现场红外、电化学压电石英晶体微天平及其联用技术在几个生化体系中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现场红外反射电化学光谱技术是一种重要的表面科学研究手段,它可以从原子和分子水平层次上揭示固/液界面的结构和电极反应动力学特征。现场红外衰减全反射光谱(FTIR-ATR)分析样品时不需化学制备,具有非破坏性的特点,在化学或生物过程监测和固/液界面吸附的研究中有独特的作用。电化学压电石英晶体微天平(EQCM)可动态监测电极表面低至纳克级的质量变化及溶液粘密度改变,能提供电极表面覆盖度及电化学过程的电容、电阻变化等信息。
     将这些方法联用可以得到生物或电化学过程的多维信息,从而为我们研究固/液界面过程提供更可靠的证据。本学位论文将电化学压电石英晶体微天平与现场红外反射光谱技术联用,将其应用于生物材料表面上蛋白质吸附、有机小分子的氧化还原、新型聚合物的合成及形成机理方面的研究。
     主要内容如下:
     1.综述了现场红外反射光谱技术与电化学石英晶体微天平的原理和近期研究进展。
     2.用电化学石英晶体阻抗法(EQCI)和衰减全反射红外光谱法(ATR)研究了纤维蛋白原(FIB)在纳米生物活性材料TiO_2和羟基磷灰石(HAP)上的吸附行为,获得了FIB吸附过程中电极表面的质量变化和电极/蛋白质界面双电层中电容变化以及FIB构象变化等信息。以两步骤连串反应机理分析FIB吸附动力学。结果表明,FIB在两种电极表面的吸附过程均分为吸附和重排两个过程,FIB在TiO_2上的吸附慢于在HAP上的吸附,且难达到稳态。根据Sauerbrey方程结合Martin方程估算了FIB在HAP和TiO_2上饱和吸附时的表面覆盖度,分别为1.67×10~(-6)g cm~(-2)和6.49×10~(-6)g cm~(-2)。红外谱图结果还表明,生物材料的表面组成对蛋白质吸附动力学和蛋白质结构变化均有影响。FIB在HAP表面吸附时的响应更大,并对蛋白质二级结构的变化影响更大。
     3.用EQCM和现场红外光谱电化学研究了碱性介质中L-色氨酸的电化学行为,考察了不同pH值和不同氧化电位对L-色氨酸电化学行为的影响,发现L-色氨酸在金电极上发生了不可逆的氧化还原反应,氧化还原过程有H~+的参与。L-色氨酸氧化还原过程中电极上有物质(聚色氨酸)的沉积。扫描电子显微镜(SEM)图表明这种沉积物具有类似聚合物的形貌,用K_3Fe(CN)_6/K_4Fe(CN)_6探针对聚合物膜进行表征发现其阻碍了阴离子的电化学反应。研究了聚合物在0.1 M NaOH溶液中的电化学行为,发现聚色氨酸修饰膜的氧化还原反应也可能是不可逆的。
     4.用电化学-现场红外-压电石英晶体微天平三维联用技术研究酸性介质中邻甲苯胺和邻氨基酚的单聚和共聚并考察了共聚膜的电化学性质。电化学压电结果表明,共聚物的电化学性质不同于两种单聚物,两种单体的相对浓度对共聚膜的生成速率有较大影响,共聚物的稳定性和电活性比单聚物较好。现场压电红外光谱电化学结果表明,单聚和共聚是不同的过程,共聚不是聚邻甲苯胺和聚邻氨基酚的简单混合,而是两种单体通过-NH-基团头尾相连形成的一种新的聚合物。
In situ Fourier transformation infrared (FTIR) reflectionspectroelectrochemistry is a useful and powerful tool to study the ology of thesurface. It can provide the information about the interface of solid/liquid andabout the reaction kinetics on the electrodes. In situ Fourier transforminfrared-attenuated total reflectance (FTIR-ATR) measurement is nondestructiveto the samples and the samples need no chemical pretreatment. FTIR-ATR hasbeen applied to in situ study the chemical and biochemical process and theadsorption occurring on the liquid/solid interface. The electrochemical quartzcrystal microbalance (EQCM) can be used to synchronously determine multiplechemical/physical parameters and study materials characteristics during anelectrochemical perturbation, such as electrode-mass changes down to thenanogram level, the elasticity of modified films and the solution viscosity anddensity.
     Combination techniques of piezoelectric sensor and spectrumelectrochemistry can provide multidimentional information during the chemicaland biochemical process and help us to understand the reaction on theliquid/solid interace more adequately and reliably. In this thesis, we studied thecombination of EQCM and in situ FTIR techniques, and applied thecombination techniques to study the adsorption of protein on biomaterial, theredox of small organic molecule and the electrosynthesis of new polymer.The main content of this dissertation are summarized as follows:
     1. The recent researches using in situ FTIR techniques and EQCM are brieflyreviewed.
     2. The electrochemical piezoelectric quartz crystal impedance (EQCI), acombined technique of piezoelectric quartz crystal impedance (PQCI) andelectrochemical impedance (EI), and FTIR-ATR spectroscopy were utilizedto study in situ adsorption of fibrinogen onto biomaterial surfaces of TiO_2 andhydroxyapatite (Ca_(10)(PO_4)_6(OH)_2). The adsorption kinetics and mechanism offibrinogen adsorption onto these biomaterial surfaces were investigated. TheEQCI and FTIR-ATR measurement results suggested that two consecutivesteps occurred during the adsorption of fibrinogen onto TiO_2 andhydroxyapatite (HAP) films. The fibrinogen molecules were firstly adsorbedonto the films. And then rearrangement of adsorbed fibrinogen ormulti-layered adsorption occurred. The FTIR-ATR spectroscopy studies alsoshowed that the structure of the biomaterials has affected the adsorptionkinetics and the secondary structure of the adsorbed fibrinogen molecules.More fibrinogen molecules were adsorbed onto HAP surface and the secondstructure of the fibrinogen molecules adsorbed onto HAP surface changedmore notably.
     3. In situ FTIR spectroelectrochemistry and EQCM were used to study theelectrochemical hehaviors of L-Tryptophan (Trp) on polycrystalline Auelectrode and PQC Au electrode in alkaline media. The electrochemicalredox process of L-Tryptophan was studied under different oxidationpotentials in NaOH solution and in electrolyte solutions with different pHvalue by applying cycle voltammetry scan. The resultes showed that theelectro-oxidation of L-Tryptophan was irreversible involving transfer ofprotons. There was polymer (poly(Trp)) deposited on the Au electrode surface which induced by the redoxtion of L-Tryptophan. The EQCM andin stiu FTIR spectra results show that the redox process of poly(Trp) may wasalso irreversible. And the electrochemical reaction of anionic species wereblocked by the poly(Trp) film when the poly(Trp) modified electrode CVin the K_3Fe(CN)_6/K_4Fe(CN)_6 solution.
     4. The homopolymerization and copolymerization of o-toluidine (OT) ando-aminophenol (OAP) were studied in H_2SO_4 solution with in situpiezoelectric FTIR spectroelectrochemisty methods. The films were obtainedby applying cycle voltammetry scan at the rate 50 mV s~(-1) between -0.1 to 0.9V vs. Ag/AgCl electrode in 0.5 M H_2SO_4 solution. The results showed thatthe electrochemical properties of the copolymer (poly(OT-co-OAP)) wasdifferent from that of the two polymers obtained from single monomer (POTor POAP). The copolymerization speeds were notablely affected by the feedratio of the monomers. Poly(OT-co-OAP) obtained under proper conditionswas electrochemically active at a broad pH range. Poly(OT-co-OAP) is morestable than POT and POAP as well. POT, POAP and poly(OT-co-OAP) werestudied with in situ piezoelectric FTIR spectroelectrochemistry methods. TheFTIR spectroscopic results and frequency shiftes indicate that the anion ionscan dope into the three polymers accompanying theprotonation/deprotonation reaction process. The copolymer formed throughhead-to-tail coupling of the two monomers via -NH- groups was a newpolymer rather than a mixture of homopolymers.
