金属/聚氨酯红外低发射率复合涂层界面改性及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着红外探测设备和红外制导武器的迅速发展,红外低发射率涂层(IRLEC)已经成为十分关注的话题,特别是由铜(Cu)填料和聚氨酯(PU)组成的金属/PU复合涂层在IRLEC领域有应用的潜力。然而,Cu/PU涂层较差的耐腐蚀性和力学性能是限制其应用的主要原因。在本文中,我们研究了界面改性对低发射率涂层腐蚀性能及力学性能的影响。并且,计算了IRLEC的寿命,为工程化提供可靠依据。
     用γ氨丙基三乙氧基硅烷(KH550)化学改性Cu粉表面提高Cu和PU高聚物之间的界面结合,得到了具有高耐腐蚀性能的红外低发射率Cu/PU涂层。由于KH550的加入使Cu和PU之间产生了明显的相互作用。一定合适的量的KH550有利于Cu的分散,在Cu和PU之间诱导产生了较强的化学界面结合,从而提高了Cu/PU涂层的耐腐蚀性能并且保持了较低的红外发射率,力学性能随着KH550的量增加而提高。
     用KH550和表面活性剂十六烷基三甲基溴化铵(CTAB)协同作用改性Cu粉表面,KH550使Cu和PU之间产生了明显的相互作用,暗示了KH550能够改善Cu和PU之间的化学界面结合,而CTAB只能促进Cu和PU之间的物理结合。一定合适的量的KH550和CTAB的协同作用改善了Cu和PU之间的界面结合,有利于Cu的分散和降低Cu/PU涂层的孔隙率,从而提高了Cu/PU涂层的耐腐蚀性能并且保持了较低的红外发射率。经协同改性后Cu/PU涂层的力学性能明显提高。
     采用球磨的方法用银(Ag)表面改性Cu,Ag均匀分布在Cu中,球磨后在Ag-Cu复合粉表面形成了油层,与有机相的相容性得到了改善,从而提高了涂层的耐腐蚀性能并且保持了较低的红外发射率。经过Ag表面改性后,球磨Ag-Cu/PU涂层的冲击强度保持不变,而球磨Ag@Cu/PU涂层的冲击强度比改性前较好。
     铝(Al)取代Cu将Cu/PU界面改性为Al/PU界面,由于电导率随着Al含量的增加而增加,涂层的红外发射率明显降低。Al含量和力学性能之间呈现“U”型曲线,Al/PU复合涂层在40wt.%Al含量时具有良好的附着力和冲击强度。Al氧化生成的Al2O3不会牺牲PU本身的耐腐蚀性能,并且低发射率复合涂层表现出良好的耐腐蚀性。
     青铜和环氧改性将Cu/PU界面改性为Cu-Sn/EPU界面,由于电导率随着青铜含量的增加而增加,涂层的红外发射率明显降低。青铜/EPU复合涂层在青铜含量低于50wt.%时具有良好的附着力和冲击强度,但是当青铜含量从50wt.%升高到60wt.%时涂层的力学性能下降。低发射率青铜/EPU复合涂层表现出良好的耐腐蚀性。通过比较青铜/EPU涂层、Cu/PU涂层、球磨Ag-Cu/PU涂层和Al/PU涂层,青铜含量为40wt.%的青铜/EPU涂层具有最佳的附着力、红外低发射率和良好的耐腐蚀性。
     采用微结构-电化学模型预测了红外低发射率复合涂层在盐雾环境中的寿命。IRLEC在3.5wt.%NaCl溶液中收集的电化学数据作为基于机理的腐蚀模型的输入,从而预测涂层的寿命。为了检测计算结果,模型预测与盐雾测试结果进行了比较。该模型能够预测IRLEC的盐雾寿命,但在短时间对寿命预测不足,长时间过高预测。预测不足可能与聚合物对金属颜料颗粒的腐蚀保护有关。在较长时间模型过高预测可能与孔隙率的影响没有包括在这个简单的模型内有关。
     IRLEC的力学性能随着加热温度的升高和时间的延长而下降,涂层的最高耐受温度为573K。采用Arrhenius关系计算了红外低发射率复合涂层在不同马赫数下冲击强度下降至某一水平的力学寿命。与观测数据相比,计算结果验证了模型预测的有效性。
     IRLEC的发射率随着加热温度的升高和时间的延长而升高,涂层失效时的发射率随着马赫数的减小而升高。采用Arrhenius关系计算了红外低发射率复合涂层的耐盐水腐蚀寿命。计算结果与耐盐水实验的观测数据对比,验证了模型预测的有效性。
     IRLEC的发射率随着耐湿热环境下加热温度的升高和时间的延长而升高。采用Arrhenius关系计算了红外低发射率复合涂层的耐湿热寿命。计算结果与湿热观测数据相比,验证了此模型预测的有效性。
With the rapid development of infrared detection devices and infrared-guided weapons, infraredlow emissivity coatings (IRLEC) have recently become a topic of considerable interest. Especially,the metal/polyurethane composite coatings composed of copper (Cu) filler and polyurethane (PU)have the potential for applications in IRLEC. However, the poor corrosion resistance and mechanicalproperties of Cu/PU coating are the major causes limiting its application. In the present work,experiments were carried out to assess the influence of interface modification on the corrosion andmechanical properties of low emissivity coating. Furthermore, the lifetime of the IRLEC wascalculated for engineering applications.
