强激光对材料热损伤的有限元法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通常,强激光分为高能量激光和高功率激光两种,高能量激光一般指连续激光和长脉冲激光,高功率激光指短脉冲激光和超短脉冲激光。强激光在工业和军事等方面有着非常重要的应用,但其中不可避免的要涉及到各类材料的激光损伤问题。应用于惯性约束核聚变等高功率激光系统中的光学元件,在高功率激光的强场效应作用下,在短时间内可遭到不同程度的损伤和破坏,轻者导致光束质量的降低而阻碍系统性能的正常发挥,重者导致激光系统无法进行工作。长期以来,激光对光学元件的破坏一直是限制激光向高功率、高能量发展的“颈瓶”;而应用于激光武器和激光加工中的高能量激光,可导致材料温度的升高,产生形变和应力,引起材料的热损伤破坏。因此,研究材料激光损伤的物理规律,不断提高其抗激光损伤能力,具有非常重要的应用意义。
     研究激光对物质的损伤主要有实验方法、理论分析方法和数值计算方法,其中的数值计算方法又可以分为有限差分法和有限元法等。有限差分法具有简单高效和易于编程计算的特点;而有限元法则具有非常好的灵活性和非常强的处理复杂问题的能力。本论文中,我们主要运用有限元法,基于傅立叶热传导理论和经典的热弹性理论,建立了激光辐照材料的三维数值计算模型,计算了材料瞬态温度场和热应力场的分布,进而研究了材料的热熔融损伤和热应力损伤。本文的主要工作和结论如下:
     1.回顾了国内外强激光对材料损伤的研究进展,从理论上论述了物质对激光的反射、吸收和转化的基本机制,简要描述了材料的激光损伤状态和损伤类型,介绍了几种不同的激光损伤机理,分析了影响材料损伤的各种因素。
     2.运用有限元法对傅立叶热传导理论和经典热弹性理论进行了描述,建立了激光辐照材料的三维有限元数值计算模型。利用此模型,分别以K9玻璃、InSb和InSb光伏探测器为例,计算了激光辐照光学材料、半导体和光电探测器引起的温度场和热应力场分布,得出了材料的热熔融损伤阈值和热应力损伤阈值,分析了材料的激光损伤类型,并讨论了激光参数和材料性质对损伤阈值的影响。所得的结论与相关的实验结果吻合得较好。
     本文中的有限元数值计算模型不仅可为激光对抗和激光加固提供理论参考,也可为激光加工效率和效果提供理论指导。
Intense laser is usually divided into high energy laser and high power laser. In general, high energy laser is continuous wave laser and long pulse width laser, high power laser is short pulse laser and ultra-short pulse laser. The intense laser has important application in modern industry and military and so on. But under laser irradiation, materials are inevitably induced damage by the intense laser. Optical components of the intense laser system irradiated by high power laser may be damaged by intense field in shot time during process of the ICF (inertial confinement fusion), this should induce the quality of laser beam become worse, and then the system optimization function is influenced. If optical components are more severely damaged, laser devices may don't operate. The laser induced damage of the optical components limits the development of high-power and high- energy lasers. Moreover high energy laser applied to laser weapon and laser processing may lead to the emergence of temperature rise and thermal deformation and thermal stress inside material. Thus might cause laser thermal damage of material. So it is of great importance to study the physical mechanism of material damage induced by laser and impr ove the damage threshold of material.
     At present, the experimental method and the theoretical model analysis method and the numerical calculation analysis method are three main methods investigating the damage induced by laser. The numerical calculation analysis method mainly has the finite difference method and the finite element analysis method. The finite difference method is simple and high efficient and easy to program, whereas the finite element analysis method is more flexible and is able to deal with the more complicated problems. In this paper, based on the Fourier thermal conduction theory and the classical thermal-elastic theory, using finite element analysis method, the three-dimensional physical model of numerical calculation analysis method is established, the transient distributions of temperature and thermal stress in material are calculated, then the melting damage threshold and thermal stress damage threshold are obtained. Our central work and conclusions are obtained as follows:
     1. The research development of damage induced by high laser is reviewed. It is briefly discussed that the basic mechanisms of target materials' absorption, reflection and conversion to the laser energy in theory. The states and styles of material damage induced by laser are briefly depicted. Some kind of different mechanisms of damage induced by laser are introduced. Different factors influencing laser-induced damage of material are analyzed.