引文
[1] D. A. Buttry. In Electrochemical Interfaces: Moden techniques for in-situ interface charactrization, H. D. Abruna (Ed.). Vch Publishers, New York, 1991, p. 531.
    [2] J. D. Andrade, A. A. Suleiman, G. G. Guilbault. A coated piezoelectric crystal detector for the determination of hydrogen sulfide. Anal. Chim. Acta, 1989, 217: 187-192.
    [3] 姚守拙,压电化学与生物传感.湖南师范大学出版社,长沙,1997.
    [4] A. Bewick, K. Kunimatsu, B. S. Pons. Infrared spectroscopy of the electrode electrolyte interphase. Electrochim. Acta, 1980, 25: 465-468.
    [5] R. Davidson, S. Pons, A. Bewick, P. P. Schmidt. Vibrational spectroscopy of the electrode/electrolyte interface. Use of fourier transform infrared spectroscopy. J. Electroanal. Chem. Interfacial Electrochem., 1981, 125: 237-241.
    [6] J. W. Russell, J. Overend, K. Scanlon, M. Severson, A. Bewick. Infrared spectrum of CO on a platinum electrode in acidic solution. J. Phys. Chem., 1982, 86: 3066.
    [7] M. Osawa, K. Yoshii, K. I. Ataka, et al. Real-time monitoring of electrochemical dynamics by submillisecond time-resolved surface-enhanced infrared attenuated-total-reflection spectroscopy. Langmuir, 1994, 10: 640-642.
    [8] W. R. Heineman, J. N. Burnett, Royce W. Murray. Optically transparent thin-layer electrodes: ninhydrin reduction in an infrared transtparent cell. Anal. Chem., 1968, 40(13): 1974-1978.
    [9] B. Aemand, H. Joseph, W. Shmuel, C. Zelig, Y. Raphael, O. Dan. Reflection FTIR spectroelectrochemistry using ionically conductive polymer films: electrochemical preparation and spectroscopic characterization of some metal hydrides, J. Electroanal. Chem., 1996, 405(1): 251-254.
    [10] H. Visser, A. Curtright, E. McCusker, J. K., K. Sauer. Attenuated total reflection design for in situ FT-IR spectroelectrochemical studies. Anal. Chem., 2001, 73(17): 4374-4378.
    [11] T. Kuwana, R. K. Darlington, D. W. Leedy. Electrochemical studies using glass indicator electrodes. Anal. Chem., 1964, 36: 2036.
    [12] K. Kunimatsu, H. Seki, W. G Golden. Polarization-modulated FTIR-spectra of cyanide adsorbed on a silver electrode. Chem. Phys. Lett., 1984, 108(2): 195-199.
    [13] A. Hatta, Y. Sasaki, W. Suetaka. Polarization modulation infrared spectroscopic measurements of thiocyanate and cyanide at the silver electrode aqueous-electrolyte interface by means of kretschmann ATR prism configuration. J. Electroanal. Chem., 1986,215: 1-2.
    [14] K. Kunimatsu. Potential dependence of infrared reflection absorption spectrum of the adsorbed carbon monoxide produced by chemisorption of methanol on a smooth plati: A new in-situ IR spectroscopic method for the determination of the spectrum at a fixed potential. J. Electroanal. Chem., 1982,140: 205-210.
    [15] M. C. Pham, J. Moslih, P. C. Lacaze. Electrochemical oxidation of 2-naphthol: In situ MIRFTIRS study of the mechanism and the film structure. J. Electroanal. Chem., 1991, 303(1-2): 297-303.
    [16] M. Mizunoa, K. Iwatab, H. Takahashia. Time-resolved infrared and resonance Raman studies of benzil. Vibrational analysis and structures of the excited states. Jpn. J. Mol. Struct., 2003,3: 661-662.
    [17] C. F. Zinola, J. L. Rodriguez, M. C. Arevalo, E. Pastor. FTIR studies of tyrosine oxidation at polycrystalline Pt and Pt(111) electrodes. J. Electroanal. Chem., 2005, 585: 230-239.
    [18] G. Nazri, D. A. Corrigan, S. P. Maheswari. Angle-resolved infrared spectroelectrochemistry. 1. An in situ study of thin-film nickel oxide electrodes. Langmuir, 1989, 5(1): 17-22.
    [19] 林祥钦,李志丽,章宏强,杨锋利.现场显微红外光谱电化学分析方法.专利说明书,申请号921049536,公开号CN 1080996A.
    [20] C. S. Kim, C. Korzeniewski. Cyanide adsorbed as a monolayer at the low-index surface planes of platinum metal electrodes: an in situ study by infrared spectroscopy. J. Phys. Chem., 1993, 97 (38): 9784-9787.
    [21] N. Furuya, S. Motoo, K. Kunimatsu. Vibrational spectroscopy on platinum single-crystal electrodes. I: In-situ infrared spectroscopic studies of the adsorption and oxidation of Co on Pt(111) in sulphuric acid. J. Electroanal. Chem., 1988,239:347.
    [22] R. M. Hernandez-R, M. Kalaji. Electrochemical reactions of CO on polycrystalline copper electrodes. J. Electroanal. Chem., 1997, 434: 209.
    [23] S. G Sun, J. Clavilier, A. Bewick. The Mechanism of electrocatalytic oxidation of formic acid on Pt (100) and Pt( 111) in sulphuric acid solution. J. Electroanal. Chem. & Interfacial Electrochem., 1988, 240: 147.
    [24] F. Montilla, E. Morallon, J. L. Vazquez. Electrochemical study of benzene on Pt of various surface structures in alkaline and acidic solutions. Electrochim. Acta, 2002.47:4399-4406.
    [25] X. Y. Xiao, S. G Sun. Electrosorption of p-nitrobenzoic acid at a gold electrode in perchloric acid solutions studied by using cyclic voltammetry, EQCM, in situ FTIRS and Raman spectroscopy. Electrochim. Acta, 2000,45: 2897-2902.
    [26] Y. Fan, Z. Zhou, C. Zhen, C. Fan, S. Sun. Kinetics of dissociative adsorption of ethylene glycol on Pt(100) electrode surface in sulfuric acid solutions. Electrochim. Acta, 2004, 49: 4659-4666.
    [27] M. Avramov-Ivic, S. Strbac, V. Mitrovic. The electrocatalytic properties of the oxides of noble metals in the electrooxidation of methanol and formic acid. Electrochim. Acta., 2001, 46: 3175-3180.
    [28] K. Momoi, M. Song, M. Ito. Redox mechanisms of NO with water on Pt(111) electrode studied by in-situ STM and IRAS. J. Electroanal. Chem., 1999, 473: 43.
    [29] M. Weber, I. R. D. Moraes, A. J. Motheo, et al. In situ vibrational spectroscopy analysis of adsorbed phosphate species on gold single crystal electrode. Colloids Surf., A 1998, 134: 103-111.
    [30] B. A. lvarez, V. Climent, A. Rodes, et al. Anion adsorption on Pd-Pt(111) electrodes in sulphuric acid solution. J. Electroanal. Chem., 2001, 497: 125-138.
