用户名: 密码: 验证码:
胎肝干细胞联合人参皂苷对大鼠脊髓损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊髓损伤是中枢神经系统的一种严重创伤,虽然手术治疗和药物治疗在不同程度上使受损的脊髓得到了恢复和再生的空间,但仍不可避免的造成了病人瘫痪乃至死亡的严重后果。脊髓损伤经常是在意外发生时,由于原发性机械损害及继发性损伤,导致组织中部分或者全部的神经细胞、神经胶质细胞等出现死亡现象,同时组织中的神经传导纤维发生断裂、脱髓鞘等,从而造成了脊髓神经功能的缺失。由于神经元的独特性,即神经元具有不可再生性,加之在脊髓发生损伤后,局部脊髓组织内复杂的微环境的改变,从而抑制了脊髓组织中神经元的轴突再生,这些病理改变最终使得脊髓中死亡的神经元功能丧失,导致器官和系统失神经支配,给患者及家人造成了极大的痛苦和生活上的不便。
     人参中含有多种有效成分,包括丰富的人参皂苷、多种氨基酸、多糖及挥发油等成分,对人体的中枢神经系统、心血管系统、免疫系统及泌尿生殖系统等具有广泛的作用,能增强机体对有害刺激的抵抗力。研究者在研究人参功效时,发现人参皂苷、三萜类物质,尤其是人参皂苷对受损脊髓具有良好的修复作用。
     近年来,随着干细胞研究的不断深入,研究者尝试利用胚胎干细胞修复损伤的脊髓组织,并且成为目前的一个研究热点。干细胞移植治疗神经再生的可移植性,为脊髓损伤的治疗带来了光明。将诱导后的神经细胞移植入脊髓中,可促使髓鞘再生,促使宿主神经元间再次形成突触。研究认为是新植入的神经细胞整合到宿主神经细胞中,因而部分恢复了脊髓信号传导的能力。
     众所周知,干细胞是一类全能的细胞,也是指一类具有自我更新、复制能力,并且具有多种分化潜能的细胞,他们可以在适宜条件下分化成特定类型的细胞,应用他们可以替代已经丧失功能、失去修复能力的细胞,从而达到修复组织功能的功效。
     研究发现,具有修复能力的干细胞包括胚胎干细胞(ESC)、骨髓间充质干细胞(MSC)、神经干细胞(NSC)等。而用于中枢神经系统修复的干细胞主要为胚胎干细胞和神经干细胞。目前少有利用胎肝干细胞诱导成神经干细胞进而完成神经系统修复的研究,且胎肝干细胞尚缺乏特异性的检测标志物。本实验分离的肝间充质干细胞表达CD44、CD29、CD105,说明分离的肝间充质干细胞具有低免疫原性,有利于异基因的细胞移植。对其研究,有可能发挥其稳定性好等优点,从而有可能成为应用于临床治疗脊髓损伤等中枢神经系统损伤的重要手段之一。
     本实验证实了胎肝间充质干细胞具有向神经细胞分化的潜能。诱导后细胞具有典型神经细胞形态,同时表达神经细胞相关蛋白。nestin和NSE在诱导后细胞中表达,GFAP不表达,证实肝间充质干细胞可以向神经元样细胞分化,而不分化为神经胶质细胞。进而利用其与人参皂苷共同治疗脊髓损伤的大鼠,发现其可以明显改善大鼠脊髓损伤症状,恢复其运动功能。
     本课题利用Al1en’s理论构建大鼠脊髓损伤模型作为研究脊髓损伤修复的研究模型,同时证明胎肝间充质干细胞可以诱导分化为神经元样细胞,进而辅助以人参皂苷治疗脊髓损伤,旨在探讨二者联合可以通过降低脊髓受损组织细胞中的活性氧水平,促进细胞抗凋亡,来降低脊髓损伤的程度,促进其功能恢复,这为临床脊髓损伤修复提供了重要的参考依据,具有重要的指导意义,使其有望成为组织工程和细胞移植治疗的新技术。
Spinal cord injury is a serious central nervous system trauma, surgical treatmentand medication to ease the change of spinal cord injury in varying degrees, but theconsequences still inevitably result in a patient with paraplegia. Spinal cord injury isoften occured at the time of the accident, as a result of the primary mechanicaldamage and secondary injury, resulting organization part or all of the nerve cells, glialcells died, and nerve conduction in the tissue fibers broken. The demyelinatingresulting lack of function of the spinal cord. Due to the uniqueness of the neurons,neurons with non-renewable, and spinal cord injury after partial spinal cord tissuemicroenvironment change, thereby inhibiting axonal regeneration in spinal cord tissue,ultimately makes the spinal cord death loss of neuronal function, causedinconvenience and pain of life for patients and their families.
