用户名: 密码: 验证码:
基于CE-1号卫星微波辐射计传感数据的月壤厚度反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月壤层包含着月球及太阳系物质和能量的大量重要信息。在数亿年的形成和演化过程当中,月壤记录了地月系的起源和演化历史、陨石和微陨石对月球的撞击,以及太阳风和宇宙射线对月球的轰击;反映了月球物质的成分和分布特点。对月壤的系统研究可获得丰富的科学信息。月壤厚度的研究是月壤研究的一项重要的内容,它对以后的月球探测、载人登月、月球基地选址以及开发和利用月球资源等都具有非常重要的意义。在以往的月球探测活动中,月壤厚度一直都是科学家关注的对象。我国第一颗月球探测卫星“嫦娥1号”(CE-1)的科学目标之一就是利用其携带的微波辐射计所获得的月球表面微波辐射亮度温度数据研究月壤厚度的分布,并在此基础上评估月球上3He资源含量。这是国际上首次在月球轨道上用被动微波遥感的方法探测全月球表面的月壤厚度分布。月球表面的微波辐射亮度温度包含着丰富的月球及其外空间的信息,直接反映了月球表层物质的物理化学特性,包括月球表层温度、月表物质的化学组分、密度、介电特性、月壤的厚度、以及地形地貌等。利用从月球轨道上获得的微波亮温数据反演月壤厚度在国际上属于首次,这是一个复杂的过程,目前还有很多问题有待系统的研究和解决。本文主要研究工作和贡献如下:
     1.研究了月壤中TiO2和FeO的含量、月壤的密度、介电常数分布,以及月球表面粗糙度等多种因素对月球表面亮度温度的影响,为建立月壤中合理的微波辐射传输模型提供了依据。
     2.研究了月球表面及月壤中温度的分布。在所有影响微波辐射亮度温度的月壤参数中,温度的变化对亮温的变化起主导作用。研究月壤中温度的分布在建立微波辐射传输模型和反演月壤厚度的过程中都至关重要。本文在前人研究的基础上,建立了一维变系数月球表层热传递模型,模拟了月球表面及月壤中温度随时间、月壤深度以及地理位置的变化,并全面分析了各种热物理参数对计算结果的影响,为本文建立月壤的微波传输模型并模拟CE-1号上MRM获得的月表亮温数据提供了依据。
     3.根据上述研究结果,按照月壤的密度,介电常数及温度随月壤深度的变化,提出了一种非均匀多层的月壤微波辐射传输模型,并分别应用起伏逸散定理和非相关法推导了非均匀多层媒质表面微波辐射亮温与媒质厚度、温度等参数之间的关系,经过比较和化简后得出了统一的亮温计算公式。然后,模拟了CE-1卫星所携带的微波辐射计各频率通道所接收到的月球表面微波辐射亮温随月壤厚度、温度、纬度等变化的规律。与简单分层的模型相比,本文模型能够更加准确地反映亮温与月壤厚度之间的关系,并且模型具有合理性和稳定性。
     4.研究了CE-1上微波辐射计所获得的2C级亮温数据的处理方法。提出一种基于支持向量机(SVM)和粒子群优化算法的2C级亮温数据回归分析方法,获得了4个频率的微波辐射亮温在月表特定时刻的全球分布,为快速反演月壤厚度分布提供了基础。同时,回归结果也为修正具有明显误差的2C级亮温数据提供了参考。
     5.根据本文非均匀多层微波辐射传输模型提出了相应的月壤厚度反演方法,并利用3GHz亮温数据反演出了全月球表面月壤厚度的分布。分析表明,本文月壤厚度反演结果具有较高的精度。而且发现月球南北极存在少数极“冷”点,这些地点因为亮温明显小于同纬度平均亮温值而没能反演出月壤厚度。但这些极“冷”点的存在,为研究这些地点是否存在水冰提供了假设前提。
     6.本文提出利用SVM方法反演月壤厚度。根据纬度、月壤中TiO2+FeO含量、采样时间和月壤厚度一定时各频率通道测得的月球表面亮温之间的关系来训练月壤厚度预测模型。然后利用4个频率的亮温数据和相应的采样信息反演出月壤厚度分布。结果表明,利用SVM方法对月壤厚度的反演结果和利用非均匀多层微波辐射传输模型反演的月壤厚度结果相近,说明基于SVM的月壤厚度反演方法是可行的。
Lunar regolith layer contains a large number of important materials and energy information of theMoon and solar system. During the billions of year’s formation and evolution process, lunarregolith not only records the origin and evolution history of the Earth-Moon system, the impacts ofmeteorites and micro-meteorite on the Moon, the bombardments of solar wind and cosmic ray tothe Moon, but reflects the composition and distribution of the lunar material. Plenty of scientificinformation can be obtained by the systematic study of lunar regolith. Study on the thickness of thelunar regolith has very important significance for the future lunar exploration, such as the mannedlanding on the Moon, the lunar base site selection, the exploitation and the further utilization oflunar resources. In the previous lunar exploration activities, the thickness of lunar regolith is allalong concerned by scientists. One of the scientific objectives of China's first lunar probe "Chang-e1"(CE-1) is to investigate the distribution of the lunar regolith thickness and then to estimate thecontent of3He resource on the Moon by using the microwave brightness temperature data of thelunar surface which were acquired by the carried microwave radiometer. It is the first time usingthe passive microwave remote method on lunar orbit to explore the lunar regolith thickness.The microwave brightness temperature of lunar surface contains plenty information on the Moonand the outer space. It directly reflects the physical and chemical properties of the lunar surfacematerial, including the chemical composition, the density, the dielectric properties, the thicknessof lunar regolith, and the temperature of lunar surface layer. It is the first time that the microwavebrightness temperature data obtained from the lunar orbit are used to inverse the lunar regolith. It isa complex process. There are some remained theoretical problems to be systematically solved. Themain research work and contributions of this paper are shown as follows:
     1. The influence of various factors on the lunar surface microwave brightness temperature such asthe content of FeO and TiO2in lunar regolith, the density and dielectric permittivity distributionof lunar regolith, and the roughness of the lunar surface are studied, resulting in a basis for thefurther establishment of a reasonable microwave radiative transfer model in lunar regolith.