     Surface of Cu powder was chemically modified using gamma-aminopropyltriethoxy silane (KH550)in order to improve the interfacial interaction between Cu and PU polymer, and therefore, expectablecorrosion resistance of the Cu/PU coating with infrared low emissivity was acquired. An an obviousinteraction between Cu and PU was induced by the addition of KH550. Results have shown that theproper amount of KH550is benefit to the dispersion of Cu and induces the strong chemical interfacialinteraction, which often keeps the infrared low emissivity and increases the corrosion resistance of theCu/PU coating. Mechanical properties increase with increasing KH550content.
     Synergy effect of the surface modification of Cu by surfactant, cetyl trimethyl ammonium bromide(CTAB) and KH550was evaluated. An obvious interaction between Cu and PU was induced by theaddition of KH550, which implied that KH550can improve the chemical interfacial interaction whileCATB only improved the physical interaction between Cu and PU. The interfacial interaction betweenCu and PU was improved by the synergy effect of proper amount of KH550and CTAB, benefiting tothe dispersion of Cu and the low porosity of Cu/PU coating, which keeps the infrared low emissivityand increases the corrosion resistance of the Cu/PU coating. The mechanical properties of Cu/PUcoatings increase obviously after synergy effect of the surface modification.
     Surface modification of Cu with silver (Ag) using a ball-milling method evaluated was evaluated. Itwas found that Ag was homogeneously distributed in Cu and the encapsulation of oil layer on thesurface of Ag-Cu composite powders was formed after ball-milling, therefore, compatibility withorganic phase was improved, which often keeps the infrared low emissivity and enhances theanti-corrosion performance of the coating. After surface modification with Ag, the impact strength of(ball-milled Ag-Cu)/PU coatings keeps unchanged, and the impact strength of (ball-milledAg@Cu)/PU coatings is better.
     Modification of Cu/PU interface with aluminum (Al) to Al/PU interface was evaluated. Due toincreasing the electrical conductivity with increasing Al content, the infrared emissivity is deceasingobviously. The relationship between the Al content and mechanical properties presents a “U” type, andAl/PU composite coating has good adherence and impact strength at Al content of40wt.%. Corrosiontest results showed that the Al2O3from Al oxidation do not sacrifice the corrosion resistance of PUitself, and the low emissivity composite coatings exhibited favorable corrosion resistance.
     Modification of Cu/PU interface with bronze and epoxy to Cu-Sn/epoxy-polyurethane (EPU)interface was evaluated. Due to increasing the electrical conductivity with increasing bronze content,the infrared emissivity is decreasing obviously. The bronze/EPU composite coating had good adherenceand impact strength at bronze content below50wt.%, and then mechanical properties decreased in thebronze content range from50wt.%to60wt.%. The low emissivity bronze/EPU composite coatingsexhibited favorable corrosion resistance. By comparing bronze/EPU, Cu/PU,(ball-milled Ag-Cu)/PUand Al/PU coatings, the bronze/EPU coatings with40wt.%bronze have the best adherence, infraredlow emissivity and good corrosion resistance.
     The microstructural-electrochemical model is employed to predict the lifetime of infrared lowemissivity composite coatings in chloride environments. Electrochemical data collected in3.5wt.%NaCl solution is presented for the IRLEC, and these values are used as inputs for a mechanistic-basedcorrosion model which yields the salt spray life of the coating. To check the calculated results, themodel predictions were compared with the results of salt spray tests. The current work showed thatthe model was able to predict lifetime of IRLEC under salt spray, but tended to under-predict lifetimeat short times and over-predict at long times. Under-prediction may be associated with corrosionprotection of metallic pigment particles by polymer. Over-prediction by the model at longer exposuretimes may be associated with the fact that an influence of porosity is not included as a part of thissimple model.