     Contain a variety of active ingredients, including a wealth of ginsenoside inginseng, a variety of amino acids, polysaccharides and volatile oil components, andhas an extensive role in the body's central nervous system, cardiovascular system,immune system and urogenital system, can enhance the body The noxious stimuliresistance. The researchers found ginsenoside of triterpenoids ginseng efficacy study,ginsenoside has a good role in the repair of spinal cord injury.
     In recent years, with the development of the stem cell research, the researchersare trying to use of embryonic stem cells to repair damaged spinal cord tissue, and thisresearch are becoming a research focus. Stem cell transplantation in the treatment ofnerve regeneration portability, brought to light for the treatment of spinal cord injury.After the induction of nerve cells transplanted into the spinal cord, can promoteremyelination, prompting host neurons form synapses again. The study suggests thatthe new implantable nerve cells integrated into the host nerve cells, and thus the partial restoration of the ability of the spinal cord to transmit signals.
     As all we known, the stem cells are stem cells is a Class wholly competent cells,capable differentiation as a specific cell type, also refers to a class having aself-renewal and the ability to replicate, and having a variety of differentiationpotential of the cells, they can be under suitable conditions differentiation into aparticular type of cells, the applications that they can replace the loss of function, lossof the ability to repair cells, so as to achieve the efficacy of the repair tissue function.
     Our study found that, with the repair capacity of stem cells, including embryonicstem cells (ESC), bone marrow mesenchymal stem cells (MSC), neural stem cells(NSC). Stem cells for repair of the central nervous system of embryonic stem cellsand neural stem cells. Currently little data on personnel with fetal liver stem cells intoneural stem cells and then to complete the study of the nervous system repair. Atpresent, no specific sign of liver stem cells have not. The experimental separation ofMSCs expressed CD44, CD29, CD105, separation liver MSCs cells has lowimmunogenicity favor the allogeneic cell transplantation. Research, are likely to playa good stability, which is likely to become one of the important means used in theclinical treatment of spinal cord injury and other central nervous system damage.
     The present study demonstrated that liver MSCs have the potential todifferentiate into nerve cells. Typical nerve cell morphology induced cells, whileexpression of the related proteins of nerve cells. nestin and NSE in the cells afterinduction of expression, GFAP expression, confirmed liver MSCs can differentiateinto neuron-like cells, without having to differentiate into glial cells. Then use itsginsenoside treatment of spinal cord injury in rats, found that spinal cord injury cansignificantly improve symptoms, restore their motor function.
     The theory of the the subjects of Al1en the to build rat model of spinal cordinjury as a research model of spinal cord injury repair, at the same time prove fetalliver stem cells can be induced to differentiate into neuron-like cells, and further helpto the treatment of spinal cord injury ginsenoside aims to explore both importantreference can be provided jointly by reducing ROS levels in the spinal cord damaged tissue cells, promoting cell resistance to apoptosis, and to reduce the damage of thespinal cord injury, and promote functional recovery, clinical spinal cord injury repairhas important guiding significance, it is expected to become the new technologies fortissue engineering and cell transplantation in the treatment.
引文
[1] Ackery A, Tator C, Krassioukov A. A global perspective on spinal cord injuryepidemiology. J Neurotrauma2004;21:1355-70.
    [2] Kwon BK, Fisher CG, Dvorak MF, Tetzlaff W. Strategies to promote neuralrepair and regeneration after spinal cord injury. Spine (Phila Pa1976)2005;30:S3-13.
    [3] Paspala SA, Balaji AB, Nyamath P, et al. Neural stem cells&supportingcells--the new therapeutic tools for the treatment of spinal cord injury. Indian JMed Res2009;130:379-91.
    [4] Sharma HS. New perspectives for the treatment options in spinal cord injury.Expert Opin Pharmacother2008;9:2773-800.
    [5] Sharma HS, Sjoquist PO, Mohanty S, Wiklund L. Post-injury treatment with anew antioxidant compound H-290/51attenuates spinal cord trauma-inducedc-fos expression, motor dysfunction, edema formation, and cell injury in the rat.Acta Neurochir Suppl2006;96:322-8.
    [6] Krishnan RV, Muthusamy R, Sankar V. Spinal cord injury repair research: anew combination treatment strategy. Int J Neurosci2001;108:201-7.