     2. The temperature distributions of lunar surface and regolith are studied. In all lunar regolithparameters influencing the microwave brightness temperature, the change of temperature playsa dominant role. Study on temperature distribution in the lunar regolith is very important in theboth processes to establish microwave radiation transfer model and to inverse thickness of lunar regolith. On the basis of previous studies, the establishment of a one-dimensional heattransfer model with variable coefficient for lunar surface layer, the simulation of thetemperature variations of lunar surface and regolith with time, lunar regolith depth, andlocation, and then, comprehensive analysis of the influence of all kinds of thermal physicalparameters on calculated results were carried out in the paper, providing the prerequisite toestablish a reasonable lunar regolith microwave radiative transfer model and to simulate thelunar surface brightness temperature obtained by the microwave radio meter on CE-1satellite.
     3. Based on the above research results and the variations of density, dielectric permittivity, andtemperature with lunar regolith depth, an inhomogeneous multilayer model is presented.Furthermore, the function relationship between the microwave brightness temperature ofinhomogeneous multi-layered medium surface and the medium thickness, temperature, andother parameters is deduced respectively by applying the fluctuation dissipation theory andnon-coherent method. A uniform formula for calculating the brightness temperature is obtained bycomparing and simplifying process. The changes of lunar surface microwave brightnesstemperatures with time, location and thickness of lunar regolith obtained from four frequencychannels of the microwave radiometer on CE-1satellite are simulated. Compared to the simplylayered model in the literature, the model presented in this paper can more accurately reflectthe relationship between brightness temperature and the thickness of lunar depth. Finally, thestability of this inhomogeneous multilayer model is testified by simulating results based on afine layered model with407layers.
     4. The data processing method for the2C-level brightness temperature data obtained by themicrowave radio meter on CE-1is studied. A regression and analysis method for the2C-levelbrightness temperature data which is based on Support Vector Machine (SVM) and ParticleSwarm Optimization (PSO) is presented. Then, the distribution of microwave brightnesstemperatures from four frequency channels (3GHz,7.8GHz,19.35GHz,37GHz) on full lunarsurface on specific moments of a lunar day is obtained by using this method. This workprovides the foundation for quick inversion of lunar regolith thickness. Meanwhile, theregression results can also be used as useful references to correct obvious errors in2C levelbrightness temperature data.
     5. According to the inhomogeneous multi-layer microwave radiative transfer model presented inthis paper, the corresponding inversion method for lunar regolith thickness is put forward, andthen, the full lunar surface regolith thickness distribution is inversed by using the brightness temperature data obtained from3GHz frequency channel. The analysis indicates that thereversion results presented in this paper display the higher accuracy. Additionally the resultsalso indicate that there are a few very "cold sites" lay on the north and south poles of the moon.The lunar regolith thickness of these sites is not inversed because the brightness temperaturesat these sites are significantly smaller than that at the same latitude area. However, thefinding of these very "cold sites" provides the assumptions precondition for the further studieson the existence of water ice at these sites.