     2. The Fourier thermal conduction theory and the classical thermal-elastic theory are described using finite element analysis method. The three-dimensional numerical calculation model of finite element analysis method of material irradiated by laser is established. Appling this, model, respectively with K9 glass and Insb semiconductor and Insb (PV) photoelectric detector as example, the transient distributions of temperature and thermal stress in optical material and "semiconductor and photoelectric detector irradiated by laser are calculated, and the melting damage threshold and thermal stress damage threshold are gained. The types and mechanism of laser-induced damage are studied. The influence of laser parameter and material properties to damage threshold are discussed. The obtained qualitative conclusions match well with the correlative experiment. These indicate that the model in this paper is reasonable.
     The numerical calculation model of finite element analysis method of material irradiated by laser presented in this paper may provide the theoretical reference to the laser counterwork and laser reinforcement and laser processing efficiency.
引文
[1] 邹英华,孙驹亨.北京大学现代光学丛书—激光物理学,北京大学出版社.
    [2] 兰信钜等编著.激光技术.北京:科学出版社,2000.
    [3] 雷仕编著.激光技术手册.北京:科学出版社,1992.
    [4] 奥尔曼.激光束与材料相互作用的物理原理及应用[M].北京:科学出版社,1994.
    [5] 郑启光,辜建辉.激光与物质相互作用[M].武汉:华中理工大学出版社,1996.
    [6] 孙承纬.激光辐照效应[M].北京:国防工业出版社,2002.
    [7] 王勖成,邵敏主编。有限单元法基本原理和数值方法[M].北京:清华大学出版社,1995.
    [8] Carslaw H S, Jaeger J C. Conduction of Heat in solids (M]. London: Oxfotd Univ. Press, 1959.
    [9] R.W.Hopper, D.R.Uhlmann, Mechanism of inclusion damage in laser glass[J]. Jour of Appl.Phys 1970; 41(10): 4023~4037.
    [10] M. Sparks. C.T.Duthler, Theory of infrared absorption and material failure in crystal containing inclusion[J]. J. Appl.Phys. 1973; 44(7): 3038~3045.
    [11] Thomas W.Walker, Athur H. Guenther, Philip E.Nelsen. Pulsed laser-induced damage to thin film optical coating-part Ⅰ:Experimental and part Ⅱ:Theory[J].IEEE Jour of quantum Electronics, 1981;QE-17(10): 2041~2052.
    [12] Bonneau F, Combis P, Rullier J, et al. Study of UV laser interaction with gold nanoparticals embedded in silica[J]. Appl Phys B, 2002; 75(2): 803~815.
    [13] Bonneau F, Combis P, Rullier J, et al. Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica[J]. Appl.Phys.B, 2004; 78(2): 447;2.
    [14] 陈飞,孟绍贤.光学材料破坏机理.物理学进展,1998,18(2):187~206.
    [15] W克希耐尔著,孙文等译.固体激光工程.北京:科学出版社,2002,585~593.
    [16] H. Bercegol, L.Lamaigere, B.L. Garrec, et al. Self-focusing and rear surface damage in a fused silicia window at 1064 nm and 355 nm. SPIE. 2003.4932: 276~285.
    [17] Kruer M R, Esterowitz L, Allen R E, et al. Thermal models for laser damage in InSb photovoltaic and photoconductive detectors. Infrared Physics, 1976, 16(3):375~384.
    [18] Meyer J R, Bartoli F J, Kruer M R. Optical heating in semiconductors[J]. Phys Rev B, 1980, 21(4):1559~1568.
    [19] Meyer J R, Kruer M R. Optical heating in semiconductors: Laser damage in Ge, Si, InSb and GaAs[J]. J Appl Phys, 1980, 51(10): 5513~5522.
