量子纠缠特性和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪90年代中期Shor量子因子分解算法和Grover量子搜索算法相继被发现,从而使得量子计算与量子信息科学成为研究热点领域。在该领域中,量子纠缠一直扮演着极其重要的角色。事实上,量子纠缠作为量子系统独有的物理特性,不仅能验证量子力学的基本问题,而且是量子计算与量子信息科学中极为重要的资源。因此,研究者从各个方面对量子纠缠进行了研究,例如,量子纠缠的本质、度量、演化和应用,量子纠缠态的分类、制备、传输和存储等。本论文就是围绕着纠缠动力学、纠缠在量子信息处理任务中的应用以及相关实验实现等内容展开研究的,主要目的就是要从理论上进一步理解与利用量子纠缠。本文的主要内容包括:
     1.针对具体情形和型,研究量子纠缠的动力学演化。其一,我们研究了与光腔相作用的原子的纠缠演化,明确给出初态对量子纠缠演化的影响:(1)原子最先制备在GHZ类纯态时,腔中的光子能够在腔内原子间产生纠缠;(2)原子最先制备在W类纯态时,腔内原子间的纠缠将会发生突然死亡现象;(3)原子最先制备在混态时,初态中的激发态-基态-基态部分能够在腔内原子间产生纠缠且缩短零纠缠的时间,而初态中的激发态部分可导致纠缠死亡现象;(4)验证了个关于Concurrence和负性纠缠的定理。其二,我们采用MABK不等式,考察了三粒子之间的量子非局域性在反铁磁环境下的演化,发现了Bell不等式违背突然不成立的现象和反铁磁环境中的免退相干子空间。其三,研究了在Milburn内在退相干型中qutrit系统的纠缠演化,发现纠缠可以通过控制非线性耦合常数来达到最大值。我们上述三个问题的研究结论对延缓、抑制甚至调控环境等引起的量子退相干效应具有重要的意义。
     2.研究用纠缠信道完成量子信息处理任务。其一,指出自旋轨道耦合和内在退相干对纠缠传递的影响:发现了一类信道初态,自旋轨道耦合和内在退相干对信道和输出态的纠缠并未产生任何影响,也就是说信道对自旋轨道耦合和内在退相干免疫;而另外一类信道初态,信道和输出态纠缠随自旋轨道耦合和内在退相干的变化而变化。其二,考察了用热纠缠态进行最优的量子密集编码:对量子比特情形,只有当外加磁场小于自旋耦合系数时热纠缠态才能用来进行密集编码,同时研究了外加磁场和环境温度对密集编码能力的影响并给出了有效的临界编码条件;而对qutrit系统,它们之间的相互作用系数决定了密集编码的能力且相互作用系数需要大于一定值。我们上述所得结论的意义在于对利用非最大纠缠态进行量子信息处理任务进行了有益的尝试。
     3.研究在腔QED中实行量子比特远程操作的实验方案。我们通过重写恢复算符,得出量子比特远程操作的方案可以用控制非门和单量子比特门重述,而这些量子门都可以在腔QED中实现,从而论证了在腔QED中实验实现量子远程操作的可行性,并指出了具体的实验步骤。
     全文共分四章:第一章对量子纠缠的相关理论进行了简要的介绍;第二章则考虑了环境影响下的纠缠动力学;第三章用纠缠态来完成量子信息处理任务;最后一章给出了在腔QED中实行量子比特远程操作的实验实现方案。
Because of Shor's factoring algorithm and Grover's searching algorithm in the middle of 1990s,quantum computation and quantum information become one of the important research area.Quantum entanglement is a unique character of quantum system and it can be used not only for testing the basic problem of quantum mechanics but also for acting as an important resource of quantum computation and quantum information.Researchers investigate quantum entanglement carefully,for example,the essential,measurement,evolution and application of entanglement,the classification,preparation,transformation and storage of entanglement.In the thesis,I investigate dynamics of entanglement, application of entanglement in quantum information processing and proposals of realizing quantum information processing in experiment.The aim of the thesis is to understand and discuss entanglement theoretically.The content of the paper is:
     1.I study the dynamics of entanglement for different cases.Firstly,I investigate the evolution of entanglement when atoms interact with the cavity and show the effect of initial states on evolution of entanglement.(1)When atoms are initially prepared in GHZ class pure states,photons in the cavity can induce entanglement.(2)When atoms are initially prepared in W class pure states,the phenomenon of entanglement sudden death occurs.(3)When atoms are initially prepared in mixed states,the portion of excited-ground-ground state can induce entanglement and shorten the time of zero entanglement,while the excited state can induce the phenomenon of entanglement sudden death.(4)Furthermore,the model give an example to support two theorems between concurrence and negativity. Secondly,by using of MABK inequality,I investigate the evolution of nonlocality in antiferromagnetic environment.The phenomenon of Bell-nonlocality violation sudden death occurs and the class of decoherence-free states have been found.In the end,I investigate the effect of intrinsic decoherence of Milburn's model on entanglement of two-qutrit states.I could choose the appropriate nonlinear coupling constant to get the maximal entanglement.Study of entanglement dynamics can stave,prevent,or even control the effect of decoherence.