     6. The SVM method inversing of lunar regolith layer thickness is tried firstly in this paper.According to the relationship between the TiO2+FeO content of lunar regolith, lunar latitude,sampling time, and the lunar surface brightness temperature obtained at certain time from fourfrequency channels, the predictive models for lunar regolith thickness has been trained. Then,by using the brightness temperature data obtained from four frequency channels and thecorresponding sample information, the distribution of lunar regolith thickness on the full moonsurface is inversed. The results show that the preliminary results of the inversion of lunarregolith layer thickness based on the SVM method is closed to the inversion result based on theinhomogeneous multi-layer model. It indicts that the method for lunar regolith inversion basedon SVM method is feasible.
引文
[1]欧阳自远.月球科学概论[M].北京:中国宇航出版社,2005.
    [2]尹占娥.现代遥感导论[M].北京:科学出版社,2008.
    [3] Dicke R H, Beringer R. Microwave radiation from the sun and the moon [J]. Astrophysical Journal,1946,103(3):375-376.
    [4] Piddington J H, Minnett H C. Microwave thermal radiation from the moon [J]. Australian Journal ofScientific Research A,1949,2:63.
    [5] Troitskii V S. To the theory of the moon radio emission [J]. Astronomicheskij Zhurnal,1965,(42):511-521.
    [6] Troitskii V S, Tikhonova T V. Thermal radiation from the moon and the physical properties of itsupper mantle [J]. Radiofizika,1970,(13):1273-1311.
    [7] Baldwin J E. Thermal radiation from the moon and the heat flow through the lunar surface [J].Monthly Notices Royal Astronomical Society,1961,(122):513-522.
    [8] Low F J, Davidson A W. Lunar observation at wavelength of1mm [J]. Astronomical Journal,1965,142:1278-1281.
    [9] Salisbury W W, Fernald D L. Subsurface temperature of the moon [J]. Journal of AstronauticalScience,1971,18:236-243.
    [10] Hagfors T. Remote probing of the moon by infrared and microwave emissions and by radar [J]. RadioScience,1970,5(2):189-227.
    [11] Keihm S J, Langseth M G. Microwave emissions spectrum of the Moon: Mean global heat flow andaverage depth of the regolith [J]. Science,1975,187(4171):64-66.
    [12] Keihm S J, Langseth M G. Lunar microwave brightness temperature observations reevaluated in thelight of Apollo program finding [J]. Icarus,1975,24(2):211-230.
    [13] Gray B L, Keihm S J. Interpretation of ground-based microwave measurements of the moon using adetailed regolith properties model [C]. The9th lunar science conference, New York,1978:2855-2900.
    [14] Keihm S J, Gray B L. Comparison of the theoretical and observed3.55cm wavelength brightnesstemperature maps of the full mom [J]. Earth Sciences,1979,3:2311-2319.
    [15] Keihm S J, Cutts J A. Vertical-structure effects on planetary microwave brightness temperaturemeasurement: Applications to the lunar regolith [J]. Icarus,1981,48(2):201-299.
    [16] Lynn V L, sohigian M D, Crocker E A. Radar observations of the moon at8.6mm wavelength [J].Journal of Geophysical. Research,1964,69(4):781-783.
    [17] Davies J R, Rohlfs D C. Lunar radio reflection properties at decameter wavelengths [J]. Journal ofGeophysical. Research,1964,69(15):3257-3262.
    [18] Zisk S H, Pettengill G H, Catuna G W. High-resolution radar maps of the lunar surface at3.8cmwavelength [J]. Moon,1974,10:17-50.
    [19] Thompson T W. High-resolution lunar radar map at7.5m wavelength [J]. Icarus,1978,36(2):174-188.
    [20] Thompson T W. High-resolution lunar radar map at70cm wavelength [J]. Earth Moon and Planetary,1987,37(1):59-70.
    [21] Pettengill G H, Thompson T W. A radar study of the lunar carter Tycho at3.8cm and70cmwavelengths [J]. Icarus,1968,8(1-3):457-471.
    [22] Pettengill G H, Zisk S H, Thompson T W. The mapping of lunar radar scattering characteristics [J].Earth, Moon, and Planets,1974,10(1):3-16.
    [23] Thompson T W, Dyce R B. Mapping of lunar radar reflectivity at70centimeters [J]. Journal ofGeophysical. Research,1966,71(20):4843-4853.
    [24] Thompson T W. Atlas of lunar radar maps at70cm wavelength [J]. Moon,1974,(10):87-117.
    [25] Thompson T W, Masursky W H, Shorthill R W, Tyler G L.Zisk S H. A comparison of infrared,radarand geologic mapping of lunar craters [J]. Moon,1974,10(1):87-117.
    [26] Campbell B A, Hawke B R, Thompson T W. Regolith composition and structure in the lunarmaria: Result of long-wavelength radar studies [J]. Journal of Geophysical. Research,1997,102(E8):19307-19320.
    [27] Bondarenko N V, Shkuratov Y G. A map of regolith layer thickness for the visible lunar hemispherefrom radar and optical data [J]. Solar System Research,1998,32:264-271.