    [7] Johnston L. Human spinal cord injury: new and emerging approaches totreatment. Spinal Cord2001;39:609-13.
    [8]毛伯铺.脊髓损伤治疗的策略与进展.中华创伤杂志2002;18:645-9.
    [9] Varon S, Conner JM. Nerve growth factor in CNS repair. J Neurotrauma1994;11:473-86.
    [10] Varon S, Hagg T, Manthorpe M. Nerve growth factor in CNS repair andregeneration. Adv Exp Med Biol1991;296:267-76.
    [11] Liu C, Min S, Wei K, et al. Effects of propofol and dizocilpine maleate on thecognitive abilities and the hyperphosphorylation of Tau protein of rats after theelectroconvulsive therapy. Zhongguo Yi Xue Ke Xue Yuan Xue Bao;34:324-9.
    [12] Rezvani AH, Cauley MC, Johnson EC, Gatto GJ, Levin ED. Effects ofAZD3480, a neuronal nicotinic acetylcholine receptor agonist, and donepezilon dizocilpine-induced attentional impairment in rats. Psychopharmacology(Berl);223:251-8.
    [13] Ferenz KB, Gast RE, Rose K, Finger IE, Hasche A, Krieglstein J. Nervegrowth factor and brain-derived neurotrophic factor but not granulocytecolony-stimulating factor, nimodipine and dizocilpine, require ATP forneuroprotective activity after oxygen-glucose deprivation of primary neurons.Brain Res;1448:20-6.
    [14] Ogilvie-Hardy ET. The Cresta Run: a uniquely evolving tradition. Med Sci Law2003;43:290-300.
    [15] Mitha AP, Maynard KI. Gacyclidine (Beaufour-Ipsen). Curr Opin InvestigDrugs2001;2:814-9.
    [16] Hirbec H, Gaviria M, Vignon J. Gacyclidine: a new neuroprotective agentacting at the N-methyl-D-aspartate receptor. CNS Drug Rev2001;7:172-98.
    [17] Hirbec H, Kamenka JM, Privat A, Vignon J. Interaction of gacyclidineenantiomers with 'non-NMDA' binding sites in the rat central nervous system.Brain Res2001;894:189-92.
    [18] Feldblum S, Arnaud S, Simon M, Rabin O, D'Arbigny P. Efficacy of a newneuroprotective agent, gacyclidine, in a model of rat spinal cord injury. JNeurotrauma2000;17:1079-93.
    [19] Bethea JR, Nagashima H, Acosta MC, et al. Systemically administeredinterleukin-10reduces tumor necrosis factor-alpha production and significantlyimproves functional recovery following traumatic spinal cord injury in rats. JNeurotrauma1999;16:851-63.
    [20] Young W. The therapeutic window for methylprednisolone treatment of acutespinal cord injury: implications for cell injury mechanisms. Res Publ Assoc ResNerv Ment Dis1993;71:191-206.
    [21] Bracken MB, Shepard MJ, Collins WF, Jr., et al. Methylprednisolone ornaloxone treatment after acute spinal cord injury:1-year follow-up data.Results of the second National Acute Spinal Cord Injury Study. J Neurosurg1992;76:23-31.
    [22] Bracken MB. Treatment of acute spinal cord injury with methylprednisolone:results of a multicenter, randomized clinical trial. J Neurotrauma1991;8Suppl1: S47-50; discussion S1-2.
    [23] Bavetta S, Hamlyn PJ, Burnstock G, Lieberman AR, Anderson PN. The effectsof FK506on dorsal column axons following spinal cord injury in adult rats:neuroprotection and local regeneration. Exp Neurol1999;158:382-93.
    [24] Ali S, Usman U, Wasay M. Rapidly developing optic neuritis secondary toethambutol: possible mechanism of injury. J Pak Med Assoc2005;55:300-2.
    [25] Faden AI, Simon RP. A potential role for excitotoxins in the pathophysiology ofspinal cord injury. Ann Neurol1988;23:623-6.
    [26] Rapalino O, Lazarov-Spiegler O, Agranov E, et al. Implantation of stimulatedhomologous macrophages results in partial recovery of paraplegic rats. NatMed1998;4:814-21.
    [27] Schwartz M, Lazarov-Spiegler O, Rapalino O, Agranov I, Velan G, Hadani M.Potential repair of rat spinal cord injuries using stimulated homologousmacrophages. Neurosurgery1999;44:1041-5; discussion5-6.