     2.I study the application of entangled states in quantum information processing. Firstly,we investigate the Dzyaloshinskill-Moriya anisotropic antisymmetric interaction and intrinsic decoherence on entanglement transfer.For some initial states m|00>+m|11> of the channel,DM interaction and intrinsic decoherence have no effect on the entanglement of the channel and output state.In other words,the channel is immunized from DM interaction and intrinsic decoherence. While for the other initial state 1/2~(1/2)(|01>+|10>) of the channel,DM interaction and intrinsic decoherence have obvious influence on the channel,the entanglement of the output state.Secondly,I study optimal dense coding with thermal entangled states.For two-qubit Heisenberg model,the dense coding capacity is a function of temperature and external magnetic field.Only in the case of external magnetic field being less than the coupling constant,the optimal dense coding can be realized with thermal entangled states.For two-qutrit system,I consider the dense coding capacity taking into account of nonlinear coupling constant and an external magnetic field.I find that the nonlinear coupling constant must be less than 0 for dense coding.I try to implement quantum information processing by using non-maximally entangled states.
     3.I show the proposal for remote implementation of partially unknown quantum operations of two qubits in cavity QED.By constructing the recovery operations of the protocol of remote implementation of partially unknown quantum operation of two qubits[An Min Wang:Phys.Rev.A 74(2006) 032317] with two-qubit Cnot gate and single qubit logic gates,all the quantum gates can be realized in cavity QED.Based on these,I present a scheme to implement remeote implementation of partially unknown quantum operations of two qubits in cavity QED.
     The thesis consists of four parts.In chapter 1,I introduce the relative theory of entanglement in quantum computation and quantum information.In chapter 2,the dynamics of entanglement in environment is investigated.In chapter 3,I investigate the application of entanglement in quantum information processing. In the last chapter,the scheme for remote implementation of partially unknown quantum operation of two qubits in cavity QED is shown.
引文
[1]R.Werner,Quantum states with Einstein-Podolscky-Posen correlations admitting a hidden-variable model,Phys.Rev.A 40(1989) 4277
    [2]曾谨言,裴寿铺,龙桂鲁,量子力学新进展第二辑(北京大学出版社,北京,2001)
    [3]A.Peres,Separability criterion for density matrices,Phys.Rev.Lett.77(1996) 1413;M.Zyczkowski,P.Horodecki,volume of the set of separable states,Phys.Rev.A 58(1998)883
    [4]M.Horodecki,P.Horodecki,R.Horoclecki,Separability of mixed states:necessary and sufficient conditions,Phys.Lett.A 223(1996) 1
    [5]M.A.Nielsen,J.Kempe,Separable states are more disordered globally than locally,Phys.Rev.Lett.86(2001) 5184
    [6]龙桂鲁,裴寿镛,曾谨言,量子力学新进展第四辑(清华大学出版社,北京,2007)
    [7]O.Rudolph,Further results on the cross norm criterion for separability,Quantum Information Processing,4(3)(2005) 219
    [8]K.Chen,L.A.Wu,A matrix realignment method for recognizing entanglement,quantuph /0205017.Quant.Inf.Comput.3(2003) 193
    [9]K.Chen,L.A.Wu,The generalized partial transposition criterion for separability of multipartite quantum states,Phys.Lett.A 306(2002) 14