    [28] Shkuratov Y G, Bondarenko N V. Regolith Layer Thickness Mapping of the Moon by Radar andOptical Data [J]. Icarus,2001,149(2):329-338.
    [29] Hagfors T. Backscattering from an undulating surface with application to radar returns from the moon[J]. Journal of Geophysical Research,1964,69(18):3779-3784.
    [30]Hagfors T, Brckelman R A, Daforth H H, Hanson L D, Hyde G M. Tenuous surface layer on the moon:evidence derived from radar observation [J]. Science,1965,150(3700):1153-1156.
    [31] Hagfors T. A study of the depolarization of lunar radar echoes [J]. Radio Science,1967,2(5):1967.
    [32] Shepard M K, Campbell B A. Radar scattering from a self-affine fractal surface: near-nadir regime [J].Icarus,1999,141(1):156-171.
    [33] Shepard M K, Campbell B A, Bulmer M H, Farr T G, Gaddis L R.Plaut J J. The roughness of naturalterrain: A planetary and remote sensing perspective [J]. Journal of Geophysical. Research,2001,106(E12):32,777-732,795.
    [34] Simpson R A, Radar scattering laws and wavelength dependence of the lunar surface1978.
    [35] Simpson R A, Tyler G L. Radar scattering laws for lunar surface for lunar [J]. IEEE transactions onantennas and propagation,1982, AP-30(3):438-449.
    [36] Stacy N J S, Campbell D B, Ford P G. Arecibo Radar mapping of the lunar poles: A search for icedeposits [J]. Science,1997,276(5318):1527-1530.
    [37] Campbell B A, Campbell D B, Margot J L, Ghent R R, Nolan M, Chandler J F, Carter L M.Stacy N JS. Focused70-cm radar mapping of the Moon [J]. IEEE transactions on geosciences remote sensing,2007,45(12):4032-4042.
    [38] Stacy N J S. High-Resolution synthetic aperture radar observations of the moon, PH.D [D]. CornellUniversity,1993.
    [39] Campbell B A, Carter L M, Campbell D B, Michael N, Chandler J, Ghente R R, Hawkef B R,Andersona R F.Wellsb K. Earth-based12.6-cm wavelength radar mapping of the Moon: New views ofimpact melt distribution and mare physical properties [J]. Icarus,2010,208(2):565-573.
    [40] Phillips R J, Adams G F, Brown W E, Eggleton R E, Jackson P, Jordan R, Linlor W I, Peeples W J,Porcello L J.Ryu J, Apollo lunar sounder experiment [R]. NASA Technical report.1973.
    [41] Phillips R J, Adams G F, Brown W E, Eggleton R E, Jackson P.Jordan R. Preliminary results of theApollo Lunar Sounder Experiment [J]. Abstracts of the Lunar and Planetary Science Conference,1973,4:590.
    [42] Porcello L J, Zelenka J S, Adams G F, Jackson P L, Jordan R L, Phillips R J, Brown W E.Ward S H.The Apollo Lunar Sounder radar system [J]. Proceedings of the IEEE,1974,62(6):769-783.
    [43] Nozette S, Lichtenberg C L, Spudis P, Bonner R, Ort W, Malaret E, Robinson M.Shoemaker E M. TheClementine bistatic radar experiment [J]. Science,1996,274(5292):1495-1498.
    [44] Ono T, Kumamoto A, Nakagawa H, Yamaguchi Y, Oshigami S, Yamaji A, Kobayashi T, KasaharaY.Oya H. Lunar Radar Sounder Observations of Subsurface Layers Under the Nearside Maria of theMoon [J]. Space Science Reviews,2009,154(1-4):145-192.
    [45] Ono T, Kumamoto A, Kasahara Y, Yamaguchi Y, Yamaji A, Kobayashi T, Oshigami S, Nakagawa H,Goto Y, Hashimoto K, Omura Y, Imachi T.Matsumoto H. The Lunar Radar Sounder (LRS) onboardthe KAGUYA (SELENE) spacecraft [J]. Space Science Reviews,2010,154(1-4):145-192.
    [46] McAdam M M, Cahill J T S, Patterson W, Aldridge T, Bussey D B J, Turtle E P, Thomson B J, NeishC D.Mini-RF Team. Mini-RF global radar observations of the moon [C].42nd Lunar and PlanetaryScience Conference, the Woodlands, Texas, USA,2011.
    [47] Cahill J T S, Patterson G W, Turtle E P, Bussey D B J.Mini-RF Team. An analysis of oriental basin:integration of Mini-RF radar and optical mapping products [C].42nd Lunar and Planetary ScienceConference, Woodlands, Texas, USA,2011.
    [48]姜景山,王振占,李芸.嫦娥1号微波探月技术机理和应用研究[J].中国工程科学,2010,10(6):16-22.