    [20] 蒋志平,陆启生,刘泽金.激光辐照InSb(P V)型探测器的温升计算[J].强激光与粒子束,强激光与粒子束,1990,2(2):247~251.
    [21] 蒋志平,梁天骄,陆启生等.激光辐照PC型HgCdTe探测器热效应的计算[J].应用激光,1995,15(4):155~156.
    [22] 强希文,刘峰,张建泉,脉冲强激光辐照半导体材料损伤效应的解析研究[J].光电子技术,2000,20(1):52~58.
    [23] 强希文,刘峰,张建泉.红外激光辐照探测器材料温升的数值计算[J].红外与激光工程,1999,28(3):46~50.
    [24] 强希文,刘峰,张建泉等.连续波激光辐照半导体InSb材料的熔融破坏[J].中国激光,2000,27(4):372~376.
    [25] 强希文,张建泉,刘峰等.强激光辐照半导体材料的温升及热应力损伤的理论研究[J].中国激光,2000,27(8):709~713.
    [26] 沈中华,陆建,倪晓武.强激光作用下半导体材料的加热与熔融的解析计算[J].中国激光,1998,25(7):632~636.
    [27] 沈中华,倪晓武,陆建.激光对半导体材料热作用的理论计算[J].光电子·激光,1998,(4):344~346.
    [28] Bartoli F, Kruer M, Esterowitz L and Allen R: Laser damage in triglycine sulfate: Experimental results and thermal analysis[J]. J Appl Phys, 1973,44(8):3713~3720:'_
    [29] 孙利国等.光电探测器激光损伤热模型分析[J].激光杂志,1991,12(2):72.
    [30] Bartoli F, et al. Thermal modeling of laser damage in 8-14μm HgCdTe photo conductive and PbSn Te photovoltaic detectors [J]. J Appl Phys, 1975, 46:4519.
    [31] Kruer M, Esterowitz L, Bartoli F, et al. Thermal analysis of laser damage in thin-film photoconductors [J]. J Appl Phys,1976, 47(7):2867~2874.
    [32] Bartoli F, Esterowitz L, et al. A generalized thermal model for laser damage in infrared detectors [J]. J Appl Phys, 1976, 47(7):2875~2881.
    [1] 陈火红主编.MARC有限元实例分析教程[M].北京:机械工业出版社,2002.
    [2] 梁清香,张根全主编.有限元与MARC实现[M].北京:机械工业出版社,2003.
    [3] 王勖成,邵敏主编.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1995.
    [4] 王焕定,吴德伦主编.有限单元法及计算程序[M].北京:中国建筑工业出版社,1997.
    [5] 张根全主编.有限元素法基本原理及程序设计[M].北京:兵器工业出版社,1997.
    [6] R.Courant, Variational method for solution of problem of equilibrium and vibrations [M],Bull. Am. Math. Soc.1943, 49, 1~23.
    [7] 江腾蛟.红外连续波激光辐照下光学薄膜元件的热吸收特性研究,四川大学硕士学位论文,2005.
    [8] 孙承伟主编.激光辐照效应[M].北京:国防工业出版社,2002.
    [9] M.伽本尼.光学物理[M].北京:科学出版社,1976.
    [10] 张洪济.热传导[M].北京:高等教育出版社,1992.
    [11] S.Timoshenko, J.N.Goodier. Theory of Elasticity.
    [12] 工程分析中的有限元法.(美)K.J.巴斯著,傅子智译,应达之校.北京:机械工业出版社,1991.
    [13] 强希文,张建泉,刘峰等.强激光辐照半导体材料的温升及热应力损伤的理论研究[J].中国激光,2000,27(8):709~713.
    [14] 齐文宗,黄伟,张彬,等.红外连续激光反射镜热畸变的有限元分析[J].强激光与粒子束,2004,16(8):953~956
    [1] 孙承伟主编.激光辐照效应[M].北京:国防工业出版社,2002.
    [2] 胡鹏。光学材料和薄膜激光破坏机理理论研究.中国工程物理研究院硕士学位论文.