    [31] M. C. P. M. da Cunha, J. P. I. De Souza, F. C. Nart. Reaction pathways for reduction of nitrate ions on platinum, rhodium, and platinum-rhodium alloy electrodes. Langmuir, 2000, 16: 771-777.
    [32] C. A. Melendres, F. Hahn. In-situ observation of halide ion adsorption on a gold electrode using synchrotron far infrared spectroscopy. J. Electroanal. Chem., 1999, 463(4): 258-261.
    [33] 王晔,吴剑,李端,汪海燕,金葆康.丹皮酚的电化学氧化及其反应机理研究.分析化学.2006,34(9):1331-1334.
    [34] M. L. Wang, Y. Y. Zhang, Q. J. Xie, S. Z. Yao. In situ FT-IR spectroelectrochemical study of electrooxidation of pyridoxol on a gold electrode. Electrochim. Acta, 2006, 51: 1059-1068.
    [35] M. Avramov-Ivic, S. S trbac, V. Mitrovic. The electrocatalytic properties of the oxides of noble metals in the electrooxidation of methanol and formic acid. Electrochim. Acta, 2001, 46:3175-3180.
    [36] F. Vigier, C. Coutanceau, F. Hahn, et al. On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J. Electroanal. Chem., 2004, 563: 81-89.
    [37] E. Pastor, S. Gonzalez, A. J. Arvia. Electroreacrtivity of ispropanol on the platinum in acid studied by DEMS and FTIRS. J. Electroanal. Chem., 1995, 395: 233-242.
    [38] L. Proenc, M. I. S. Lopes, I. Fonseca, et al. On the oxidation of D-sorbitol on platinum single crystal electrodes: a voltammetric and in situ FTIRS study. Electrochim. Acta, 1998,44: 735-743.
    [39] A. Cherqaoui, D. Takky, K. B. Kokoh, et al. Electro-oxidation of meso-erythritol on platinum in acid medium: analysis of the reaction products. J. Electroanal. Chem., 1999,464: 101-109.
    [40] F. Huerta, E. Morallon, F. Cases, et al. Electrochemical behaviour of amino acids on Pt(h,k,l). A voltammetric and in situ FTIR study. Part I. Glycine on Pt (111). J. Electroanal. Chem., 1997, 421: 179-185.
    [41] F. Huerta, E. Morallon, F. Cases, et al. Electrochemical behaviour of amino acids on Pt(h,k,l). A voltammetric and in situ FTIR study. Part II. Serine and alanine on Pt (111). J. Electroanal. Chem., 1997, 431: 269-275.
    [42] F. Huerta, E. Morallon, F. Cases, et al. Electrochemical behaviour of amino acids on Pt(h,k,l). A voltammetric and in situ FTIR study. Part III. Glycine on Pt (100) and Pt (110). J. Electroanal. Chem., 1998,445: 155-164.
    [43] F. Huerta, E. Morallon, F. Cases, et al. Electrochemical behaviour of amino acids on Pt(h,k,l). A voltammetric and in situ FTIR study. Part IV. Serine and alanine on Pt (100) and Pt (110). J. Electroanal. Chem., 1999,475: 38-45.
    [44] F. Largeaud, K. B. Kokh, B. Beden, C. Lamy. On the electrochemical reactivity of anomers: electrocatalytic oxidation of α-and β-D-glucose on platinum electrodes in acid and basic media. J. Electroanal. Chem., 1995, 397: 261-269.
    [45] X. Zhang, K. Y. Chan, J. K. You, Z. G Lin, A. C. C. Tseung. Partial oxidation of glucose by aPt/WO_3 electrode. J. Electroanal. Chem., 1997,430: 147-153.
    [46] A. T. Governo, L. Proenca, P. Parpot, M. I. S. Lopes, I. T. E. Fonseca. Electro-oxidation of D-xylose on platinum and gold electrodes in alkaline medium. Electrochim. Acta, 2004,49(9-10): 1535-1545.
    [47] H. Druliolle, K. B. Kokoh, F. Hahn, C. Lamy, B. Beden. On some mechanistic aspects of the electrochemical oxidation of lactose at platinum and gold electrodes in alkaline medium. J. Electroanal. Chem., 1997,426: 103-115.
    [48] H. W. Lei, B. L. Wu, C. S. Cha, H. Kita. Electro-oxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additives. J. Electroanal. Chem., 1995, 382: 103-110.
    [49] A. Malinauskas. Electrocatalysis at conducting polymers. Synth. Met., 1999, 107: 75-83.
    [50] I. Rodriguez, B. R. Scharifker, J. Mostany. In situ FTIR study of redox and overoxidation processes in polypyrrole films. J. Electroanal. Chem., 2000, 491: 117-125.
    [51] K. Ogura, M. Nakayama, K. Nakaoka. Electrochemical quartz crystal microbalance and in situ infrared spectroscopic studies on the redox reaction of Prussian blue. J. Electroanal. Chem., 1999, 474(2): 101-106.
    [52] 薄爱丽,林祥钦.循环伏安和现场红外光谱电化学研究镉(Ⅱ)在普鲁士蓝/铂修饰电极上的反应.分析化学,1999,27(4):392-397.
    [53] 汪夏燕,崔兴品,崔运梅,金葆康,林祥钦.中性溶液中抗坏血酸在六氰合亚铁酸钴铜膜修饰铂电极上现场红外光谱电化学研究.高等学校化学学报.2002,23(8):1498-1500.
    [54] M. Ohman, D. Persson. An integrated in situ ATR-FTIR and EIS set-up to study buried metal-polymer interfaces exposed to an electrolyte solution. Electrochim. Acta, 2007, 52(16): 5159-5171.
    [55] 严彦刚,徐群杰,蔡文斌.铂电极上吸附芳香分子的表面增强红外光谱研究.化学学报.2006,64(6):458-462.
    [56] U. Wolf, R. Leiberich, J. Seeba. Application of infrared ATR spectroscopy to in situ reaction monitoring. Catal. Today, 1999, 49:411-418.
    [57] 林华香,王绪绪,戴文新,付贤智.FTIR-ATR技术考察TiO_2膜对油酸的光催化氧化性能.光谱学与光谱分析.2005,25(7):1057-1060.
    [58] T. Scherzer, U. Decker. Real-time FTIR-ATR spectroscopy to study the kinetics of ultrafast photopolymerization reactions induced by monochromatic UV light. Vib. Spectrosc., 1999, 19(2): 385-398.
    [59] F. Robson. Isobutylene polymerization kinetics at low[TiCl_4] via real-time in situ FTIR-ATR spectroscopy. Polym. Prepr., 1998, 39(1): 32-37.
    [60] 刘布鸣,钟正贤.傅立叶红外光谱法在生物领域应用简介.光谱仪器与分析.1994,1(2):76.
    [61] P. Fairbrother, W. O. George, J. M. Williams. Fermentation of cheese whey-monitoring by FT-IR. Anal. Proc., 1989, 26: 264-267.
    [62] D. Picque, D. Lefier, R. Grappin. Monitoring of fermentation by infrared spectrometry: Alcoholic and lactic fermentations. Anal. Chim. Acta, 1993, 279: 67-72.
    [63] E.J. Elzinga, D. L. Sparks. Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. J. Colloid Interface Sci., 2007, 308(1): 53-70.
    [64] S.D. Ebbesen, B. L. Mojet, L. Lefferts. In situ ATR-IR study of CO adsorption and oxidation over Pt/Al_2O_3 in gas and aqueous phase: Promotion effects by water and pH. J. Catal., 2007, 246(1): 66-73.