     The mechanical properties of IRLEC decreased with increasing heating temperature and time, andthe maximum-tolerance temperature of the coating was573K. Moreover, the Arrhenius relationshipwas employed to calculate the mechanical lifetime of infrared low emissivity composite coatings, andthe mechanical lifetime at different Mach numbers was calculated when the impact strength wasdecreased to a particular level. The calculated results when compared with observation data validatethe effectiveness of the model predictions.
     The emissivity of IRLEC increased with increasing heating temperature and time, and that theemissivity of coating failure increased with decreasing Mach number. Moreover, the Arrheniusrelationship was employed to calculate the lifetime of infrared low emissivity composite coatings.When compared with observation data the calculated results validate the effectiveness of the model predictions.
     The emissivity of IRLEC increased with increasing heating temperature and time in damp heat.Moreover, the Arrhenius relationship was employed to calculate the lifetime of infrared lowemissivity composite coatings in damp heat. The calculated results were compared with observationdata and validated the effectiveness of the model predictions.
引文
[1]赵阵.军事技术信息化对作战方式的影响[J].自然辩证法研究,2011,27(2):39~43.
    [2]毛国辉.精确制导武器与战争法[J].国防科技,2010,31(6):33~37.
    [3] J. A. Chen, X. G. Huang, P. D. Han, et al. Preparation and multiple-band stealth properties ofAl/Cr2O3composite particles [J]. J. Inorg. Mater.,2010,25(12):1298~1302.
    [4] F. Chiellini, A. M. Piras, M. Gazzarri, et al. Bioactive polymeric materials for targetedadministration of active agents: synthesis and evaluation [J]. Macromol. Biosci.,2008,8(6):516~525.
    [5] A. M. Hofmann, F. Wurm, E. Huhn, et al. Hyperbranched polyglycerol-based lipids via oxyanionicpolymerization: toward multifunctional stealth liposomes [J]. Biomacromolecules,2010,11(3):568~574.
    [6] J. H. van Oostrom, M. E. Mahla, D. Gravenstein. The stealth station (TM) image guidance systemmay interfere with pulse oximetry [J]. Can. J. Anaesth.,2005,52(4):379~382.
    [7]郦晓翔.雷达反隐身技术的发展及实现方法[J].电子工程师,2008,34(8):3~5.
    [8] L. Y. Liu, R. Gong, Y. S. Cheng, et al. Emittance of a radar absorber coated with an infrared layerin the3~5μm window [J]. Opt. Express,2005,13(25):10382~10391.
    [9]蒋耀庭,王跃.红外隐身技术与发展[J].红外技术,2003,25(5):7~9.
    [10]付伟.红外隐身原理及其应用技术[J].红外与激光工程,2002,31(1):88~93.
    [11]刘江,沈卫东,龚维佳.新型红外/雷达兼容隐身复合材料的设计[J].四川兵工学报,2009,30(6):89~91.
    [12] J. Rieger, C. Passirani, J. P. Benoit, et al. Synthesis of amphiphilic copolymers of poly(ethyleneoxide) and poly(ε-caprolactone) with different architectures, and their role in the preparation ofstealthy nanoparticles [J]. Adv. Funct. Mater.,2006,16(11):1506~1514.
    [13]崔锦峰,马永强,杨保平,等.红外隐身材料的研究现状及发展趋势[J].表面技术,2010,39(6):71~74.
    [14]武世伟,王智慧,胡传炘,等.红外智能梯度隐身涂层[J].红外与激光工程,2010,39(6):999~1002.
    [15]张民,杨小静,刘名扬.红外隐身一维光子晶体结构反射特性的理论分析[J].装甲兵工程学院学报,2009,23(5):89~91.
    [16]余慧娟,徐国跃,沈轩,等.8~14μm波段低发射率涂料的制备与优化研究[J].兵器材料科学与工程,2008,31(6):49~52.
    [17]韦第升,王小群,杜善义.复合材料在红外隐身技术中的应用[J].航空学报,2009,30(12):2462~2468.
    [18]韩海玉,杨绍清.红外隐身技术在水面舰艇防护中的应用[J].水雷战与舰船防护,2007,15(1):24~26.
    [19]杜永,邢宏龙,陈水林.热红外隐身涂料的研究进展[J].涂料工业,2007,37(2):51~55.