    [49]月球探测工程中心. CE-1卫星科学探测数据应用与研究的初步设想[M].北京:中国科学院,2008.
    [50] Sun H X, Dai S W.Yang J F. Scientific objectives and payloads of Chang’e-1lunar satellite [J].Journal of Earth System Science,2005,114(6):789-794.
    [51]王振占,李芸,张晓辉,姜景山,胥传东,张德海,郭伟.“嫦娥一号”卫星微波探测仪数据处理模型和月表微波亮温反演方法[J].中国科学D辑:地球科学,2009,39(8):1029-1044.
    [52] Heiken G H, Vaniman D T.French B M. Lunar Source Book: A User’s Guide to the Moon [M].London: Cambridge University Press,1991.
    [53]李雄耀,王世杰.月壤厚度的研究方法与进展[J].矿物学报,2007,27(1):64-68.
    [54] Nakamura Y, Dorman J, Duennebier F, Lammlein D.Lathan G. Shallow lunar structure determinedfrom the passive seismic experiment [J]. The Moon,1975,(13):3-15.
    [55] Cooper M R, Kovach R L, Watkins J S. Lunar near surface structure [J]. Review of Geophysics andSpace Physics,1974,(12):291-308.
    [56] Duenneber F K, Watkins J S, Kovach R L. Results from the lunar surface profiling experiment [J].Abstracts of the Lunar and Planetary Science Conference,1974:5-183.
    [57] Gary L, Maurice E, James D. Moonquake and lunar tectonism [J]. Earth, Moon, and Planets,1972,4(3-4):373-382.
    [58] Kovach R L, Watkins J S, Talwani P. Lunar seismic profiling experiment, In Apollo17Prelim [J]. SciRept,1973,(NASA SP-330):10.
    [59] Strangway D. Geophysics and Lunar Resources, In: Lunar Bases and Space Activities of the21stCentury [M]. Houston, T X: Lunar and Planetary Institute,1985.
    [60] Strangway D, Pearce G, Olhoeft G. Magnetic and dielectric properties of lunar samples, In NASASpecial Publication [M]. Washington NASA,1977.
    [61] Kopal Z. On the depth of the lunar regolith.[J]. Earth, Moon, and Planets,1970,1(4):451-461.
    [62] Rennilson J J, Dragg J L, Morris E C, Shoemaker E M, Turkevich A. Lunar surface topography [J].Surveyor I mission report, part II: Scientific data and results, NASA J PL Technical Report,1966,(32-1023):7-44.
    [63] Shoemaker E M, Morris, E C. Thickness of the regolith. Surveyor: Program results [J]. NASA SpecialPaper,1969,(184):96-98.
    [64] Shoemaker E M, Batson R M, Holt H E, Morris E C, Rennilson J J, Whitaker E A. Observations ofthe lunar regolith and the Earth from the television camera on Surveyor7[J]. Journal of Geophysical.Research,1969,(74):6081-6119.
    [65] Soderblom L A. A model for small-impact erosion applied to the lunar surface [J]. Journal ofGeophysical. Research,1970,(75):2655-2661.
    [66] Quaide W L. Oberbeck V R. Thickness determinations of the lunar surface layer from lunar impactcraters [J]. Journal of Geophysical. Research,1968,(73):5247-5270.
    [67] Oberbeck V R. Quaide W L. Genetic implication of lunar regolith thickness variations [J]. Icarus,1968,(9):446-465.
    [68] Oberbeck V R, Quaide W L, Mahan M, Paulson J. Monte Carlo calculations of lunar regoliththickness distributions [J]. Icarus,1973,(19):87-107.
    [69] Florensky K P, Basilevsky A T, Pronin A A.Popova Z V, Prevoious Results of PanoramaGeomorphologic Study [R]. Peredvizgnaya Laboratory on the Moon, Lunochod1,1971.
    [70] Basilevsky A T. The estimation of lunar regolith thickness and reworking degree by crater distribution[J]. Kosmicheskie Issledovaniya,1974,(12):606-609.
    [71] Florensky K P. Basilevsky A T. The Processes of Surface Reworking at Le Monner on Results ofDetailed Study by Lunochod2[R]. Tektonika I Strukturnaya Geologiya,1976.
    [72] Willcox B B. Robinson M S. Thomas P C, Hawke B R. Constraints on the depth and variability of thelunar regolith [J]. Meteoritics&Planetary Science,2005,(40):695-710.
    [73] Bondarenko N V. Yu. G. Shkuratov. On the relation between radar and optical characteristics of theMoon [J]. Solar System Research,1997,31(2):117-127.
    [74] Wu J, Li D H, Zhang X H, Jiang J S. Microwave brightness temperature imaging and dielectricproperties of lunar soil [J]. Journal of Earth System Science,2005,114(6):627-632.