    [65] K. K. Chittur. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials, 1998, 19: 357-369.
    [66] R. R. Seigel, P. Harder, R. Dahint, M. Grunze. On-line detection of nonspecific protein adsorption at artificial surfaces. Anal. Chem., 1997, 69:3321-3328.
    [67] S.A. Sukhishvili, S. Granick, Adsorption of human serum albumin: Dependence on molecular architecture of the oppositely charge surface. J. Chem. Phys., 110(20): 10153-10161.
    [68] W. Norde. F. Macritchie, G. Nowicka, J. Lyklema. Protein adsorption at solid-liquid interfaces: Reversibility and conformation aspects. J. Colliod Interface Sci., 1986, 112: 447-456.
    [69] M. E. Soderquist, A. G. Walton. Structural changes in proteins adsorbed on polymer surfaces. J. Colliod Interface Sci., 1980, 75: 386-397.
    [70] 孙慷,张福学.压电学.国防工业出版社,北京,1984.
    [71] Z. Cao, Q. Xie, M. Li, S. Yao. Simultaneous EQCM and fluorescence detection of adsorption/desorption and oxidation for pyridoxol in aqueous KOH on a gold electrode. J. Electroanal. Chem., 2004, 568: 343-351.
    [72] T. Nomura, M. Iijima. Electrolytic determination of nanomolar concentrations of silver in solution with a piezoelectric quartz crystal. Anal. Chim. Acta, 1981, 131:97-102.
    [73] O. Melroym, K. K. Kanazawa, J. G Gordon, D. Buttry. Direct determination of the mass of an underpotentially deposited monolayer of lead on gold. Langmuir, 1986,2:697-700.
    [74] G Sauerbrey. The use of quartz oscillators for weighing thin layers and for microweighing. Z. Phys., 1959,155: 206-222.
    [75] S. J. Martin, V. E. Granstaff, G C. Frye. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem., 1991, 63(20): 2272-2281.
    [76] H. Muramatsu, E. Tamiya, I. Karube. Computation of equivalent circuit parameters of quartz crystals in contact with liquids and study of liquid properties. Anal. Chem., 1988, 60: 2142-2146.
    [77] S. Yamaguchi, T. Shimomura, T. Tatsuma, et al. Adsorption, immobilization, and hybridization of DNA studied by the use of quartz crystal oscillators. Anal. Chem., 1993, 65: 1925-1927.
    [78] M. Sumitani, Y. Tanamura, T. Hiratani, et al. Adsorption of gaseous molecule within polyfluorinated surfactant/saponite hybrid compound. J. Phys. Chem. Solids, 2005, 66(7): 1228-1233.
    [79] M. A. M. Noel, P. A. Topart. High-frequency impedance analysis of quartz crystal microbalances. 1. General considerations. Anal. Chem., 1994, 66: 484-491.
    [80] J. Zhang, J. Hu, Z. Q. Zhu, et al. Quartz crystal microbalance coated with sol-gel-derived indium-tin oxide thin films as gas sensor for NO detection. Colloids Surf., A 2004,236(1-3): 23-30.
    [81] M. Teresa, S. R. Gomes, P.Sergio, et al. Quantification of CO_2, SO_2, NH_3, and H_2S with a single coated piezoelectric quartz crystal. Sens. Actuators B, 2000, 68: 218-222.
    [82] S. R. Kim, J. D. Kim, K. H. Choi, et al. NO_2-sensing properties of octa(2-ethylhexyloxy) metallophthalocyanine LB films using quartz-crystal microbalance. Sens. Actuators B, 1997, 40(1): 39-45.
    [83] V. Syritski, J. Reut, A. Opik et al. Environmental QCM sensors coated with polypyrrole. Synth. Met., 1999, 102: 1326-1327.
    [84] R. T. S. Oliveira, M. C. Santos, L. O. S. Bulhoes, E. C. Pereira. Rh electrodeposition on Pt in acidic medium: a study using cyclic voltammetry and an electrochemical quartz crystal microbalance. J. Electroanal. Chem., 2004, 569: 233-240.
    [85] A. Lachenwitzer, O. M. Magnussen. Electrochemical quartz crystal microbalance study on the kinetics of nickel monolayer and multilayer electrodeposition on (111)-oriented gold Films. J. Phys. Chem. B, 2000; 104(31): 7424-7430.
    [86] C. A. Jeffrey, W. M. Storr, D. A. Harrington. Electrochemical quartz-crystal microbalance study of silver and copper electrodeposition on bare and iodine-covered platinum electrodes. J. Electroanal. Chem., 2004, 569: 61-70.
    [87] G. Vatankhah, J. Lessard, G. Jerkiewicz, A. Zolfaghari, B. E. Conway. Dependence of the reliability of electrochemical quartz-crystal nanobalance mass responses on the calibration constant, Cf: analysis of three procedures for its dtermination. Electrochim. Acta, 2003, 48(11): 1613-1622.
    [88] P. Schmutz, D. Landolt. In-situ microgravimetric studies of passive alloys: potential sweep and potential step experiments with Fe-~(25)Cr and Fe-~(17)Cr-~(33)Mo in acid and alkaline solution. Corros. Sci., 1999, 41: 2143-2163.
    [89] K.K. Kanazawa. Steady state and transient QCM solutions at the metal solution interface. J. Electroanal. Chem., 2002, 524-525: 103-109.
    [90] C. Xiang, Q. Xie, J. Hu, S. Yao. Symmetric current oscillations at tip and substrate electrodes of scanning electrochemical microscope during silver deposition/stripping. J. Electroanal. Chem, 2005, 584: 201-209.
    [91] B. Trachli, M. Keddam, H. Takenouti and A. Srhiri. Protective effect of electropolymerized 2-mercaptobenzimidazole upon copper corrosion. Prog. Org. Coat., 2002, 44: 17-23.
    [92] M. Scendo. Inhibitive action of the purine and adenine for copper corrosion in sulphate solutions. Corros. Sci., 2007, In Press.
    [93] P. Kern, D. Landolt. Adsorption of a bromine labeled carboxylic acid corrosion inhibitor on iron measured with EQCM, EIS and XPS. Corros. Sci., 2002, 44: 1809-1824.
    [94] D. Wang, X. Tang, Y. Qiu. A study of the film formation kinetics on zinc in different acidic corrosion inhibitor solutions by quartz crystal microbalance. Corros. Sci., 2005, 47: 2157-2172.
    [95] G Zilberman. The adsorption of t-butanol on gold - an electrochemical and electrochemical quartz microbalance study. J. Electroanal. Chem., 2001, 502: 100-108.
    [96] A. Zhou, N. Xie. Investigation of Electrosorption of Organic Molecules onto Gold and Nickel Electrodes Using an Electrochemical Quartz Crystal Microbalance. J. Colloid Interface Sci., 1999, 220: 281-287.
    [97] X. Zeng, R. Hatton. EQCM study of adsorption of bipyridine on Au polycrystalline electrode using underpotential deposition of Pb as a probe. Electrochim. Acta, 2000, 45: 3629-3638.
    [98] A. T. Carvalho, M. L. P. da Silva, A. P. Nascimento Filho, et al. Improvement on organic compound adsorption and/or detection by using metallic thin films deposited onto highly rough silicon substrates. Sens. Actuators B, 2005, 108: 947-954.
    [99] R. Morand, K. Noworyta, J. Augustynshi. Probing interactions between TiO_2 photocatalyst and adsorbing species using quartz crystal microbalance. Chem. Phys. Lett., 2002. 364: 244-250.