    [20]孙元宝,魏贤勇,费逸伟,等.红外伪装降温涂料原理研究[J].红外技术,2003,25(4):81~83.
    [21]张驰,李澄,徐国跃,等.三种环氧改性聚氨酯基低红外发射率涂层的腐蚀电化学行为[J].腐蚀与防护,2010,31(7):532~535.
    [22]李艳红,陈宏书,郑建龙,等.颜料粉体红外发射率的测试研究[J].红外技术,2008,30(2):114~117.
    [23]王自荣,孙晓泉.光电隐身性能的表征概述[J].激光与红外,2005,35(1):11~14.
    [24]林宣益.隔热保温涂料和外墙外保温[J].上海涂料,2007,45(11):28~30.
    [25]邵春明,罗艳,徐国跃,等.核-壳结构粒子SiO2@Bi2O3的制备及红外发射率研究[J].材料科学与工艺,2010,18(1):43~45.
    [26]谭淑娟,管先统,余慧娟,等.填料形貌对涂层红外发射率的影响[J].复旦学报,2009,48(5):545~549.
    [27]李艳红,陈宏书,郑建龙,等.红外隐身涂料发射率的影响因素研究[J].红外技术,2008,30(8):454~457.
    [28]原遵东.辐射温度计的等效波长及其应用[J].仪器仪表学报,2009,30(2):374~379.
    [29]冉绍兵,樊刚,张家涛. Nd掺杂对ITO粉体性能的影响[J].功能材料与器件学报,2007,13(5):476~480.
    [30]苗秀梅,张晓光,保石,等.功能高分子材料在伪装防护中的应用[J].光电技术应用,2007,22(4):8~13.
    [31]周利刚,沈文忠. GaN/AlGaN双带红外探测及光子频率上转换研究[J].物理学报,2009,58(10):6863~6872.
    [32]徐记伟,姚冰,常怀东.几种新型的红外/雷达复合隐身材料[J].舰船电子对抗,2007,30(4):39~42.
    [33]顾冰芳,徐国跃,任菁,等. Cd1-xZnxS三元系颜料红外性能研究[J].兵器材料科学与工程,2007,30(5):40~43.
    [34]穆武第,程海峰,唐耿平,等.热红外隐身伪装技术和材料的现状与发展[J].材料导报,2007,21(1):114~117.
    [35]张建贤,邹永军,徐蕾,等.高发射率涂料的研究及应用现状[J].红外技术,2007,29(8):491~494.
    [36]黄芸,沐磊,张其土.红外低辐射率涂料的研究进展与发展趋势[J].材料科学与工程学报,2008,26(5):820~823.
    [37]柯维娜,朱定强,蔡国飙.金属光谱发射率的仿真与分析[J].航空学报,2010,31(11):2139~2145.
    [38] C. Hu, G. Y. Xu, X. M. Shen, et al. Thermal ageing studies on low infrared emissivity compositecoatings [J]. J. Alloy. Compd.,2010,496(1):691~694.
    [39] M. Yuste, R. E. Galindo, O. Sanchez, et al. Correlation between structure and optical propertiesin low emissivity coatings for solar thermal collectors [J]. Thin Solid Films,2010,518(20):5720~5723.
    [40] X. X. Liu, C. Wu, X. J. Wang. Synthesis, characterization, and infrared-emissivity study ofNi-P-CB nanocomposite coatings by electroless process [J]. J. Coat. Tech. Res.,2010,7(5):659~664.
    [41] F. Reichel, L. P. H. Jeurgens, E. J. Mittemeijer. The thermodynamic stability of amorphous oxideovergrowths on metals [J]. Acta Mater.,2008,56(3):659~674.
    [42]施冬梅,游毓聪,鲁彦玲.红外隐身涂料发射率影响因素研究[J].涂料工业,2008,38(11):22~24.
    [43] M. Janousch, G. I. Meijer, U. Staub, et al. Role of oxygen vacancies in Cr-doped SrTiO3forresistance-change memory [J]. Adv. Mater.,2007,19(17):2232~2235.
    [44] S. E. Ahn, M. J. Lee, Y. Park, et al. Write current reduction in transition metal oxide basedresistance-change memory [J]. Adv. Mater.2008,20(5):924~928.
    [45] K. Chiba, T. Takahashi, T. Kageyama, et al. Low-emissivity coating of amorphous diamond-likecarbon/Ag-alloy multilayer on glass [J]. Appl. Surf. Sci.,2005,246(1-3):48~51.