    [75]法文哲,金亚秋.月球表面多通道辐射亮度温度的模拟与月壤厚度的反演[J].自然科学进展,2006,16(1):86-94.
    [76]金亚秋,法文哲,徐丰.月球表面微波主被动遥感的建模模拟与反演[J].遥感技术与应用,2007,22(2):129-135.
    [77] Fa W Z.Jin Y Q. Simulation of brightness temperature from lunar surface and inversion ofregolith-layer thickness [J]. Journal of Geophysical. Research,2007,112(E5003).
    [78]法文哲.月球微波遥感的理论建模与参数反演,博士[D].上海:复旦大学,2008.
    [79] Fa W Z, Jin Y Q. A primary analysis of microwave brightness temperature of lunar surface fromChang-E1multi-channel radiometer observation and inversion of regolith layer thickness [J]. Icarus,2010,207(2):605-615.
    [80]蓝爱兰,张升伟.利用微波辐射及对月壤厚度进行研究[J].遥感技术与应用,2004,19(3):154-158.
    [81]蓝爱兰.月球表层媒质的被动遥感机理及厚度反演研究,硕士[D].北京:中国科学院,2005.
    [82]孟治国.月壤参数的辐射传输模拟与查找反演技术研究,博士[D].吉林:吉林大学,2008.
    [83] Fung A K, Bredow J.Tjuatja A, Emission from Lunar Regolith2006.
    [84] Wang Z Z, Li Y. A microwave radiative transfer model applied to lunar soil remote sensing [C]. The6th International Conference on Electromagnetic Field Problems and Applications (ICEF2008),Chongqing, China,2008.
    [85] Wang Z Z, Li y. Microwave Transfer Models and Brightness temperature simulations of MWS forRemote Sensing Lunar Surface on CE-1Satellite [C]. ICMMT2008Proceedings, Nanjing, China,2008.
    [86]王振占,李芸,姜景山,李涤徽.用“嫦娥一号”卫星微波探测仪亮温反演月壤厚度和3He资源量评估的方法及初步结果分析[J].中国科学D辑:地球科学,2009,39(8):1069-1084.
    [87] Chan K L, Tsang K T, Kong B, Zheng Y-C. Lunar regolith thermal behavior revealed by Chang'E-1microwave brightness temperature data [J]. Earth and Planetary Science Letters,295(1-2):287-291.
    [88] Fa W Z, Jin Y Q. Analysis of microwave brightness temperature of lunar surface and inversion ofregolith layer thickness: Primary results of Chang-E1multi-channel radiometer observation [J].Science China-Information Sciences,2010,53(1):168-181.
    [89] Vapnik V. The Nature of Statistical Learning Theory [M]. New York: Springer,1995.
    [90] Vapnik V. Statistical Learning Theory [M]. New York: Wiley,1998.
    [91] Kennedy J. Eberhart R. Particle swarm optimization.[C]. Perth, Australia,1995,4:1942-1948.
    [92] NASA.(2003, Astronaut setting up scientific experiment package on the Moon. Available:http://nssdc.gsfc.nasa.gov/imgcat/html/object_page/a14_h_40_5949.html
    [93] NASA.(2003, Surface picture of astronaut, rover and rim of Hadley Rille on the moon Available:http://nssdc.gsfc.nasa.gov/imgcat/html/object_page/a15_h_85_11451.html
    [94] Basu A, Riegsecke S. Reliability of calculating average soil composition of Apollo landing sites [C].Workshop of New Views of the Moon, Houston, Texas,1998.
    [95] Charette M P, McCord T B, Pieters C, Adams J B. Application of remotes spectral reflectancemeasurements to lunar geology classification and determination of titanium content of lunar soils [J].Journal of Geophysical. Research,1974,(79):1605-1613.
    [96] Pieters C M. Mare basalt types on the front side of the Moon: A summary of spectral reflectance data
    [C]. Lunar planet, Sci Conf.,9th, New York,1978:2825-2849.
    [97] Pieters C M, Englert P. Compositional diversity and stratigraphy of the lunar crust derived fromreflectance spectroscopy, in Geochemical Analysis [M]. New York: Cambridge Univ. Press,1993.
    [98] Johnson J R, Larson S M, and R B Singer. A reevaluation of spectral rations for lunar mare TiO2mapping [J]. Geophysical Research Letters,18(11),2153-2156,1991.
    [99] Melendrez D E, Johnson J R, Larson S M.Singer R B. Remote sensing of potential lunar resource,2,High spatial resolution mapping of spectral reflectance ratios and implications for nearside mare TiO2content [J]. Journal of Geophysical. Research,1994,(99):5601-5619.