    [100] J. Li, F. Zhao, J. Zhao, B. Zeng. Adorptive and stripping behaviour of methylene blue at gold electrodes in the presence of cationic Gemini surfactants. Electrochim. Acta, 2005, 51(2): 297-303.
    [101] A. Baba, F. Kaneko, R. C. Advincula. Polyelectrolyte adsorption processes characterized in situ using the quartz crystal microbalance technique: alternate adsorption properties in ultrathin polymer films. Colloids Surf., A 2000, 173: 39-49.
    [102] L. A. Larewm, J. S. Gordon, Y. L. Hsiao, et al. Electrocatalysis of anodic oxygen-transfer reactions: application of an electrochemical quartz microbalance to a study of pure and bismuth doped beta-lead dioxide Electrodes. J. Electrochem. Soc, 1990, 137: 3071-3078.
    [103] B. L. Wu, D. Lincot, J. Vedel, et al. Voltammetric and electrogravimetric study of manganese dioxide thin film electrodes. Part 1. Electrodeposited films. J. Eletroanal. Chem., 1997,420: 159-165.
    [104] T. H. Kim, B. H. Sohn. Photocatalytic thin films containing TiO_2 nanoparticles by the layer-by-layer self-assembling method. Appl. Surf. Sci., 2002, 201: 109-114.
    [105] B. J. Feldman, O. R. Melroy. Ion flux during electrochemical charging of Prussian blue films. J. Electroanal. Chem., 1987,234: 213-227.
    [106] J. J. Garcia-Jareno, C. Gabrielli, H. Perrot. Validation of the mass response of a quartz crystal microbalance coated with Prussian blue film for ac electrogravimetry. Electrochem. Commun., 2000, 2: 195-200.
    [107] X. Yang, Q. Xie, S. Yao. A comparative study on polyaniline degradation by an electrochemical quartz crystal impedance system: electrode and solution effects. Synth. Met., 2004,143: 119-128.
    [108] G. Zotti, S. Zecchin, G. Schiavon, A. Berlin. Low-defect neutral, cationic, and anionic conducting polymers from electrochemical polymerization of N-substituted bipyrroles. Synthesis, characterization, and EQCM analysis. Chem. Mater., 2002,14(8): 3607-3614.
    [109] Y. L. Li, M. L. Liu, C. H. Xiang, Q. J. Xie, S. Z. Yao. Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions. Thin Solid Films, 2006, 497: 270-278.
    [110] C. H. Xiang, Q. J. Xie, J. M. Hua, S. Z. Yao. Studies on electrochemical copolymerization of aniline with o-phenylenediamine and degradation of the resultant copolymers via electrochemical quartz crystal microbalance and scanning electrochemical microscope. Synth. Met., 2006,156:444-453.
    [111] Q. Xie, S. Kuwabata, H. Yoneyame. EQCM studies on polypyrrole in aqueous solutions. J. Electroanal.Chem., 1997, 420: 219-225.
    [112] W. Zhu, W. Wei, L. Nie, et al. Piezoelectric quartz crystal with separated electrode for the simultaneous determination of atropine sulphate and sodium chloride. Anal. Chim. Acta, 1993, 282: 535-541.
    [113] C. Y. Deng, M. R. Li, Q. J. Xie, M. L. Liu, et al. New glucose biosensor based on a poly(o-phenyendiamine) glucose oxidase-glutaraldehyde/Prussian blue/Au electrode with QCM monitoring of various electrode-surface modifications. Anal. Chim. Acta, 2006, 557: 85-94.
    [114] H. He, Q. Xie, Y. Zhang, et al. A simultaneous electrochemical impedance and quartz crystal microbalance study on antihuman immunoglobulin G adsorption and human immunoglobulin G reaction. J. Biochem. Biophys. Methods, 2005, 62:191-205.
    [115] S. Susmel, C. K. O'Sullivan, G. G. Guilbault. Human cytomegalovirus detection by a quartz crystal microbalance immunosensor. Enzyme Microb. Technol., 2000,27: 639-645.
    [116] X. Su, S. Low, J. Kwang, et al. Piezoelectric quartz crystal based veterinary diagnosis for salmonella enteritidis infection in chicken and egg. Sens. Actruators B, 2001, 75: 29 35.
    [117] Q. Xie, C. Xiang, Y. Zhang, et al. In situ monitoring of gold-surface adsorption and acidic denaturation of human serum albumin by an isolation-capacitance-adopted electrochemical quartz crystal impedance system. Anal. Chim. Acta, 2002, 464: 65-77.
    [118] Q. Xie, Y. Zhang, M. Xu, et al. Combined quartz crystal impedance and electrochemical impedance measurements during adsorption of bovine serum albumin onto bare and cysteine- or thiophenol-modified gold electrodes. J. Electroanal. Chem., 1999, 478: 1-8.
    [119] A. G. Hemmersam, M. Foss, J. Chevallier, et al. Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique. Colloids Surf., B 2005, 43: 208-215.
    [120] M. Yang, F. L. Chung, M. Thompson. Acoustic network analysis as a novel technique for studying protein adsorption and denaturation as surface. Anal. Chem., 1993, 65: 3713-3716.
    [121] F. J. He, X. Q. Zhang, Z. H. Liu. A new sensor method for studying the effect of surfactants on the growth of pseudomonas aeruginosa. Sens. Actuators B, 2005,113(1): 428-434
    [122] A. K. Deishingh, M. Chompson. Sequences of E. coli 0157:H7 detected by a PCR-acoustic wave sensor combination, Analyst, 2001. 126:2153-2158.
    [123] M. L. Liu, M. Ye, Q. Yang, Y. Y. Zhang, et al. A new method for characterizing the growth and properties of polyaniline and poly(aniline-co-o-aminophenol) films with the combination of EQCM and in situ FTIR spectroelectrochemisty Electrochim. Acta, 2006, 52: 342-352
    [124] K. Shimazu, M. Yanagida, K. Uosaki. Simultaneous UV-Vis spectroelectrochemical and quartz crystal microgravimetric measurements during the redox reaction of viologens. J. Electroanal. Chem., 1993, 350: 321-327.
    [125] H. S. Shim, I. H. Yeo, S. M. Park. Simultaneous Multimode Experiments for Studies of Electrochemical Reaction Mechanisms: Demonstration of Concept. Anal. Chem., 2002, 74: 3540-3546.
    [126] J. Rishpon, A. Redondo, C. Derouin, S. Gottesfeld. Simultaneous ellipsometric and microgravimetric measurements during the electrochemical growth of polyaniline. J. Eletroanal. Chem., 1990, 294: 73-85.
    [127] 曹勇军,钱进军,刘春风.纤维蛋白(原)、纤维蛋白(原)降解产物及其基序拮抗剂与动脉粥样硬化.国际脑血管病杂志.2006,14(4):290-293.
    [128] Y. Lin, J. Wang, L. J. Wan, X. H. Fang. Study of fibrinogen adsorption on self-assembled monolayers on Au(111) by atomic force microscopy. Ultramicroscopy, 2005, 105:129-136.
    [129] Y. L. Chen, X. F. Zhang, Y. D. Gong, et al. Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles. J. Colloid Interface Sci., 1999, 214: 38-45.
    [130] X. E Zhang, Y. Ma, H. Liu, E G. de Sa. Paula, et al. Monitoring the formation of Maillard reaction products of glucosamine with fibrinogen and human serum albumin using capillary electrophoresis. Anal. Biochem., 2004, 325: 255-259.
    [131] T. Endo, S. Yamamura, N. Nagatani, et al. Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring antigen-antibody reaction. Sci. Tech. Adv., 2005, 6: 491-500.