    [3] 孙杨,李成富,张强.白宝石晶体的激光损伤[J].中国激光,1992(19):861.
    [4] Yang Sun, Hui Gong. Polarized 10ns frequency-doubled Nd:YAG Laser induced damage to titanium doped sapphire. SPIE,vol,21141993,166.
    [5] Bloembergen NAppl.Opt,1973(12)661~664.
    [6] 夏晋军,龚辉,程雷,李成富.光学材料连续波激光热应力破坏效应[J].光学学报,1997,17(1):20~23.
    [7] 郭少锋,陆启生,程湘爱,江厚满,曾学文.光学材料的激光损伤形态研究[J].强激光与粒子束,2002,14(2):238~242.
    [8] 罗福,杜祥琬,孙承纬.光斑尺寸对K9玻璃近红外激光损伤阈值的影响[J].爆炸与冲击,2002,22(1):61~65.
    [9] 龚辉,李成富.连续CO_2激光对红外窗口材料损伤研究[J].光学学报,1996,16(3):332~335.
    [10] 郭少锋,陆启生,邓少永,黎全,汪晓波.ns脉冲激光对K9玻璃的破坏验[J].强激光与粒子束,2004,16(7):817~820.
    [11] 黄峰,牛燕雄,汪岳峰,段晓峰.光学窗口材料激光辐照热力效应的解析计算研究[J].光学学报,2006,26(4):576~580.
    [12] 胡建平,马平,许乔.光学元件的激光损伤阈值测量[J].红外与激光工程,2006,35(2):187~191.
    [13] H.Deng and Fuxi Gan. Laser induced damage in optical materials, 1981,NBS Spec.Publ[J],1983(638):456.
    [14] Walker T W, Guenther A H.IEEE J. Quant. Electr,1981(QE-17):2053-2065
    [15] 李成富,张梅珍.激光[J].1985(12):54.
    [16] Bettis J R. Laser induced damage in optical materials:1976, NBS Spec. Publ,1976(464):338.
    [17] 罗福,杜祥琬,孙承纬.1.06μm连续激光照射下K9玻璃板的应力松弛破坏[J].强激光与粒子束[J].2001,13(1):19~23.
    [18] 郭少峰等。连续激光辐照下光学材料损伤阈值的光斑效应[J].光学学报,2002,22(9):1055~1058.
    [19] Decker D L NBS SPIE Publ, 1981(638):239
    [20] Epifanov A S, Manenkov A A and Prokhorov A M, Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field[J]. Sov.Phys.JETP[J], 1976,43(2): 377~382.
    [21] M.V奥尔曼著.激光束与材料相互作用的物理原理及应用[M].北京:科学出版社,1994.
    [22] 张洪济。热传导[M].北京:高等教育出版社,1992.
    [23] 刘全喜,钟鸣,江东,齐文宗,蔡邦维,郝秋龙,赵方东.重频激光辐照半导体损伤的有限元分析[J].激光与红外,2006,36(8)670~674.
    [24] S.Timoshenko, J.N.Goodier. Theory of Elasticity.
    [1] 孙承伟主编.激光辐照效应[M].北京:国防工业出版社,2002.
    [2] 石家纬.半导体光电子学[M].长春:吉林大学出版社,1994.
    [3] 高勋.强激光对光电探测器的损伤研究.长春理工大学硕士毕业论文.
    [4] 刘恩科,朱秉升,罗晋生等.半导体物理学[M).北京:国防工业出版社,1994.
    [5] 黄昆,谢希德.半导体物理学[M].北京:科学出版社,1958.
    [6] 叶良修.半导体物理学(上册)[M].北京:高等教育出版社,1983.
    [7] 沈学础.半导体光学性质[M].北京:科学出版社,1992.
    [8] 邓素辉.激光与物质相互作用的热效应研究.江西师范大学硕士毕业论文.
    [9] Chiao R Y, Townes C H and Stoicheff B P. Phys.Rev.lett[J]. 1964(12):592.
    [10] 张洪济.热传导[M].北京:高等教育出版社,1992.