    [10]S.Albeverio,K.Chen,S.M.Fei,Generalized reduction criterion for separability of quantum states,Phys.Rev.A 68(2003) 062313
    [11]P.Horodecki,M.Lewenstein,G.Vidal,I.Cirac,Operational criterion and constructive checks for the separability of low-rank density matrices,Phys.Rev.A 62(2000) 032310
    [12]S.Karnas,M.Lewenstein,Separability and entanglement in C~2(?)C~2(?)C~N composite quantum systems,Phys.Rev.A 64(2001) 042313
    [13]S.M.Fei,X.H.Gao,X.H.Wang,Z.X.Wang,K.Wu,Separability and entanglement in C~2(?)C~3(?)C~N composite quantum systems,Phys.Rev.A 68(2003) 022315
    [14]S.Albeverio,S.M.Fei,D.Goswami,Separability of rank two quantum states,Phys.Lett.A 286(2001) 91
    [15]D.Bruβ,Characterizing entanglement,J.Math.Phys,43(2002) 4237
    [16]马小三,量子退相干和量子纠缠动力学的若干研究,中国科学技术大学博士学位论文(2007)
    [17]C.H.Bennett,D.P.Divincenzo,H.A.Smolin,and W.K.Wootters,Mixed-state entanglement and quantum error correction,Phys.Rev.A 54(1996) 3824
    [18]S.Hill and W.K.Wootters,Entanglement of a pair of quantum bits,Phys.Rev.Lett.78(1997) 5022
    [19]W.K.Wootters,Entanglement of formation of an arbitrary state of two qubits,Phys.Rev.Lett.80(1998) 2245
    [20]K.Zuczkowski,P.Horodecki,A.Sanpera and M.Lewenstein,Volume of the set of separable states,Phys.Rev.A 58(1998) 883
    [21]K.Zyczkowski,Volume of the set of separable states.Ⅱ,Phys.Rev.A 60(1999) 2000
    [22]G.Vidal and R.F.Werner,Computable measure of entanglement,Phys.Rev.A 65(2002)032314
    [23]W.Dur,J.I.Cirac,and R.Tarrach,Separability and distillability of multiparticle quantum systems,Phys.Rev.Lett.83(1999) 3562
    [76]G.J.Milburn,Intrinsic decoherence in quantum mechanics,Phys.Rev.A 44(1991) 5401
    [77]M.Schlosshauer,Decoherence,the measurement problem,and interpretations of quantum mechanics,Rev.Mod.Phys.76(2004) 1267
    [78]W.Buzek and M.Konopka,Dynamics of open systems governed by the Milburn equation,Phys.Rev.A 58(1998) 1735
    [79]K.Kimm and H.Kwon,Decoherence of the quantum gate in Milburn's model of decoherence,Phys.Rev.A 65(2002) 022311
    [80]R.M.Angelo,E.S.Cardoso,and K.Furuya,Decoherence induced by a phase-damping reservoir,Phys.Rev.A 73(2006) 062107
    [1]M.S.Kim,J.Lee,D.Ahn,and P.L.Knight,Entanglement induced by a single-mode heat environment,Phys.Rev.A 65(2002) 040101(R)
    [2]L.Jak(?)bczyk,Entangling two qubits by dissipation,J.Phys.A:Math.Gen.35(2002)6383
    [3]L.Jak(?)bczyk,and A.Jamr(?)z,Entanglement and nonlocality versus spontaneous emission in two-atom systems,Phys.Lett.A 318(2003) 318
    [4]L.Jak(?)bczyk,and A.Jamr(?)z,Noise-induced finite-time disentanglement in two-atomic system,Phys.Lett.A 333(2004) 35
    [5]T.Yu,and J.H.Eberly,Finite-time disentanglement via spontaneous emission,Phys.Rev.Lett.93(2004) 140404
    [6]L.Qiu,A.M.Wang,X.Q.Su,Time evolution of pairwise entanglement between two atoms,Opti.Comm 281(2008) 4155
    [7]T.Yu,and J.H.Eberly,Quantum open system theory:Bipartite aspects,Phys.Rev.Lett.97(2006) 140403
    [8]M.Y(o|¨)nac,T.Yu,and J.H.Eberly,Sudden death of entanglement of two Jaynes-Cummings atoms,J.Phys.B:At.Mol.Opt.Phys.39(2006) S621
    [9]M.Y(o|¨)nac,T.Yu,and J.H.Eberly,Pairwise concurrence dynamics:a four-qubit model,J.Phys.B:At.Mol.Opt.Phys.40(2007) S45
    [10]L.A.Wu,and D.A.Lidar,Creating Decoherence-Free Subspaces Using Strong and Fast Pulses,Phys.Rev.Lett.88(2002) 207902
