 195
    [262] Lim H K, Han H S, Chang Y J. Effects of gonadotropin-releasing hormone analog on milt production enhancement in starry flounder Platichthys stellatus. Fish. Sci., 2002, 68, 1197–1204
    [263] Ma?anós E, Carrillo M, Sorbera L A, et al. Luteinizing hormone and sexual steroid plasma levels after treatment of European sea bass with sustained-release delivery systems for gonadotropin-releasing hormone analogue. J. Fish Biol., 2002, 60, 328– 339
    [264] Clemens H P, Grant F B. The seminal thinning response of carp (Cyprinus carpio) and rainbow trout (Salmo gairdnerii) after injections of pituitary extracts. Copeia, 1965, 2: 174–177
    [265] Sorbera L A, Mylonas C C, Zanuy S, et al. Sustained administration of GnRHa increases milt volume without altering sperm counts in the sea bass. J. Exp. Zool., 1996, 276:361–368.
    [266] Clearwater S J, Crim L W. Milt quality and quantity produced by yellowtail flounder (Pleuronectes ferrugineus) following GnRH-analogue treatment by microspheres or pellet. In: Goetz F W, Thomas P, eds. Proc. Vth Symp. on the Reproductive Physiology of Fish. Austin., Fish Symposium 1995, Austin, 113
    [267]楼允东.组织胚胎学.北京:中国农业出版社, 1999, 126-136
    [268] Nilsson S, Makela S, Treuter E, et al. Mechanisms of estrogen action. Physiol Rev, 2001, 81: 1535– 1565
    [269] Escriva H, Delaunay F, Laudet V. Ligand binding and nuclear receptor evolution. Bioessays, 2000, 22: 717–727
    [270] Sperry T S, Thomas P. Androgen binding profiles of two distinct nuclear androgen receptors in Atlantic croaker (Micropogonias undulatus ). Journal of Steroid Biochemistry & Molecular Biology, 2000, 73:93-103
    [271] Chang C F, Hung C Y, Chiang M C, et al. The concentration of plasma sex steroids and gonadal aromatase during controlled sex differentiation in grey mullet, Mugil cephalus. Aquaculture, 1999, 177:37–45
    [272] Mangelsdorf D J, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade. Cell, 1995, 83: 835–839.
    [273] D’Cotta H, Fostier A, Guiguen Y, et al. Search for genes involved in the temperature-induced gonadal sex differentiation in the tilapia, Oreochromis niloticus. J Exp Zool, 2001, 290:574–585.
    [274] Devlin R H, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 2002, 208:191–364.
    [275] Blazquez M, Piferrer F. Sea bass (Dicentrarchus labrax) androgen receptor: cDNA cloning, tissue-specific expression, and mRNA levels during early development and sex differentiation. Molecular and Cellular Endocrinology, 2005, 237: 37–48.
    [276] Rougeot C, Krim A, Mandiki S N M, et al. Sex steroid dynamics during embryogenesis and sexual differentiation in Eurasian perch, Perca fluviatilis. Theriogenology, 2007, 67: 1046–1052.
    [277] Sabo-Attwood T, Kroll K J, Denslow N D. Differential expression of largemouth bass (Micropterus salmoides) estrogen receptor isotypes alpha, beta, and gamma by estradiol. Molecular and Cellular Endocrinology, 2004, 218:107-11
    [278]温海深,高玲.石鲽卵巢雌二醇及其受体和睾酮受体免疫组织化学研究.海洋学报, 2007, 29 (4):161–165
    [279]孙中之,柳学周,庄志猛,等.野生半滑舌鳎的驯养技术.海洋水产研究, 2005, 26(6): 6-10
    [280]柳学周,孙中之,马爱军,等.半滑舌鳎亲鱼培育及采卵技术研究.海洋水产研究, 2006, 27(2): 25-32
    [281]柳学周,庄志猛,马爱军,等.半滑舌鳎苗种生产技术的开发研究.海洋水产研究, 2006, 27(2):17-24
    [282]马学坤,柳学周,温海深,等.半滑舌鳎性腺分化的组织学观察.海洋水产研究, 2006, 27(2):55-61
    [283] Yamamoto T. Sex differentiation. In: Hoar W S, Randall D J, eds. Fish physiology, reproduction and growth bioluminescence Vol.III, Reproduction and Growth, Bioluminescence, Pigments, and Poisons. New York: Academic Press; 1969. pp.117–75
    [284] Castonia G, Barone M V, Didomerico M, et al. Non-transcriptional action of oestradiol and progestin triggers DNA synthesis. EMBO, 1999, 18: 2500-2510
    [285]方永强,翁幼竹,黄威权,孙岚.雌受体α和β亚型在文昌鱼神经系统、哈氏窝和性腺中的的定位.实验生物学报, 2003, 36(5):368-374
    [286] Fitzpatrick M S, Gale M L, Schreck C B. Binding characteristics of an androgen receptor in the ovaries of coho salmon, Oncorhynchus kisutch. Gen Comp Endocrinol, 1994, 95:399–408