    [132] M. Ombelli, R. J. Composto, Q. C. Meng, D. M. Eckmann. Quantitative and selective chromatography method for determining coverages of multiple proteins on surfaces. J. Chromatogr., B 2005, 826: 198-205.
    [133] X. L. Mao, L. J. Yang, X. L. Su, Y. B. Li. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosens. Bioelectron., 2006, 7:1178-1185.
    [134] X. Su, Y. B. Li. A QCM Immunosensor for Salmonella detection with simultaneous measurement of resonant frequency and motional resistance. Biosens. Bioelectron., 2005, 21: 840-848.
    [135] X. D. Su, Y. J. Wu, W. Knoll. Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization. Biosens. Bioelectron., 2005, 21: 719-726.
    [136] Q. J. Xie, Y. Y. Zhang, Y. Yuan, et al. An electrochemical quartz crystal impedance study on cystine precipitation onto an Au electrode surface during cysteine oxidation in aqueous solution. J. Electroanal. Chem., 2000, 484: 41-54.
    [137] M. Thompson, A. L. Kipling, W. C. Duncan-Hewitt, L. V. Rajakovic, B. A. Cabic-Vlasak. Thickness-shear-acoustic wave sensors in the liquid phase. Analyst, 1991, 116: 881-890.
    [138] H. L. Bandey, M. Gonsalves, A. R. Hillman, et al. Dynamic quartz crystal impedance measurements of polyvinylferrocene film deposition. J. Electroanal. Chem., 1996, 410: 219-227.
    [139] R. J. Pei, Z. L. Cheng, E. K. Wang, X. R. Yang. Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy. Biosens. Bioelectron., 2001, 16(7): 355-361.
    [140] Y. X. Hou, S. Helali, A. D. Zhang, N. Jaffrezic-Renault, et al. Immobilization of rhodopsin on a self-assembled multilayer and its specific detection by electrochemical impedance spectroscopy. Biosens. Bioelectron., 2006, 21: 1393-1402.
    [141] Y. Y. Zhang, Y. S. Fun, H. Sun, D. R. Zhu, S. Z. Yao. Study of protein adsorption on polymer coatings surface by combining quartz crystal microbalance with electrochemical impedance methods. Sens. actuators, B 2005, 108: 933-942.
    [142] Y. M. Long, L. H. Nie, J. H. Chen, S. Z. Yao. Piezoelectric quartz crystal impedance and electrochemical impedance study of HSA-diazepam interaction by nanogold-structured sensor. J. Colloid Interface Sci., 2003, 263(1): 106-112.
    [143] S. E. Moulton, J. N. Barisci, A. J. McQuillan, et al. Monographs in Supramolecular Chemistry. Colloids Surf., A 2003, 220:159-167.
    [144] Y. Liu, M. X. Xie, M. Jiang, Y. D. Wang. Spectroscopic investigation of the interaction between human serum albumin and three organic acids. Spectrochim. Acta A, 2005, 61(9): 2245-2251.
    [145] J. S. Gordon, D. C. Jhonson. Application of an electrochemical quartz crystal microbalance to a study of water adsorption at gold surfaces in acidic media. J. Electroanal. Chem., 1994, 365: 267-274.
    [146] P. Parhi, A. Ramanan, A. R. Ray. A convenient route for the synthesis of hydroxyapatite through a novel microwave-mediated metathesis reaction. Mater. Lett., 2004, 58(27-28): 3610-3612.
    [147] H. T. Zeng, K. K. Chittur, W. R. Lacefield. Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces. Biomaterials, 1999, 20: 377-384.
    [148] F. Dousseau, M. Therrien, M. Pezolet. On the spectral subtraction of water from the FT-IR spectra of aqueous solutions of proteins. Appl. Spectrosc., 1989, 43: 538-542.
    [149] Y. Zhao, C. Z. Li, X. H. Liu, et al. Synthesis and optical properties of TiO_2 nanoparticles. Mater. Lett., 2007, 61(1): 79-83.
    [150] S. Raynaud, E. Champion, D. Bemache-Assollant, P. Thomas. Calcium phosphate apatites with variable Ca/P atomic ratio. Synthesis, characterisation and thermal stability of powders. Biomaterials, 2002, 23: 1065-1072.
    [151] D. A. Buttry, A. J. Bard, (Ed.). Marcel Dekker, New York, Applications of the Quartz Crystal Microbalance. Electroanal. Chem., 1991, 17: 1-85.
    [152] T. Sato, S. T. Serizawa, Y. Okahata. Binding of influenza a virus to monosialoganglioside (GM_3) reconstituted in glucosylceramide and sphingomyelin membranes. Biochim. Biophys. Acta, 1996, 1285 (1): 14-20.
    [153] C. Xiang, Q. Xie, S. Yao. Electrochemical quartz crystal impedance study of glucose oxidation on a nickel hydroxide modified Au electrode in alkaline solution. Electroanalysis, 2003, 15: 987-990.
    [154] P. Bernabeu, L. Tamisier, A. De. Cesare, A. Caparani. Study of the adsorption of albumin of a platinum rotating-disk electrode using impedance measurements. Electrochim. Acta, 1988, 33: 129-1136.
    [155] W. Norde. Adsorption of proteins from solution at the solid-liquid interface. Colloid Interface Sci., 1986, 25: 267-340.
    [156] T. A. Horbett, J. L. Brash, (Eds.). ACS Symposium Series No. 602, American Chemical Society, Washington, DC. 1995 Chapter 29: 405-419.
    [157] K. D. Kobson, P. A. Conner, A. J. McQuillan. Monitoring hydrous metal oxide surface charge and adsorption by STIRS. Langmuir. 1997, 13(10): 2614-2616.
    [158] A. D. Roddick-Lanzilotta, P. A. Conner, A. J. McQuillan. An in situ infrared spectroscopic study of the adsorption of lysine to TiO_2 from an aqueous solution. Langmuir, 1998, 14: 6479-6484.
    [159] M. J. Gorbunoff, S. N. Timasheff. The interaction of proteins with hydroxyapatitc. Ⅲ. Mechanism. Anal. Biochem., 1984, 136: 440-445.
    [160] S. Tune, M. F. Maitz, G. Steiner, L. Vezquez, M. T. Pham, R. Salzer. In-situ conformational analysis of fibrinogen adsorbed on Si surfaces. Colloids Surf., B 2005, 42: 219-225.
    [161] F. Y. Oliva, L. B. Avalle, O. R. Camara, C. P. D. Pauli. Adsorption of human serum albumin (HSA) onto colloidal TiO_2 particles, Part Ⅰ. J. Colloid Interface Sci., 2003, 261: 299-311.
    [162] S. Servagent-Noinville, M. Revault, H. Quiquampoix, et al. Conformational changes of Bovine Serum Albumin induced by adsorption on different clay surfaces: FTIR analysis. J. Colloid Interface Sci., 2000, 221: 273-283.
    [163] I. S. Harding, N. Rashid, K. A. Hing. Surface charge and the effect of excess calcium ions on the hydroxyapatite. Biomaterials, 2005, 26: 6818-6826.
    [164] D. P. Jiang, G. S. Premachandra, C. Johnston, Hem, L. Stanley. Structure and adsorption properties of commercial calcium phosphate adjuvant. 2004, 23: 693-698.
    [165] G. Bernardi, M. G. Giro, C. Gaillard. Chromatography of polypeptides and proteins on hydroxyapatite columns: some new developments. Biochim. Biophys. Acta, 1972, 278(3): 409-420.
    [166] G. Marguerie. The binding of calcium to fibrinogen: some structural features. Biochim. Biophys. Acta, 1977, 494(1): 172-181.