    [11]K.Zyczkowski,P.Horodecki,M.Horodecki,and R.Horodecki,Dynamics of quantum entanglement,Phys.Rev.A 65(2002) 012101
    [12]P.J.Dodd,and J.J.Halliwell,Disentanglement and decoherence by open system dynamics,Phys.Rev.A 69(2004) 052105
    [13]A.R.R.Carvalho,F.Mintert,and A.Buchleitner,Decoherence and multipartite entanglement,Phys.Rev.Lett.93(2004) 230501
    [14]F.Mintert,A.R.R.Carvalho,M.Kus,and A.Buchleitner,Measures and dynamics of entangled states,Phys.Rep.415(2005) 207
    [15]G.Gordon,and G.Kurizki,Preventing multipartite disentanglement by local modulations,Phys.Rev.Lett.97(2006) 110503
    [16]H.T.Cui,K.Li,and X.X.Yi,A study on the sudden death of entanglement,Phys.Lett.A 365(2007) 44
    [17]T.Yu,Entanglement decay versus energy change:A model,Phys.Lett.A 361(2007) 287
    [18]M.P.Almeida,et.al.,Environment-induced sudden death of entanglement,Science 316(2007) 579
    [19]M.Tavis,F.W.Cumming,Exact solution for an N-molecule-radiation-field Hamiltonian,Phys.Rev.170(1968) 379
    [20]Z.J.Li,J.Q.Li,Y.H.Jin,Y.H.Nie,Time evolution and transfer of entanglement between an isolated atom and a Jaynes-Cummings atom,J.Phys.B:At.,Mol.Opt.Phys.40(2007) 3401
    [21]S.Hill,W.K.Wootters,Entanglement of a pair of quantum bits,Phys.Rev.Lett.78(1997) 5022
    [22]F.Verstraete,K.Audenaert,J.Dehaene,B.De Moor,A comparison of the entanglement measures negativity and concurrence,J.Phys.A:Math.Gen.34(2001) 10327
    [23]G.Vidal,R.F.Werner,Computable measure of entanglement,Phys.Rev.A 65(2002)032314
    [24]K.Zyczkowski,Volume of the set of separable states.Ⅱ,Phys.Rev.A.60(1996) 3496
    [25]K.Zyczkowski,P.Horodecki,A.Sanpera,M.L.Lewenstein,Volume of the set of separable states,Phys.Rev.A.58(1998) 883
    [26]L.Hartmann,W.Dur,H.J.Briegel,Steady-state entanglement in open and noisy quantum systems,Phys.Rev.A 74(2006) 052304
    [44]M.Ardehali,Bell inequalities with a magnitude of violation that grows exponentially with the number of particles,Phys.Rev.A 46(1992) 5375
    [45]A.V.Belinskii,D.N.Klyshko,Soy.Phys.Uspekhi 36(1993) 653
    [46]X.S.Ma,A.M.Wang,X.D.Yang,H.You,Entanglement dynamics and decoherence of three-qubit system in a fermionic environment,J.Phys.A:Math.Gen.38(2005) 2761
    [47]W.H.Zurek,Pointer basis of quantum apparatus:Into what mixture does the wave packet collapse? Phys.Rev.D 24(1982) 1516
    [48]W.H.Zurek,Environment-induced superselection rules,Phys.Rev.D 26(1982) 1862
    [49]R.Kubo,J.Phys.Soc.Jan.9(1954) 935;P.Anderson,idbd.9(1954) 316
    [50]G.C.Ghirardi,A.Rimini,and T.Weber,Unified dynamics for microscopic and macroscopic systems,Phys.Rev.D 34(1986) 470
    [51]G.C.Ghirardi,P.Pearle,and A.Rimini,Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles,Phys.Key.A 42(1990)78
    [52]L.Diosi,Models for universal reduction of macroscopic quantum fluctuations,Phys.Rev.A 40(1989) 1165
    [53]J.Ellis,S.Monhanty,and D.V.Nanopoulos,Wormholes violate quantum mechanics in SQUIDs,Phys.Lett.B 235(1990) 305
    [54]G.J.Milburn,Intrinsic decoherenee in quantum mechanics,Phys.Rev.A 44(1991) 5401
    [55]A.Pere,Separability criterion for density matrices,Phys.Rev.Lett.77(1996) 1413;M.Horodecki,P.Horodecki,and R.Horodecki,Separability of mixed states:necessary and sufficient conditions,Phys.Lett.A 223(1996) 1