    [28] Abrams MB, Dominguez C, Pernold K, et al. Multipotent mesenchymalstromal cells attenuate chronic inflammation and injury-induced sensitivity tomechanical stimuli in experimental spinal cord injury. Restor Neurol Neurosci2009;27:307-21.
    [29] Rafati DS, Geissler K, Johnson K, et al. Nuclear factor-kappaB decoyamelioration of spinal cord injury-induced inflammation and behavioroutcomes. J Neurosci Res2008;86:566-80.
    [30] Bethea JR. Spinal cord injury-induced inflammation: a dual-edged sword. ProgBrain Res2000;128:33-42.
    [31] Piehl F, Lundberg C, Khademi M, et al. Non-MHC gene regulation of nerveroot injury induced spinal cord inflammation and neuron death. JNeuroimmunol1999;101:87-97.
    [32] Nesmeyanova TN, Trankvillitati AN.[An electromyographic study of a systemof inclusion of trunk and lower extremity muscles in motor activity in patientswith full and partial severance of the spinal cord]. Biull Eksp Biol Med1970;69:40-4.
    [33] Yune TY, Kim SJ, Lee SM, et al. Systemic administration of17beta-estradiolreduces apoptotic cell death and improves functional recovery followingtraumatic spinal cord injury in rats. J Neurotrauma2004;21:293-306.
    [34] Stahl N, Yancopoulos GD. The tripartite CNTF receptor complex: activationand signaling involves components shared with other cytokines. J Neurobiol1994;25:1454-66.
    [35] Chao MV, Hempstead BL. p75and Trk: a two-receptor system. TrendsNeurosci1995;18:321-6.
    [36] Liu X, Lambert W, Agarwal R, et al. Human trabecular meshwork cells expressthe ciliary neurotrophic factor (cntf) tripartite receptor complex. Exp Eye Res2001;72:711-7.
    [37] Liu X, Clark AF, Wordinger RJ. Expression of ciliary neurotrophic factor(CNTF) and its tripartite receptor complex by cells of the human optic nervehead. Mol Vis2007;13:758-63.
    [38] Petrova PS, Raibekas A, Pevsner J, et al. Discovering novelphenotype-selective neurotrophic factors to treat neurodegenerative diseases.Prog Brain Res2004;146:168-83.
    [39] Weissmiller AM, Wu C. Current advances in using neurotrophic factors to treatneurodegenerative disorders. Transl Neurodegener;1:14.
    [40] Federoff HJ, Geschwind MD, Geller AI, Kessler JA. Expression of nervegrowth factor in vivo from a defective herpes simplex virus1vector preventseffects of axotomy on sympathetic ganglia. Proc Natl Acad Sci U S A1992;89:1636-40.
    [41] O'Leary MT, Charlton HM. A model for long-term transgene expression inspinal cord regeneration studies. Gene Ther1999;6:1351-9.
    [42] Huber AB, Ehrengruber MU, Schwab ME, Brosamle C. Adenoviral genetransfer to the injured spinal cord of the adult rat. Eur J Neurosci2000;12:3437-42.
    [43] Romero MI, Rangappa N, Li L, Lightfoot E, Garry MG, Smith GM. Extensivesprouting of sensory afferents and hyperalgesia induced by conditionalexpression of nerve growth factor in the adult spinal cord. J Neurosci2000;20:4435-45.
    [44]王彬,杨辉,何家金.逆转录病毒介导v-myc基因转染神经干细胞的实验研究.中华创伤杂志2004;20:551-5.
    [45] Peel AL, Zolotukhin S, Schrimsher GW, Muzyczka N, Reier PJ. Efficienttransduction of green fluorescent protein in spinal cord neurons usingadeno-associated virus vectors containing cell type-specific promoters. GeneTher1997;4:16-24.
    [46] Carty NC, Nash K, Lee D, et al. Adeno-associated viral (AAV) serotype5vector mediated gene delivery of endothelin-converting enzyme reduces Abetadeposits in APP+PS1transgenic mice. Mol Ther2008;16:1580-6.
    [47] Wang Y, Huang F, Cai H, Zhong S, Liu X, Tan WS. Potent antitumor effect ofTRAIL mediated by a novel adeno-associated viral vector targeting totelomerase activity for human hepatocellular carcinoma. J Gene Med2008;10:518-26.
    [48] Shen F, Su H, Fan Y, et al. Adeno-associated viral-vector-mediatedhypoxia-inducible vascular endothelial growth factor gene expressionattenuates ischemic brain injury after focal cerebral ischemia in mice. Stroke2006;37:2601-6.