    [11] 陈金宝,陆启生,蒋志平等.半导体材料对连续波YAG激光热耦合系数的测量[J].应用激光,1995,15(4):167~168.
    [12] E.D. Palik ed, Handbook of Optical Constants of Solids[J], 499(1985).
    [13] 强希文,张建泉,刘峰等.强激光辐照半导体材料的温升及热应力损伤的理论研究[J].中国激光,2000,27(8):709~713.
    [14] 刘全喜,钟鸣,江东,齐文宗,蔡邦维,郝秋龙,赵方东.重频激光辐照半导体损伤的有限元分析[J].激光与红外,2006,36(8)670~674.
    [15] S.Timoshenko, J.N.Goodier. Theory of Elasticity.
    [16] 齐文宗,黄伟等。红外连续激光反射镜热畸变的有限元分析[J]。强激光与粒子束,2004,16(8):953~956.
    [17] 王涛,赵元安,黄建兵,等.重复率激光作用下光学薄膜损伤的累积效应[J].强激光与粒子束,2005,17(SO):171~174.
    [18] Amit Garg, Avinashi kapoor, K.N. Tripathi. Laser-induced damage studies in GaAs. Optics & Laser Technology[J],2003(35):21~24.
    [1] 孙承伟主编.激光辐照效应[M].北京:国防工业出版社,2002.
    [2] 石家纬.半导体光电子学[M].长春:吉林大学出版社,1994.
    [3] 叶良修.半导体物理学[M].北京:高等教育出版社,1996.
    [4] 范志刚.光电测试技术[M].北京:电子工业出版社,2003.
    [5] 雷雨堂,王庆有等.光电检测技术[M].北京:中国计量出版社,2003.
    [6] 安毓英,曾晓东.光电探测原理[M].西安:西安电子科技大学出版社,2004.
    [7] Seeger K. Semiconductor Physics. 3rd ed. Berlin, Springer,1985.
    [8] Moss T S. Optical Properties of Semiconductors. Butterworths, Scientific Pub, London, 1959.
    [9] 汤定元,糜正瑜等.光电器件概论[M].上海科学技术文献出版社,1989.
    [10] 高观志,黄维.固体中的电输运[M].北京:科学出版社,1991.
    [11] Lu Qisheng, Jiang Zhiping and Liu Zejing. Semicond. Sci. Technol, 1991 (6): 1039~1041.
    [12] 蒋志平,陆启生,刘泽金.激光辐照InSb(PV)探测器的温升计算[J].强激光与粒子束,1990,2(2):247~251.
    [13] 张洪济.热传导[M].北京:高等教育出版社,1992.
    [14] 陈金宝,陆启生,蒋志平等.半导体材料对连续波YAG激光热耦合系数的测量[J].应用激光,1995,15(4):167~168.
    [15] E.D. Palik, Handbook of Optical Constants of Solids, Orlando: Academic Pres,499 (1985).
    [16] 赵建君,宋春荣,张灵振,等.激光辐照InSb(PV)型探测器的热损伤[J].强激光与粒子束,2005,17(7):1008~1012.
    [17] 刘全喜,齐文宗,郝秋龙,赵方东.激光辐照光伏(PV)型光电探测器热效应的有限元分析[J].应用光学。(已录用)
    [18] 刘天华、钟海荣、陆启生等,光电探测器的激光破坏机理研究[J].激光杂志,2001,22(6):5~10.
    [19] 柯常军、万重怡.红外光电探测器的激光损伤分析[J].光学技术,2002,28.
    [20] Larse Sjoqvist. Laser Damage Evaluation Methods, FOA Report, FOA -R-99-O 1280-612-SE,1999.
    [21] Lovoto M, Wautlet M, Laude L D. Appl. Phys. Lett, 1979(34):160.
    [22] Wautlet M, Laude L D, Andrew R. Phys. Lett, 1980(77A):274.
    [23] Tanaka K, J. Non-Cryst. Solids, 1980(35~36):1023.
    [24] Elliott S R. Phi. Mag, 1979(B39):349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700