    [100] Charette M P, Taylor S R, Adamsa J B, McCord T B. The detection of soils of Fra Mauro basalt andanorthositic gabbro composition in the lunar highlands by remote spectral reflectance techniques [C].Lunar Science Conference,8th, Houston, Texas,1977:1049-1061.
    [101] Hapke B, Daniels G E, Klaasena K, WilsonP L. Photometric observations of Mercury from Mariner[J]. Journal of Geophysical. Research,1975,80(17):2431-2443.
    [102] Rava B, Hapke B. An analysis of the Mariner10color ratio map of Mercury [J]. Icarus,1987,(71):397-429.
    [103] Fischer E M, Pieters C M. Lunar surface aluminum and iron concentration from Galileo solide stateimaging data, and the mixing of mare and highland materials.[J]. Journal of Geophysical. Research,1995,(100):23279-23290.
    [104] Lucey P G, Taylor G J. Malaret E. Abundance and distribution of iron on the Moon [J]. Science,1995,(268):1150-1153.
    [105] Lucey P G, Blewett D T, Hawke B R. Mapping the FeO and TiO2content of the lunar surface withmultispectral imagery [J]. Journal of Geophysical. Research,1998,103(E2):36791-33699.
    [106] Lucey P G, Blewett D T, Jolliff B L. Lunar iron and titanium abundance algorithms based on finalprocessing of Clementine ultraviolet-visible images [J]. Journal of Geophysical. Research,2000,(105):20297-20305.
    [107] Lawrence D J, Feldman W C, Elpjic R C, et al. Iron abundance on the lunar surface as measured bythe lunar prospector gamma-ray and neutron spectrometers [J]. Journal of Geophysical. Research,2002,107(E12):5130-5156.
    [108] Wilcox B B, Lucey P G, Gillis J J. Mapping iron in the lunar mare: An improved approach [J].Journal of Geophysical. Research,2005,110(E11001).
    [109] Shkuratov Y G, Kaydash V G, Opanasenko N V. Iron and titanium abundance and maturity degreedistribution on the lunar nearside [J]. Icarus,1999,(137):235-246.
    [110] Prettyman T H, Feldman W C, Lawrence D J, et al. Library least squares analysis of LunarProspector gamma ray spectra [C].33rd Annual Lunar and Planetary Science Conference, Houston,2002.
    [111] Mitchell J K, Houston W N, Carrier W N I, Costes N C. Apollo soil mechanics experiment S-200.
    [R]. Final report,NASA Contract NAS9-11266, Space Sciences Laboratory Series15, Issue7.University of California, Berkeley1974.
    [112] Carrier W, Olhoeft G, Mendell W. Physical properties of the lunar surface. In The Lunar Sourcebook:A User’s Guide to the Moon (Heiken G H, Vaniman D T, French B M, etal.)[M]. New York:Cambridge Univ. Press,1991.
    [113] Olhoeft G R, Strangway D W, Frisillo A L. Lunar sample electrical properties [C]. Proceedings ofLunar science conference,4th,1973:3133-3149.
    [114] Olhoeft G R, Strangway D W. Dielectric Properties of the First100Meters of the Moon [J]. Earthand Planetary Science Letters,1975,(24):394-404.
    [115] F. T.乌拉比,R. K.穆尔,冯建超.微波遥感第一卷微波遥感基础和辐射测量学[M].北京:科学出版社,1988.
    [116] Campbell B A, Garvin J B. Lava flow topographic measurements for radar data interpretation [J].Geophys. Res. Lett.,1993,20(9):831-834.
    [117] Kari L, Hannu K. Roughness of the Lunar soil [J]. Earth, Moon and Planets,1984,(33):19-29.
    [118] Evans J V, Pettengill G H. The Scattering Behavior of the Moon at Wavelengths of3.6,68, and784Centimeters [J]. Journal of Geophysical. Research,1963,68(2):423-447.
    [119] Hagfors T. Remote Probing of the Moon by Infrared and Microwave Emissions and by Radar [J].Radio Science,1970,5(2):189–227.
    [120] Langseth M G, Clark S P, Chute J L, Keihm S J.Wechsler A E, Heat-flow experiment [R]. In Apollo15Preliminary Science Report. NASA SP-289,1Nov-11Nov1972.
    [121] Keihm S J, Langseth M G. Surface brightness temperature at the Apollo17heat flow site: Thermalconductivity of the upper15cm of regolith [C]. The Fourth Lunar Science Conference, Houston,USA,1973.
    [122] Pettit E, NIcholson S B. Lunar radiation and temperatures [J]. Astrophysical Journal,1930,71(1):102-135.
    [123] Racca. Moon surface thermal characteristics for moon orbiting spacecraft thermal analysis [J].Planetary and Space Science,1995,43(6):835-842.