    [49] De Wit J, Eggers R, Evers R, Castren E, Verhaagen J. Long-termadeno-associated viral vector-mediated expression of truncated TrkB in theadult rat facial nucleus results in motor neuron degeneration. J Neurosci2006;26:1516-30.
    [50] Blits B, Carlstedt TP, Ruitenberg MJ, et al. Rescue and sprouting ofmotoneurons following ventral root avulsion and reimplantation combined withintraspinal adeno-associated viral vector-mediated expression of glial cellline-derived neurotrophic factor or brain-derived neurotrophic factor. ExpNeurol2004;189:303-16.
    [51] Xu Z, Yue Y, Lai Y, et al. Trans-splicing adeno-associated viral vector-mediatedgene therapy is limited by the accumulation of spliced mRNA but not by dualvector coinfection efficiency. Hum Gene Ther2004;15:896-905.
    [52] Ruitenberg MJ, Blits B, Dijkhuizen PA, et al. Adeno-associated viralvector-mediated gene transfer of brain-derived neurotrophic factor reversesatrophy of rubrospinal neurons following both acute and chronic spinal cordinjury. Neurobiol Dis2004;15:394-406.
    [53] Blits B, Oudega M, Boer GJ, Bartlett Bunge M, Verhaagen J. Adeno-associatedviral vector-mediated neurotrophin gene transfer in the injured adult rat spinalcord improves hind-limb function. Neuroscience2003;118:271-81.
    [54] Eaton MJ, Blits B, Ruitenberg MJ, Verhaagen J, Oudega M. Amelioration ofchronic neuropathic pain after partial nerve injury by adeno-associated viral(AAV) vector-mediated over-expression of BDNF in the rat spinal cord. GeneTher2002;9:1387-95.
    [55] Ali RR, Reichel MB, Thrasher AJ, et al. Gene transfer into the mouse retinamediated by an adeno-associated viral vector. Hum Mol Genet1996;5:591-4.
    [56] Costantini LC, Bakowska JC, Breakefield XO, Isacson O. Gene therapy in theCNS. Gene Ther2000;7:93-109.
    [57] Herrlinger U, Jacobs A, Aghi M, Schuback DE, Breakefield XO. HSV-1Vectors for Gene Therapy of Experimental CNS Tumors. Methods Mol Med2000;35:287-312.
    [58] Ourednik V, Ourednik J, Park KI, et al. Neural stem cells are uniquely suitedfor cell replacement and gene therapy in the CNS. Novartis Found Symp2000;231:242-62; discussion62-9,302-6.
    [59] Blesch A. Delivery of neurotrophic factors to neuronal targets: toward genetherapy in the CNS. Drug News Perspect2000;13:269-80.
    [60] Pierdomenico L, Bonsi L, Calvitti M, et al. Multipotent mesenchymal stemcells with immunosuppressive activity can be easily isolated from dental pulp.Transplantation2005;80:836-42.
    [61] Foster LJ, Zeemann PA, Li C, Mann M, Jensen ON, Kassem M. Differentialexpression profiling of membrane proteins by quantitative proteomics in ahuman mesenchymal stem cell line undergoing osteoblast differentiation. StemCells2005;23:1367-77.
    [62] Shur I, Marom R, Lokiec F, Socher R, Benayahu D. Identification of culturedprogenitor cells from human marrow stroma. J Cell Biochem2002;87:51-7.
    [63] Majumdar MK, Keane-Moore M, Buyaner D, et al. Characterization andfunctionality of cell surface molecules on human mesenchymal stem cells. JBiomed Sci2003;10:228-41.
    [64]吴锦忠李,杨继祥.红参与鲜人参挥发油成分比较研究.海峡药学1996;8:5-6.
    [65] Christensen LP. Ginsenosides chemistry, biosynthesis, analysis, and potentialhealth effects. Adv Food Nutr Res2009;55:1-99.
    [66] Cho KM, Hong SY, Lee SM, et al. Endophytic bacterial communities inginseng and their antifungal activity against pathogens. Microb Ecol2007;54:341-51.
    [67]窦德强靳,陈英杰..人参的化学成分及药理活性的研究进展与展望.沈阳药科大学学报1999;16:151-6.
    [68]姚新生徐,陈英杰..人参成分的研究.中国药学年鉴上海:第二军医大学出版社1991:23-5.
    [69] He B, Chen P, Yang J, et al. Neuroprotective effect of20(R)-ginsenoside Rg(3)against transient focal cerebral ischemia in rats. Neurosci Lett;526:106-11.