    [56]T.C.Wei,K.Nemoto,P.M.Goldbart,P.G.Kwiat,W.J.Manro,and F.Verstraete,Maximal entanglement versus entropy for mixed quantum states,Phys.Rev.A 67(2003)022110
    [57]C.X.Li,C.Z.Wang,X.M.Lin,and G.C.Guo,Thermal entanglement versus mixture in a spin chain:Generation of maximally entangled mixed states,Physica A 370(2006) 430
    [58]D.Jaksch,C.Bruder,J.I.Cirac,C.W.Gardiner,and P.Zoller,Cold bosonic atoms in optical lattices,Phys.Rev.Lett.81(2003) 3108
    [59]S.K.Yip,Dimer state of spin-1 bosons in an optical lattice,Phys.Rev.Lett.90(1998)250402
    [60]G.F.Zhang and S.S.Li,The effects of nonlinear couplings and external magnetic field on the thermal entanglement in a two-spin-qutrit system,Opt.Commun.260(2006) 347
    [61]D.Shapira,Y.Shimoni,and O.Biham,Groverian measure of entanglement for mixed states,Phys.Rev.A 73(2006) 044301
    [62]Z.C.Kao and J.Ng,Three-qubit thermal entanglement via entanglement swapping on two-qubit Heisenberg XY chains,Phys.Rev.A 72(2005) 062302
    [1]A.Einstein,B.Podolski and N.Rosen,Can quantum-mechanical description of physical reality be considered complete? Phys.Rev.47(1935) 777
    [2]J.S.Bell,Physics(long Island city,N.Y)1(1964) 195
    [3]J.F.Clauser,M.A.Home,A.Shimony,and R.A.Holt,Proposed experiment to test local hidden-variable theories,Phys.Rev.Lett.23(1969) 880
    [4]N.D.Mermin,Quantum mechanics vs local realism near the classical limit:A Bell inequality for spin s,Phys.Rev.D 22(1980) 356
    [5]N.D.Mermin,and G.M.Schwarz,Joint distributions and local realism in the higher-spin Einstein-Podolsky-Rosen experiment,Found.Phys.12(1982) 101
    [6]A.Grag,and N.D.Mermin,Bell inequalities with a range of violation that does not diminish as the spin becomes arbitrarily large,Phys.Rev.Lett.49(1982) 901;Bell
    [1]C.H.Bennett,G.Brassard,C.Crepeau,R.Jozsa,A.Peres,W.K.Wootters,Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,Phys.Rev.Lett.70(1993) 1895
    [2]S.F.Huelga,J.A.Vaccaro,A.Chefles and M.B.Plenio,Quantum remote control:Teleportation of unitary operations,Phys.Rev.A 63(2001) 042303
    [3]H.K.Lo,Classical-communication cost in distributed quantum-information processing:A generalization of quantum-communication complexity,Phys.Rev.A 62(2000) 012313
    [4]A.K.Pati,Minimum classical bit for remote preparation and measurement of a qubit,Phys.Rev.A 63(2001) 014302
    [5]S.F.Huelga,M.B.Plenio,and J.A.Vaccaro,Remote control of restricted sets of operations:Teleportation of angles,Phys.Rev.A 65(2002) 042316
    [6]A.M.Wang,Remote implementations of partially unknown quantum operations of multiqubits,Phys.Rev.A 74(2006) 032317
    [7]L.Qiu,A.M.Wang,X.S.Ma,Effect of intrinsic decoherence of Milburn's model on entanglement of two-qutrit States,Commun.Theor.Phys.(Beijing,China) 50(2008)1233
    [8]M.A.Nielsen,I.L.Chuang,Quantum Computation and Quantum Information (Cambridge Univ.Press,Cambridge,2000)
    [9]N.A.Gershenfeld,and I.L.Chuang,Bulk spin-resonance quantum computation,Science 275(1997) 350;J.A.Jones,M.Mosca,and R.H.Hansen,Implementation of a quantum search algorithm on a quantum computer,Nature(London) 393(1998) 344
    [10]Q.A.Turchette,C.J.Hood,W.Lange,H.Mabuchi,and H.J.Kimble,Measurement of conditional phase shifts for quantum logic,Phys.Rev.Lett.75(1995) 4710;A.Rauschenbeutel,G.Nogues,S.Osnaghi,P.Bertet,M.Brune,J.M.Raimond,and S.Haroche,Coherent operation of a tunable quantum phase gate in cavity QED,Phys.Rev.Lett.83(1999) 5166