    [167] V. Brabec, V. Momstein. Electrochemical behaviour of proteins at graphite electrodes II. Electrooxidation of amino acids. Biophys. Chem., 1980, 12(2): 159-165.
    [168] S. M. Mac Donald, S. G. Roscoe. Electrochemical oxidation reactions of tyrosine, tryptophan and related dipeptides. Hecfrochimico Acta, 1997, 42(8): 1189-1200.
    [169] N. T. Nguyen, M. Z. Wrona, G. Dryhurst. Electrochemical oxidation of tryptophan. J. Electroanal.Chem., 1986, 199(1): 101-126.
    [170] B. Malfoy, J. A. Reynaud. Electrochemical investigations of amino acids at solid electrodes: Part II. Amino acids containing no sulfur atoms: Tryptophan, tyrosine, histidine and derivatives. J. Electroanal. Chem., 1980,114(2): 213-223.
    [171] M. H. Li, C. Z. Zhao, Y. Meng, H. X. Fu. Determination of epinephrine using phase selective A. C. voltammetry based on poly(tryptophan) membrane electrode. Chin. J. Anal. Lab., 2006, 25(4): 5-8.
    [172] D. M. Sun, Q. R. Zhu, Z. X. Zhang, Z. H. Zhang. Preparation of poly (L-tryptophan) modified electrode and cyclic voltammetric determination of dopamine. Chin. J. Anal. Lab., 2003,22(6): 6-8.
    [173] Y. R. Ma, Q. X. Yang, H. Wei, X. L. Wang. Electrochemistry of nickel (II) tryptophan film electrode and electrocatalytic oxidation of methanol. Chin. J. Natural Gas Chem., 2001,10(2): 147-157.
    [174] A. Chen, S. G. Sun, D. Yang, B. Pettinger, J. Lipkowski. In situ FTIR studies on the adsorption and reduction of 4-cyanopyridine at the Au(111) electrode. Special issue, Can. J. Chem., 1996, 74: 2321-2330.
    [175] R. J. Nichols, in: J. Lipkowski, P. N. Ross (Eds.). Adsorption of molecules at metal electrodes. VCH, New York, 1992, p. 347.
    [176] S. G. Sun, in: J. Lipkowski, P. N. Ross (Eds.), Electrocatalysis, Wiley, New York, 1998, p. 243.
    [177] G. J. Edens, A. Hamelin, M. J. Weaver, Mechanism of carbon monoxide electrooxidation on monocrystalline gold surfaces: Identification of a hydroxycarbonyl intermediate. J. Phys. Chem., 1996, 100(6): 2322-2329.
    [178] J. M, Lin., H. Lin, J. H. Lu, et al. EQCM study of adsorption and oxidation of α-alanine on Pt electrode in acidic solution. Chin. J. Precious Met., 2003, 2: 1-6.
    [179] H. Q. Li, A. C. Chen, S. R. G. Roscoe, J. Lipkowski. Electrochemical and FTIR studies of L-phenylalanine adsorption at the Au(111) electrode. J. Electroanal. Chem., 2001, 500: 299-310.
    [180] K. Ogura, M. Kobayashi, M. Nakayama, Y. Miho. In-situ FTIR studies on the electrochemical oxidation of histidine and tyrosine. J. Electroanal. Chem., 1999, 463: 218-223.
    [181] G. L. Chen, H. Lin, L. Wen, et al. EQCM and in situ FTIR studies on the adsorption and oxidation of 1-Butanol at a platinum electrode in alkaline media. Spectrosc. Spectral Anal., 2006, 26(110): 1829-1832.
    [182] 陈昌国,黄宗卿.红外反射光谱电化学中薄层电解池效应的研究.分析化学,1993.21:1037-1039.
    [183] C. H. Zhen, S. G. Sun, C. J. Fan, S. P. Chen, B. W. Mao, Y. J. Fan. In situ FTIRS and EQCM studies of glycine adsorption and oxidation on Au(111) electrode in alkaline solutions. Electrochim. Acta., 2004, 49:1249-1255.
    [184] Z. Borkowska, A. Tymosiak-Zielinska, G. Shul. Electrooxidation of methanol on polycrystalline and single crystal gold electrodes. Electrochim. Acta, 2004, 49: 1209-1220.
    [185]甄春花,范纯洁,谷艳娟,陈声培,孙世刚.碱性介质中甘氨酸在纳米金膜电极上的吸附和氧化.物理化学学报,2003,19(1):60—64.
    
    [186] W. Visscher, J. F. E. Gootzen, A. P. Cox, J. A. R. van Veen. Electrochemical quartz crystal microbalance measurements of CO adsorption and oxidation on Pt in various electrolytes. Electrochem. Acta, 1998, 43: 533-547.
    [187] P. N. Bartlett, H. D. Darryl, J. Farrington. Electrochemically polymerised films of 5-carboxyinodele. Preparation and properties J. Chem. Sot., 1992, 88: 2685-2695.
    [188] S. Bayari, S. Saglam, H. F. Ustundag. Experimental and theoretical studies of the vibrational spectrum of 5-hydroxytryptamine. J. Mol. Struct. THEOCHEM, 2005, 726: 225-232.
    [189] M. Rozenberg, G. Shoham. FTIR spectra of solid poly-L-lysine in the stretching NH mode range. Biophys. Chem., 2007, 125: 166-171.
    [190] B. B. Ivanova. IR-LD spectroscopic characterization of L-Tryptophan containing dipeptides. Spectrochim. Acta A, 2006, 64: 931-938.
    [191] K. Ogura, M. Kobayashi, M. Nakayama, Y. Miho. Electrochemical and in situ FTIR studies on the adsorption and oxidation of glycine and lysine in alkaline medium. J. Electroanal. Chem., 1998, 449: 101-109.
    [192] A. V. Jung, C. Frochot, S. Parant, et al. Synthesis of amino-phenolic humic-like substances and comparison with natural aquatic humic acids: A multi-analytical techniques approach. Org. Geochem., 2005, 36: 1252-1271.
    [193] J. Niemeyer, Y. Chen, J. M. Bollag. Characterisation of humic acids, composts, and peat by di.use re.ectance Fourier-transform infrared spectroscopy. Soil Sci. Soc. Am. J., 1992, 56: 135-140.
    [194] F. Besson, R. Buchet. Solvent-induced conformational changes of a cyclic L, -lipopeptide mycosubtilin and of its O-methyltyrosine derivative, A search for hydrogen bonds by FTIR spectroscopy. Spectrochim. Acta A, 1997, 53: 1913-1923.
    [195] M. Szafran, Z. Dega-Szafran, E. Dulewicz, et al. Conformational analysis of 5-piperidinevaleric acid, 5-(Nmethylpiperidine) valerate and their hydrogen halides by MO calculations, X-ray diffraction and FTIR spectroscopy. J. Mol. Struct, 1999,484: 125-138.
    [196] C. H. Pan, J. Y. Qian. On the infrared spectra of polycaprolactam. Chin. Acta Phys. Sin., 1962, 18(3): 159-164.
    [197] E. Nabedryk, S. Andrianambinintsoa, D. Dejonghe. FTIR spectroscopy of the photoreduction of the bacteriopheophytin electron acceptor in reaction centers of Rb. sphaeroides and Rps. viridis. J. Breton Chem. Phys., 1995,194: 371-378.
    [198] H. Talbi, E. B. Maarouf, B. Humbert, M. Alnot, et al. Spectroscopic studies of electrochemically doped polyindole. J. Phys. Chem. Solids, 1996, 57: 1145-1151.