    [70] Tian J, Fu F, Geng M, et al. Neuroprotective effect of20(S)-ginsenoside Rg3on cerebral ischemia in rats. Neurosci Lett2005;374:92-7.
    [71] Fang F, Chen X, Huang T, Lue LF, Luddy JS, Yan SS. Multi-facedneuroprotective effects of Ginsenoside Rg1in an Alzheimer mouse model.Biochim Biophys Acta;1822:286-92.
    [72] Leung KW, Yung KK, Mak NK, Chan YS, Fan TP, Wong RN. Neuroprotectiveeffects of ginsenoside-Rg1in primary nigral neurons against rotenone toxicity.Neuropharmacology2007;52:827-35.
    [73] Liao B, Newmark H, Zhou R. Neuroprotective effects of ginseng total saponinand ginsenosides Rb1and Rg1on spinal cord neurons in vitro. Exp Neurol2002;173:224-34.
    [74] Slosberg PS. Re: The neuroprotective effect of dexmedetomidine in thehippocampus of rabbits after subarachnoid hemorrhage (Cosar et al. SurgNeurol2009;71:54-59). Surg Neurol2009;72:648-9.
    [75] Yulug B. Neuroprotective treatment strategies for poststroke mood disorders: Aminireview on atypical neuroleptic drugs and selective serotonin re-uptakeinhibitors. Brain Res Bull2009;80:95-9.
    [76] Pinzon A, Marcillo A, Quintana A, et al. A re-assessment of minocycline as aneuroprotective agent in a rat spinal cord contusion model. Brain Res2008;1243:146-51.
    [77] Li XF, Lui CN, Jiang ZH, Ken YK. Neuroprotective effects of ginsenosidesRh1and Rg2on neuronal cells. Chin Med;6:19.
    [78] Zhu J, Jiang Y, Wu L, Lu T, Xu G, Liu X. Suppression of local inflammationcontributes to the neuroprotective effect of ginsenoside Rb1in rats withcerebral ischemia. Neuroscience;202:342-51.
    [79] Chen Z, Lu T, Yue X, et al. Neuroprotective effect of ginsenoside Rb1onglutamate-induced neurotoxicity: with emphasis on autophagy. Neurosci Lett;482:264-8.
    [80] Yuan QL, Yang CX, Xu P, et al. Neuroprotective effects of ginsenoside Rb1ontransient cerebral ischemia in rats. Brain Res2007;1167:1-12.
    [81] Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B.Plasticity of cultured mesenchymal stem cells: switch from nestin-positive toexcitable neuron-like phenotype. Stem Cells2005;23:392-402.
    [82] An SS, Jin HL, Kim KN, et al. Neuroprotective effect of combinedhypoxia-induced VEGF and bone marrow-derived mesenchymal stem celltreatment. Childs Nerv Syst;26:323-31.
    [83] Sarnowska A, Braun H, Sauerzweig S, Reymann KG. The neuroprotectiveeffect of bone marrow stem cells is not dependent on direct cell contact withhypoxic injured tissue. Exp Neurol2009;215:317-27.
    [84] Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, Ben-Hur T.Neuroprotective effect of transplanted human embryonic stem cell-derivedneural precursors in an animal model of multiple sclerosis. PLoS One2008;3:e3145.
    [85] Lim HC, Lee ST, Chu K, et al. Neuroprotective effect of neural stemcell-conditioned media in in vitro model of Huntington's disease. Neurosci Lett2008;435:175-80.
    [86] Mattson MP. Emerging neuroprotective strategies for Alzheimer's disease:dietary restriction, telomerase activation, and stem cell therapy. Exp Gerontol2000;35:489-502.
    [87] Abe K.[Neuroprotective therapy for ischemic stroke with free radicalscavenger and gene-stem cell therapy]. Rinsho Shinkeigaku2008;48:896-8.
    [88] Hung CW, Liou YJ, Lu SW, et al. Stem cell-based neuroprotective andneurorestorative strategies. Int J Mol Sci;11:2039-55.
    [89] Huang Z, Zeng S, Ouyang M, Dong J, Gong Y, Shen H.[Treatment of acuteliver injury by intrasplenic transplantation of hepatic stem cells combined withheparin in rats]. Zhong Nan Da Xue Xue Bao Yi Xue Ban;36:411-6.
    [90] Kanazawa H, Fujimoto Y, Teratani T, et al. Bone marrow-derived mesenchymalstem cells ameliorate hepatic ischemia reperfusion injury in a rat model. PLoSOne;6: e19195.