    [287] Ikeuchi T, Todo T, Kobayashi T, Nagahama Y. cDNA cloning of a novel androgen receptor subtype. J Biol Chem, 1999, 274: 25205–25209
    [288] Zohar Y, Mu?oz-Cueto J A, Elizur A, Kah O. Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol, 2010, 165:438-455
    [289] Somoza G M, Lescheid D, Miranda L A, et al. Expression of pejerrey gonadotropinreleasing hormone (pjGnRH) in three orders of fish. Biol Reprod, 2002b, 67: 1864-1871
    [290] Somoza G M, Miranda L A, Strobl-Mazzulla P, Guilgur L G Gonadotropin-releasing hormone (GnRH): from fish to mammalian brains. Cell Mol Neurobiol, 2002a, (5-6):589-609
    [291] Anderson E, Fjelldal P G, Klenke U, et al. Three forms of GnRH in the brain and pituitary of the turbot, Scophthalmus maximus: Immunological characterization and seasonal variation. Comp Biochem Physiol, B, 2001, 129:551-558
    [292] Servili A, Lethimonier C, Lareyre J J, et al. The Highly conserved gonadotropin-releasing hormone-2 form acts as a melatonin-releasing factor in the pineal of a teleost fish, the European sea bass Dicentrarchus labrax. Endocrinology, 2010, 151(5):2265-2275
    [293] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 2008, 3(6): 1101-1108
    [294] Rissman E F. Behavioral regulation of gonadotropin-releasing hormone. Biol Reprod, 1996, 54:413-419
    [295] Fang B H, Sun X Q, Qu L Y, et al. Molecular cloning and expression analysis of two types of GnRH gene in Japanese flounder (Paralichthys olivaceus). High Technol Lett, 2006, 16(5): 529-534
    [296] Pham K X, Amano M, Amiya N, et al. Immunohistochemical localization of three GnRH systems in brain and pituitary of Japanese flounder. Fish Sci, 2007, 73: 1113-1122
    [297] Leonardo G, Guilgur G O, Pablo H S M, et al. Characterization of the cDNAs Encoding Three GnRH Forms in the Pejerrey Fish Odontesthes bonariensis (Atheriniformes) and the Evolution of GnRH Precursors. J Mol Evol, 2007, 64: 614-627
    [298] Kah O, Lethimonier C, Somoza G, et al. GnRH and GnRH receptors in metazoa: a historical, comparative, and evolutive perspective. Gen Comp Endocrinol, 2007, 153:346-364
    [299] Okubo K, Amano M, Yoshiura Y, et al. A Novel Form of Gonadotropin-Releasing Hormone in the Medaka, Oryzias latipes. Biochem Bioph Res Co, 2000, 276: 298-303
    [300] Swapna I, Sudhakumari CC, Sakai F, et al. Seabream GnRH Immunoreactivity in Brain and Pituitary of XX and XY Nile Tilapia, Oreochromis niloticus During Early Development. Journal of Experimental Zoology, 2008, 309A: 419-426
    [301] Powell J F F, Fischer W H, Park M, et al. Primary structure of solitary forms of gonadotropin-releasing hormone (GnRH) in cichlid pituitary; three forms of GnRH in brain of cichlid and pumpkinseed fish. Regulatory Peptides, 1995, 57: 43-53
    [302] Penlington M C, Harden N, Garside J, et al. Isolation and characterization of mRNA encoding the chicken-Ⅱtype gonadotropin-releasing hormone (GnRH) precursor in the rainbow trout. J Fish Biol, 1998, 53: 614-623
    [303] Penlington M C, Williams M A, Sumpter J P, et al. Isolation and characterization of mRNA encoding the salmon and chicken-Ⅱtype gonadotropin-releasing hormones in the teleost fish Rutilus rutilus (Cyprinidae). J Mol Endocrinol, 1997, 19: 337-346
    [304] Lin X W, Peter R E. Expression of salmon gonadotropin-releasing hormone (GnRH) and chicken GnRH-Ⅱprecursor messenger ribonucleic acids in the brain and ovary of goldfish. Gen Comp Endocrinol, 1996, 101: 282-296
    [305] Holland M C, Gothilf Y, Meiri I, et al. Levels of the native forms of GnRH in the pituitary of the gilthead seabream, Sparus aurata, at several characteristic stages of the gonadal cycle. Gen Comp Endocrinol, 1998, 112:394-405
    [306] Okuzawa K, Kobayashi M. Gonadotropin-releasing hormone neuronal systems in the teleostean brain and functional significance. In: Prasada R, Peter R E, eds. Neural Regulation in the Vertebrate Endocrine System. Kluwer Academic Publisher/Plenum Press, New York, 1999.