    [46]哈恩华,黄大庆,王智勇,等.雷达与红外兼容隐身材料的研究及进展[J].材料导报,2006,20(S1):325~327.
    [47]邵春明,徐国跃,申星梅,等. CR/PU共混粘合剂红外透明性对涂层发射率的影响研[J].高分子材料科学与工程,2010,26(5):47~49.
    [48]邵春明,徐国跃,郭腾超,等.改性聚乙烯作为低红外辐射材料的研究[J].红外技术,2008,30(7):412~415.
    [49]朱永安,姚兰芳,汪国庆,等.红外隐身涂料的研究进展[J].材料导报,2006,20(S2):319~322.
    [50]余慧娟,徐国跃,邵春明,等. EPDM基涂层在8~14μm波段红外低发射率的研究[J].红外技术,2008,30(3):154~157.
    [51]赵群力,高霞,陈平,等.杯芳烃与金属离子配合的最新进展[J].应用化工,2010,39(8):1237~1243.
    [52]庄海燕,郑添水,任润桃,等.红外隐身涂料的研究现状及发展趋势[J].材料开发与应用,2006,21(3):43~46.
    [53]刘海定,曹旭东,贺文海,等.吸波涂层界面结合机理(Ⅰ):涂层力学性能影响因素分析[J].功能材料,2007,38(7):1045~1048.
    [54]蔡力锋,杨俊,林志勇.玻璃微珠填充聚合物复合材料界面[J].工程塑料应用,2003,31(3):66~69.
    [55]李东臻,杨立,张士成.涂料发射率对航行舰艇红外特征的影响研究[J].红外技术,2010,32(11):676~680.
    [56]张凯,马艳,范敬辉,等.低发射率红外隐身涂料研究进展[J].化学推进剂与高分子材料,2008,6(1):21~25.
    [57]李春华,齐暑华,张剑,等.高分子材料在红外隐身中的应用[J].国外塑料,2005,23(9):26~30.
    [58]宋兴华,於定华,马新胜,等.涂料型红外隐身材料研究进展[J].红外技术,2004,26(2):9~12.
    [59]费逸伟,唐卫红,朱富进,等.低发射率伪装涂料的研究现状与发展方向[J].红外技术,2002,24(3):5~9.
    [60]费逸伟,黄之杰,唐卫红,等.颜料对低发射率涂料红外辐射特性的影响[J].材料科学与工程,2002,20(3):449~452.
    [61]周钰明,单云,曹勇,等.胶原接枝改性用于制备红外低发射率涂层的研究[J].高等学校化学学报,2004,25(5):966~970.
    [62]潘逴,赵振声,何华辉.低红外发射率材料的研究[J].华中科技大学学报(自然科学版),2003,31(7):28~30.
    [63]张凯,马艳,郭静,等.低红外发射率韧性涂料的制备与表征[J].红外技术,2009,31(2):87~89.
    [64]施冬梅,游毓聪,鲁彦玲,等.低发射率红外隐身涂料的研究[J].军械工程学院学报,2008,20(3):76~78.
    [65]王庭慰,程从亮,张其土.8~14μm波长低红外发射率涂料的研究[J].光学技术,2005,31(4):598~600.
    [66]周建华,王涛,王道军,等.葡萄糖基碳包覆ZnFeO的合成及其红外发射率研究[J].无机材料学报,2009,24(5):1045~1048.
    [67] X. Y. Ye, Y. M. Zhou, J. Chen, et al. Synthesis and infrared emissivity study ofcollagen-g-PMMA/Ag@TiO2composite [J]. Mater. Chem. Phys.,2007,106(2-3):447~451.
    [68] J. Chen, Y. M. Zhou, Q. L. Nan, et al. Synthesis, characterization and infrared emissivity study ofpolyurethane/TiO2nanocomposites [J]. Appl. Surf. Sci.,2007,253(23):9154~9158.
    [69]邵春明,徐国跃,申星梅,等.3~5μm波段低发射率耐高温PbO涂层的研究[J].兵器材料科学与工程,2009,32(5):15~17.
    [70] H. J. Yu, G. Y. Xu, X. M. Shen, et al. Effects of size, shape and floatage of Cu particles on thelow infrared emissivity coatings [J]. Prog. Org. Coat.,2009,66(2):161~166.
    [71]程从亮.8~14μm低发射率红外隐身涂料研究,[硕士学位论文].南京:南京工业大学,2005.
    [72]汪小舟.红外隐身涂料的制备及性能研究,[硕士学位论文].南京:东南大学,2006.