    [91] Yan Y, Xu W, Qian H, et al. Mesenchymal stem cells from human umbilicalcords ameliorate mouse hepatic injury in vivo. Liver Int2009;29:356-65.
    [92] Shackel N, Rockey D. In pursuit of the "Holy Grail"--stem cells, hepatic injury,fibrogenesis and repair. Hepatology2005;41:16-8.
    [93] Jin SZ, Liu BR, Xu J, et al. Ex vivo-expanded bone marrow stem cells home tothe liver and ameliorate functional recovery in a mouse model of acute hepaticinjury. Hepatobiliary Pancreat Dis Int;11:66-73.
    [94] Sun CK, Chang CL, Lin YC, et al. Systemic administration of autologousadipose-derived mesenchymal stem cells alleviates hepaticischemia-reperfusion injury in rats. Crit Care Med;40:1279-90.
    [95] Herlofsen SR, Kuchler AM, Melvik JE, Brinchmann JE. Chondrogenicdifferentiation of human bone marrow-derived mesenchymal stem cells inself-gelling alginate discs reveals novel chondrogenic signature gene clusters.Tissue Eng Part A;17:1003-13.
    [96] Si-Tayeb K, Noto FK, Nagaoka M, et al. Highly efficient generation of humanhepatocyte-like cells from induced pluripotent stem cells. Hepatology;51:297-305.
    [97] Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:implications for cell-based therapies. Tissue Eng2001;7:211-28.
    [98] Black IB, Woodbury D. Adult rat and human bone marrow stromal stem cellsdifferentiate into neurons. Blood Cells Mol Dis2001;27:632-6.
    [99] Yang L, Li S, Hatch H, et al. In vitro trans-differentiation of adult hepatic stemcells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci US A2002;99:8078-83.
    [100] Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM.Identification of mesenchymal stem/progenitor cells in human first-trimesterfetal blood, liver, and bone marrow. Blood2001;98:2396-402.
    [101] Shafritz DA, Oertel M, Menthena A, Nierhoff D, Dabeva MD. Liver stem cellsand prospects for liver reconstitution by transplanted cells. Hepatology2006;43: S89-98.
    [102] Gerlach JC, Mutig K, Sauer IM, et al. Use of primary human liver cellsoriginating from discarded grafts in a bioreactor for liver support therapy andthe prospects of culturing adult liver stem cells in bioreactors: a morphologicstudy. Transplantation2003;76:781-6.
    [103] Selden C, Chalmers SA, Jones C, et al. Epithelial colonies cultured from humanexplanted liver in subacute hepatic failure exhibit hepatocyte, biliary epithelial,and stem cell phenotypic markers. Stem Cells2003;21:624-31.
    [104] Westgren M, Ek S, Bui T, et al. Tissue distribution of transplanted fetal livercells in the human fetal recipient. Am J Obstet Gynecol1997;176:49-53.
    [105] Suckow MA, Zollman A, Cornelissen I, et al. Tissue distribution of fetal livercells following in utero transplantation in mice. Exp Biol Med (Maywood)2005;230:860-4.
    [106] Fiegel HC, Lange C, Kneser U, et al. Fetal and adult liver stem cells for liverregeneration and tissue engineering. J Cell Mol Med2006;10:577-87.
    [107] Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis JD. Transplantationof clonal neural precursor cells derived from adult human brain establishesfunctional peripheral myelin in the rat spinal cord. Exp Neurol2001;167:27-39.
    [108] McDonald JW, Liu XZ, Qu Y, et al. Transplanted embryonic stem cells survive,differentiate and promote recovery in injured rat spinal cord. Nat Med1999;5:1410-2.
    [109] Recio AC, Felter CE, Schneider AC, McDonald JW. High-voltage electricalstimulation for the management of stage III and IV pressure ulcers amongadults with spinal cord injury: demonstration of its utility for recalcitrantwounds below the level of injury. J Spinal Cord Med2012;35:58-63.
    [110] Findley PA, Banerjea R, Sambamoorthi U. Excess mortality associated withmental illness and substance use disorders among veteran clinic users withspinal cord injury. Disabil Rehabil2011;33:1608-15.
    [111] Cucullo L, Marchi N, Hossain M, Janigro D. A dynamic in vitro BBB modelfor the study of immune cell trafficking into the central nervous system. JCereb Blood Flow Metab2011;31:767-77.
    [112] von Wedel-Parlow M, Schrot S, Lemmen J, Treeratanapiboon L, Wegener J,Galla HJ. Neutrophils cross the BBB primarily on transcellular pathways: an invitro study. Brain Res2011;1367:62-76.