    [124] Lawson S L, Jakosky B M, et al. Brightness temperatures of the lunar surface: Calibration and globalanalysis of the Clementine long-wave infrared camera data [J]. Journal of Geophysical. Research,2000,105(E2):4273-4290.
    [125] Little R C, Feldman W C, Maurice S. et al. Latitude variation of the subsurface lunar temperature:Lunar Prospector thermal neutrons [J]. Journal of Geophysical. Research,2003,108(E5):5046.
    [126] Wesselink A J. Heat conductivity and nature of the lunar surface material [J]. Bulletin of theAstronomical Institutes of the Netherlands,1948,(10):351-363.
    [127] Jaeger J C. The Surface Temperature of the Moon [J]. Australian Journal of Physics,1953,(6):10-21.
    [128] Jones W P, Watkins J R.Calvert T A. Temperatures and thermo physical properties of the lunaroutermost layer [J]. The Moon,1975,(13):475-494.
    [129] Cremers C J. Lunar surface temperatures from Apollo12[J]. Physics and Astronomy,1971,3(3):346-351.
    [130] Cremers C J, Birkebak R C, White J E. Lunar Surface Temperatures at Tranquillity Base [J].AIAA Journal,1971,9(10):1899-1903.
    [131] Vasavada A R. Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar IceDeposits [J]. Icarus,1999,141(2):179-193.
    [132] Mitchell D L, Pater I D. Microwave imaging of Mercury’s thermal emission at wavelengths from0.3to20.5cm [J]. Icarus,1994,110(1):2-32.
    [133] Hapke B W. A model of radiative and conductive energy transport in planetary regoliths [J]. Journalof Geophysical. Research,1996,101(E7):16,817-816,832.
    [134] Hale A S, Hapke B W. A Time-Dependent Model of Radiative and Conductive Thermal EnergyTransport in Planetary Regoliths with Applications to the Moon and Mercury [J]. Icarus,2002,156(2):318-334.
    [135]徐向华,梁新刚,任建勋.月球表面热环境数值分析[J].宇航学报,2006,27(2):153-156.
    [136]成珂,张鹤飞.月球表面温度的数值模拟[J].宇航学报,2007,28(5):1376-1380.
    [137] Hemingway B S, Robie R A. Wilson W H. specific heats of lunar soils, basalt, and breccias from theApollo14,15,and16landing sites, between90and350K [C]. The Fourth Lunar Science Conference,Houston, USA,1973.
    [138]法文哲,金亚秋.三层月壤模型的多通道微波辐射模拟与月壤厚度的反演[J].空间科学学报,2007,27(1):55-65.
    [139]金亚秋.电磁散射和热辐射的遥感理论[M].北京:科学出版社,1998.
    [140] Zheng Y C, Bian W, Su Y, Feng J Q, Zhang X Z, Liu J Z.Zou Y L. Brightness temperaturedistribution of the Moon: result from Chinese Chang'E-1lunar orbiter [C].19th V.M. GoldschmidtConference., Davos, Switzerland,2009.
    [141]月球探测工程中心.绕月探测工程科学应用专家委员会工作参考材料[M].北京:中国科学院探月工程应用系统总体部,2008.
    [142]郗晓宁,王威,高玉东.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003.
    [143] Zhou M X, Zhou J J.F. W. Analysis and simulation of microwave brightness temperature on lunarsurface [C]. The60th International Astronautical Congress, Daejeon, South Korea,2009.
    [144]邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学出版社,2006.
    [145]杜树新,吴铁军.用于回归估计的支持向量机方法[J].自动化学报,2003,15(11):1580-1663.
    [146]Huang X X, Shi F H, Gu W. SVM-based fuzzy rules acquisition system for pulsed GTAW process [J].Engineering Applications of Artificial Intelligence,2009,22:1245-1255.
    [147] Chang C C, Lin C J.(2010, LIBSVM--A Library for Support Vector Machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Available:
    [148] Fei S W, Wang M J, Miao Y b, Jun T.Cheng L L. Particle swarm optimization-based support vectormachine for forecasting dissolved gases content in power transformer oil [J]. Conversion andManagement,2009,50:1604-1609.
    [149] Pedrycz W, Park B J, Pizzi N J. Identifying core sets of discriminatory features using particle swarmoptimization [J]. Expert Systems with Applications,2009,36:4610-4616.
    [150] U.S. Geological Survey.(2009, Clementine750nm Mosaics Warped to ULCN2005. http://webgis.wr.usgs.gov/pigwad/down/moon_warp_clementine_750nm_b2.htm. Available: http://webgis.wr.usgs.gov/pigwad/down/moon_warp_clementine_750nm_b2.htm
    [151]张卫国,姜景山,刘和光,张晓辉,张德海,李涤辉,胥传东.月球南极的微波辐射分布与异常[J].中国科学D辑:地球科学,2009,39(8):1059-1068.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700