    [199] G. Tourillon, in: T. A. Skotheim (Ed.), Handbook of Conducting Polymers, vol. 1, Marcel Dekker, New York, 1986, p. 293.
    [200] B. Scrosati, Science and Applications of Conducting Polymers, Chapman & Hall, London, 1993, Chapter 7.
    [201] S. Jasne, Encyclopedia of Polymer Science and Engineering, vol. 51, Wiley, New York, 1988.
    [202] A. Bolognesi, G. Bajo, S. Mazza. Preparation of multilayered structure with poly(3-alkylthiophene) derivatives. Mater. Sci. Eng., C 1998, 5(3-4): 183-186.
    [203] S. S. Emmi, M. D. Angelantonio, G. Beggiato, G. Poggi, et al. The generation and spectral characterization of oligothiophenes radical cations. A pulse radiolysis investigation. Radiat. Phys. Chem., 1999, 54(3): 263-270.
    [204] F. Palmisano, G. E. De Benedetto, C. G. Zambonin. Lactate amperometric biosensor based on an electrosynthesized bilayer film with covalently immobilized enzyme. Analyst, 1997,122: 365-369.
    [205] C. H. Yang. Electrochemical polymerization of aniline and toluidines on a thermally prepared Pt electrode. J. Electroanal. Chem., 1998,459: 71-89.
    [206] M. Kalaji, L. Nylholm, L. Peter. A microelectrode study of the influence of pH and solution composition on the electrochemical behaviour of polyaniline films. J. Electroanal. Chem., 1991, 313: 271-289.
    [207] A. A. Syed, M. K. Dinesan. Poly(aniline): a conducting polymer as a novel anion-exchange resin. Analyst, 1992, 117: 61-66.
    [208] W. S. Huang, B. D. Humphery, A. G. MacDiarmid, J. Chem. Soc, Faraday Trans. 1986,182:2385.
    
    [209] N. Mermilliad, J. Tanguy, M. ttocklet, A. A. Syed. Synth. Metals 1987,18: 357.
    [210] M. K. Ram, M. Joshi, R. Mehrotra, S. K. Dhawan, Subhas Chandra. Electrochemical and optical characteristics of conducting poly(o-toluidine) films. Thin Solid Films, 1997, 304: 65-69.
    [211] E. M. Andrade, F. V. Molina, M. I. Florit, D. Posadas. IR response of poly(o-toluidine): spectral modifications upon redox state change. J. Electroanal. Chem., 1996,419: 15-21.
    [212] D. D. Borole, U. R. Kapadi, P. P. Mahulikar, D. G. Hundiwale. Electrochemical behaviour of polyaniline, poly(o-toluidine) and their copolymer in organic sulphonic acids. Mater. Lett., 2004, 58: 3816-3822.
    [213] Y. Wei, W. W. Focke, G. E. Wnek, A. Ray, A. G. MacDiarmid. Synthesis and electrochemistry of alkyl ring-substituted polyanilines. J. Phys. Chem., 1989, 93: 495.
    [214] D. D. Borole, U. R. Kapadi, P. P. Mahulikar, D. G Hundiwale. Glucose oxidase electrodes of a terpolymer poly(aniline-co-o-anisidine-co-o-toluidine) as biosensors. Eur. Polym. J., 2005,41: 2183-2188.
    [215] P. Savitha, D. N. Sathyanarayana. Synthesis and characterization of soluble conducting poly(o-/m-toluidine-co-o-nitroaniline). Synth. Met., 2004, 145:113-118.
    [216] E. S. Bilal, R. Holze. Electrochemical copolymerization of o-toluidine and o-phenylenediamine. J. Electroanal. Chem., 2006, 592: 1-13.
    [217] C. Y. Chung, T. C. Wen, A. Gopalan. Electrochemical copolymerization of 1-naphthylamine with aniline and o-toluidine. Mater. Chem. Phys., 2001, 71: 148-154.
    [218] S. J. Chen, B. L. Wu, C. S. Cha. An EQCM investigation of oxidation of formic acid at gold electrode in sulfuric acid solution. J. Electroanal. Chem., 1997, 431: 243-247.
    [219] Y. B. Shim, M. S. Won, S. M. Park. Electrochemistry of conductive polymers VIII. In situ spectroelectrochemical studies of polyaniline growth mechanisms. J. Electrochem. Soc, 1990, 137 (2): 538-544.
    [220] B. J. Johnson, S. M. Park. Electrochemistry of conductive polymers: XX. early stages of aniline polymerization studied by spectroelectrochemical and rotating ring disk electrode techniques. J. Electrochem. Soc, 1996, 143(4): 1277-1282.
    [221] C. H. Yang, T. C. Yang, Y. K. Chih. Mixture design applied to electrochemical polymerization of ternary aniline derivatives on ITO electrodes, J. Electrochem. Soc., 2005, 152(9): 273.
    [222] S. L. Mu. Electrochemical copolymerization of aniline and o-aminophenol. Synth. Met., 2004,143: 259-268.
    [223] D. Goncalves, R. C. Faria, M. Yonashiro, L. O. S. Bulhoes. Electrochemical oxidation of o-aminophenol in aqueous acidic medium: formation of film and soluble products. J. Electroanal. Chem., 2000, 487(2): 90-99.
    [224] C. Barbero, J. J. Silber, L. Sereno. Formation of a novel electroactive film by electropolymerization of ortho-aminophenol: Study of its chemical structure and formation mechanism. Electropolymerization of analogous compounds. J. Electroanal. Chem., 1989, 263(2): 333-352.
    [225] G. Socrates, Infrared and Raman Characteristic Group Frequencies, thirded., Wiley, New York, 2001.
    [226] Z. Wang, X. Li, Y. Wu, Y. Tang, Sh. Ma. Spectroelectrochemistry for a coupled chemical reaction in the channel cell. Part II. Kinetics of hydrolysis and the absorption spectrum of p-benzoquinoneimine. J. Electroanal. Chem., 1999, 464(6): 181-186.
    [227] D. H. Williams, I. Flening. Spectroscopic Methods Organic Chemistry, 4th Edition (revised), McGraw-Hill, London, 1992, 34.
    [228] M. L. Ramos, J. F. Tyson, J. David, Curran. Determination of acetaminophen by flow injection with on-line chemical derivatization: Investigations using visible and FTIR spectrophotometry. Electrochim. Acta, 1998, 364: 107-116.
    [229] H. J. Salavagione, J. Arias-Pardilla, J. M. Perez, et al. Study of redox mechanism of poly(o-aminophenol) using in situ techniques: evidence of two redox processes. J. Electroanal. Chem., 2005, 576: 139-145.
    [230] F. Yin, H. K. Shin, Y. S. Kwon. Direct electrochemistry of hemoglobin immobilized on gold electrode by Langmuir-Blodgett technique. Biosens. Bioelectron., 2005, 21: 21-29.
    [231] X. Yao, M. L.Yang, Y. F. Wang, Z. B. Hu. Study of the ferrocenylalkanethiol self-assembled monolayers by electrochemical surface plasmon resonance. Sens. Actuators B, 2007, 122: 351-356.
    [232] S. Kunimura, T. Ohsaka, N. Oyama. Preparation of thin polymeric films on electrode surfaces by electropolymerization of ortho-aminophenol macromolecules. Macromolecules, 1988,21(4): 894-900.
    [233] A. Gruger, A. Novak, A. Regis. Infrared and Raman study of polyaniline II: influence of ortho substituents on hydrogen bonding and UV is-near-IR electron charge transfer. J. Mol. Struct., 1994,328: 153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700