    [113] Li F, Chen Y, Wan Y, Chen L, He A.[Clinical application of TMS-MEP inspinal cord injury]. Zhonghua Wai Ke Za Zhi1998;36:714-6.
    [114] Reeves A, Keirstead HS. Stem cell based strategies for spinal cord injury repair.Adv Exp Med Biol2012;760:16-24.
    [115] Wyatt LA, Keirstead HS. Stem cell-based treatments for spinal cord injury.Prog Brain Res2012;201:233-52.
    [116] Lu Y, Wang MY. Neural stem cell grafts for complete spinal cord injury.Neurosurgery2012;71: N13-5.
    [117] Ozdemir M, Attar A, Kuzu I, et al. Stem cell therapy in spinal cord injury: invivo and postmortem tracking of bone marrow mononuclear or mesenchymalstem cells. Stem Cell Rev2012;8:953-62.
    [118] Ozdemir M, Attar A, Kuzu I, et al. Stem cell therapy in spinal cord injury: invivo and postmortem tracking of bone marrow mononuclear or mesenchymalstem cells. Stem Cell Rev2012;8:953-62.
    [119] Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R.Mesenchymal stem cell graft improves recovery after spinal cord injury in adultrats through neurotrophic and pro-angiogenic actions. PLoS One;7: e39500.
    [120] Kalyani AJ, Mujtaba T, Rao MS. Expression of EGF receptor and FGFreceptor isoforms during neuroepithelial stem cell differentiation. J Neurobiol1999;38:207-24.
    [121] Sievertzon M, Wirta V, Mercer A, Frisen J, Lundeberg J. Epidermal growthfactor (EGF) withdrawal masks gene expression differences in the study ofpituitary adenylate cyclase-activating polypeptide (PACAP) activation ofprimary neural stem cell proliferation. BMC Neurosci2005;6:55.
    [122] Sutterlin P, Williams EJ, Chambers D, et al. The molecular basis of thecooperation between EGF, FGF and eCB receptors in the regulation of neuralstem cell function. Mol Cell Neurosci;52:20-30.
    [123] Lee J, Kotliarova S, Kotliarov Y, et al. Tumor stem cells derived fromglioblastomas cultured in bFGF and EGF more closely mirror the phenotypeand genotype of primary tumors than do serum-cultured cell lines. Cancer Cell2006;9:391-403.
    [124] Reynolds BA, Weiss S. Clonal and population analyses demonstrate that anEGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol1996;175:1-13.
    [125] Sivakumar KC, Dhanesh SB, Shobana S, James J, Mundayoor S. A systemsbiology approach to model neural stem cell regulation by notch, shh, wnt, andEGF signaling pathways. OMICS;15:729-37.
    [126] Zhang M, Song T, Yang L, et al. Nestin and CD133: valuable stem cell-specificmarkers for determining clinical outcome of glioma patients. J Exp Clin CancerRes2008;27:85.
    [127] Strojnik T, Rosland GV, Sakariassen PO, Kavalar R, Lah T. Neural stem cellmarkers, nestin and musashi proteins, in the progression of human glioma:correlation of nestin with prognosis of patient survival. Surg Neurol2007;68:133-43; discussion43-4.
    [128] Kim TH, Lee HM, Lee SH, et al. Expression and distribution patterns of thestem cell marker, nestin, and the stem cell renewal factor, BMI-1, in normalhuman nasal mucosa and nasal polyps. Acta Otolaryngol2009;129:996-1001.
    [129] Bouhy D, Ghasemlou N, Lively S, et al. Inhibition of the Ca(2)(+)-dependentK(+) channel, KCNN4/KCa3.1, improves tissue protection and locomotorrecovery after spinal cord injury. J Neurosci2011;31:16298-308.
    [130] Castro MJ, Apple DF, Jr., Melton-Rogers S, Dudley GA. Muscle fibertype-specific myofibrillar Ca(2+) ATPase activity after spinal cord injury.Muscle Nerve2000;23:119-21.
    [131] Sakanaka M, Zhu P, Zhang B, et al. Intravenous infusion of dihydroginsenosideRb1prevents compressive spinal cord injury and ischemic brain damagethrough upregulation of VEGF and Bcl-XL. J Neurotrauma2007;24:1037-54.
    [132] Fan ZH, Isobe K, Kiuchi K, Nakashima I. Enhancement of nitric oxideproduction from activated macrophages by a purified form of ginsenoside(Rg1). Am J Chin Med1995;23:279-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700