    [11]S.B.Zheng,and G.C.Guo,Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,Phys.Rev.Lett,85(2000) 2392
    [12]C.Monroe,D.M.Meekhof,B.E.King,W.M.Itano,and D.J.Wineland,Demonstration of a fundamental quantum logic gate,Phys.Rev.Lett.75(1995) 4714
    [13]A Quantum Information Science and Technology Roadmap,Part 1:Quantum Computation,2004,LA-UR-04-1778
    [14]E.Merzbacher,Quantum Mechanics(John Wiley & Sons Inc.1970)
    [15]Y.Makhlin,G.Schon and A.Shnirman,Quantum-state engineering with Josephson-junction devices,Rev.Mod.Phys.73(2001) 357
    [16]K.G.Sandeman,G.G.Lonzarich,and A.J.Schofield,Ferromagnetic superconductivity driven by changing fermi surface topology,Phys.Rev.Lett.91(2003) 167005
    [17]E.T.Jaynes and F.W.Cummings,Proc.IEEE 51(1963) 89
    [18]E.Solano,G.S.Agarwal,and H.Walther,Strong-driving-assisted multipartite entanglement in cavity QED,Phys.Rev.Lett.90(2003) 027903
    [19]G.Piresl,A.T.Avelar,B.Baseial,and N.G.de Almeida,Teleporting a state inside a single bimodal high-Q cavity,Phys.Rev.A 71(2005) 060301(R)
    [20]F.Yamaguchi,P.Milman,M.Brune,J.M.Raimond,and S.Haroche,Quantum search with two-atom collisions in cavity QED,Phys.Rev.A 66(2002) 010302(R)
    [21]A.Rauschenbeutel,G.Nogues,S.Osnaghi,P.Bertet,M.Brune,J.M.Raimond,and S.Haroche,Coherent operation of a tunable quantum phase gate in cavity QED,Phys.Rev.Lett.83(1999) 5166;A.Rauschenbeutel,G.Nogues,S.Osnaghi,P.Bertet,M.Brune,J-M.Raimond,and S.Haroche,Step-by-step engineered multiparticle entanglement,Science 288(2000) 2024
    [22]S.Osnaghi,P.Bertet,A.Auffeves,P.Maioli,M.Brune,J.M.Raimond,and S.Haroche,Coherent control of an atomic collision in a cavity,Phys.Rev.Lett.87(2001) 037902
    [23]M.D.Barrett,J.Chiaverini,T.Schaetz,J.Britton,W.M.Itano,J.D.Jost,E.Knill,C.Langer,D.Leibfried,R.Ozeri and D.J.Wineland,Deterministic quantum teleportation of atomic qubits,Nature(London) 429(2004) 737
    [24]G.P.Guo,C.F.Li,J.Li,and G.C.Guo,Scheme for the preparation of multiparticle entanglement in cavity QED,Phys.Rev.A 65(2002) 042102
    [25]S.B.Zheng,Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion,Phys.Rev.A 68(2003) 035801
    [26]L.H.Jin,X.R.Jin,and S.Zhang,Teleportation of a two-atom entangled state with a thermal cavity,Phys.Rev.A 72(2005) 024305
    [27]P.F.G(?)ra and C.Jedrzejek,Superstructures,fractional revivals,and optical Schr(o|¨)dingercat states in the Jaynes-Cummings model,Phys.Rev.A 48(1993) 3291
    [28]W.B.Cardoso,A.T.Avelar,B.Baseia,and N.G.de Almeida,Teleportation of entangled states without Bell-state measurement,Phys.Rev.A 72(2005) 045802
    [29]R.M.Serra,C.J.Villas-B(?)as,N.G.de Almeida,and M.H.Y.Moussa,Frequency up- and down-conversions in two-mode cavity quantum electrodynamics,Phys.Rev.A 71(2005)045802
    [30]M.Brune,E.Hagley,J.Dreyer,X.Ma(?)tre,A.Maali,C.Wunderlich,J.M.Raimond,and S.Haroche,Observing the progressive decoherenee of the "Meter" in a quantum measurement,Phys.Rev.Lett.77(1996) 4887
    [31]S.Gleyzes,S.Kuhr,C.Guerlin,J.Bernu,S.Del(?)glise,U.B.Hoff,M.Brune,J-M.Raimond and S.Haroche,Quantum jumps of light recording the birth and death of a photon in a cavity,Nature(London) 446(2007) 297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700