    [307] Montaner A D, Affanni J M, King J A, et al. Differential distribution of gonadotropin-releasing hormone variants in the brain of Hydrochaeris hydrochaeris (Mammalia, Rodentia). Cell Mol Neurobiol, 1999, 19: 635-651
    [308] Montaner A D, Somoza G M, King J A, et al. Chromatographic and immunological identification of GnRH (gonadotropin-releasing hormone) variants. Occurrence of mammalian and a salmon-like GnRH in the forebrain of an eutherian mammal: Hydrochaeris hydrochaeris (Mammalia, Rodentia). Regul Pept, 1998, 73: 197-204
    [309] Yahalom D, Chen A, Ben-Aroya N, et al. The gonadotropin-releasing hormone family of neuropeptides in the brain of human, bovine and rat: identification of a third isoform. FEBS Lett, 1999, 463: 289-294
    [310] Kobayashi M, Amano M, Kim MH, et al. Gonadotropin releasing hormone and gonadotropin in goldfish and masou salmon. Fish Physiol Biochem, 1997, 17:1–8
    [311] Uzbekova S, Lareyre J J, Guiguen Y, et al. Expression of sGnRH mRNA in gonads during rainbow trout gametogenesis. Comp Biochem Physiol, 2001, 129B:457-465
    [312] Uzbekova S, Lareyre J J, Madigou T, et al. Expression of prepro-GnRH and GnRH receptor messengers in rainbow trout ovary depends on the stage of ovarian follicular development. Mol Reprod Devel, 2002, 62:47-56
    [313] White R B, Fernald R D. Genomic Structure and Expression Sites of Three Gonadotropin-Releasing Hormone Genes in One Species. Gen Comp Endocrinol, 1998, 112: 17-25
    [314] Goos H, Bosma P, Zandbergen T, et al. Function and molecular aspects of the gonadotropin-releasing hormones in the African catfish, Clarias gariepinus. Netherlands Journal of Zoology, 1995, 45: 147-151
    [315] Collins P M, Neill D F O, Barron B R, et al. Gonadotropin-Releasing Hormone Content in the Brain and Pituitary of Male and Female Grass Rockfish (Sebastes rastrelliger) in Relation to Seasonal Changes in Reproductive Status. Biol Reprod, 2001, 65:173-179
    [316] Somoza G M, Stefano A, D'Eramo J L, et al. Immunoreactive GnRH suggesting a third form of GnRH in addition to clIGnRH and sGnRH in the brain and pituitary gland of Prochilodus lineatus (Characiformes). Gen Comp Endocrinol, 1994, 94:44-52
    [317] Gothilf Y, Mu?oz-Cueto JA, Sagrillo CA, et al. Three forms of gonadotropin-releasing hormone in a perciform fish (Sparus aurata): complementary deoxyribonucleic acid characterization and brain localization. Biol Reprod, 1996, 55: 636-645
    [318] Lethimonier C, Madigou T, Mu?oz-Cueto J A et al. Evolutionary aspects of GnRHs, GnRH neuronal systems and GnRH receptors in teleost fish. Gen Comp Endocrinol, 2004, 135: 1-16
    [319] Soga T, Ogawa S, Millar R P, et al. Localization of the three GnRH types and GnRH receptors in the brain of a cichlid fish: insights into their neuroendocrine and neuromodulator functions. J Comp Neurol, 2005, 487: 28-41
    [320] Gonzalez-Martinez D, Zmora N, Mananos E, et al. Immunohistochemical localization of three different prepro- GnRHs in the brain and pituitary of the European sea bass (Dicentrarchus labrax) using antibodies to the corresponding GnRH-associated peptides. J Comp Neurol, 2002b, 446:95-113
    [321] Gonzalez-Martinez D, Zmora N, Zanuy S, et al. Developmental expression of three different prepro-GnRH (gonadotrophinreleasing hormone) messengers in the brain of the European sea bass (Dicentrarchus labrax). J Chem Neuroanat, 2002a, 23:255-267
    [322] Senthilkumaran B, Okuzawa K, Gen K, et al. Distribution and seasonal variations in levels of three native GnRHs in the brain and pituitary of perciform fish. J Neuroendocrinol, 1999, 11: 181-186
    [323] Amano M, Oka Y, Aida K, et al. Immunocytochemical demonstration of salmon GnRHand chicken GnRH-Ⅱin the brain of masu salmon, Oncorhynchus masou. J Comp Neurol, 1991, 314: 587-597
    [324] Suzuki M, Hyodo S, Kobayashi M, et al. Characterization and localization of mRNA encoding the salmon-type gonadotrophin-releasing hormone precursor of the masu salmon. J Mol Endocrinol, 1992, 9: 73-82
    [325] Kim M H, Oka Y, Amano M, et al. Immunocytochemical localization of sGnRH and cGnRH-Ⅱin the brain of goldfish, Carassius auratus. J Comp Neurol, 1995, 356: 72-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700