    [73]蒋跃强.纳米掺锡氧化铟红外隐身涂料制备及性能研究,[硕士学位论文].成都:电子科技大学,2007.
    [74] E. Ando, S. Suzuki, N. Aomine, et al. Sputtered silver-based low-emissivity coatings with highmoisture durability [J]. Vacuum,2000,59(2-3):792~799.
    [75] A. Conde, J. De Damborenea, A. Duran, et al. Protective properties of a sol-gel coating on zinccoated steel [J]. J. Sol-Gel Sci. Technol.,2006,37(1):79~85.
    [76] H. Liang, T. Le Mogne, J. M. Martin. Interfacial transfer between copper and polyurethane inchemical-mechanical polishing [J]. J. Electron. Mater.,2002,31(8):872~878.
    [77] M. Shon, H. Kwon. Effects of surface modification with amino branched polydimethylsiloxane(ABP) on the corrosion protection of epoxy coating [J]. Corros. Sci.,2007,49(11):4259~4275.
    [78] H. J. Yu, L. Wang, Q. Shi, et al. Study on nano-CaCO3modified epoxy powder coatings [J]. Prog.Org. Coat.,2006,55(3):296~300.
    [79] Y. Tsuzuki, Y. Oikubo, Y. Matsuura, et al. Vacuum ultraviolet irradiation on siliceous coatings onpolycarbonate substrates [J]. J. Sol-Gel Sci. Technol.,2008,47(2):131~139.
    [80] P. Wang, D. W. Schaefer. Why does silane enhance the protective properties of epoxy films?[J].Langmuir,2008,24(23):13496~13501.
    [81]黄嵘,徐国跃,程传伟,等. EPDM基红外隐身涂层耐热性及使用寿命预测研究[J].红外技术,2008,30(12):693~696.
    [82]杨晓光,耿瑞,周燕佩.热障涂层热疲劳寿命预测方法研究[J].航空动力学报,2003,18(2):201~205.
    [83]孙海峰,刘华.光纤涂层老化性能研究[J].机电设备,2005,24(4):18~20.
    [84]钟鸣,傅戈雁,石世宏.人工神经网络在激光涂层多冲碰撞疲劳寿命预测中的应用[J].激光杂志,2005,26(5):78~79.
    [85]耿刚强,林杰,刘来君,等.钢桥防腐蚀涂层寿命的预测方法[J].长安大学学报(自然科学版),2006,26(5):43~47.
    [86]李远超,吴晓东,黎政权,等.灰色马尔可夫预测模型在螺杆泵寿命预测中的应用[J].天然气工业,2006,26(10):92~94.
    [87]雷明凯.高温氧化防护涂层寿命预测的基础理论问题[J].腐蚀科学与防护技术,2005,17(1):12~14.
    [88] E. P. Busso, H. E. Evans, L. Wright, et al. A software tool for lifetime prediction of thermalbarrier coating systems [J]. Mater. Corros.,2008,59(7):556~565.
    [89] D. G. Harlow, R. P. Wei. Probability modeling and material microstructure applied to corrosionand fatigue of aluminum and steel alloys [J]. Eng. Fract. Mech.,2009,76(5):695~708.
    [90] M. K. Cavanaugh, R. G. Buchheit, N. Birbilis. Evaluation of a simplemicrostructural-electrochemical model for corrosion damage accumulation in microstructurallycomplex aluminum alloys [J]. Eng. Fract. Mech.,2009,76(5):641~650.
    [91] R. P. Wei. A model for particle-induced pit growth in aluminum alloys [J]. Scripta Mater.,2001,44(11):2647~2652.
    [92] R. Liu, C. Ji, J. J. Mock, et al. Broadband ground-plane cloak [J]. Science,2009,323(5912):366~369.
    [93] K. S. Chou, Y. C. Lu. The application of nanosized silver colloids in far infrared low-emissivecoating [J]. Thin Solid Films,2007,515(18):7217~7221.
    [94] K. Chiba, S. Kaminishi. Fabrication and optical properties of low-emissivity coatings of AlSiNand AgCuNd-alloy multilayer films on glass [J]. Jpn. J. Appl. Phys.,2008,47(1):240~243.
    [95] P. K. Biswas, A. De, N. C. Pramanik, et al. Effects of tin on IR reflectivity, thermal emissivity,Hall mobility and plasma wavelength of sol-gel indium tin oxide films on glass [J]. Mater. Lett.,2003,57(15):2326~2332.
    [96] H. J. Yu, G. Y. Xu, X. M. Shen, et al. Low infrared emissivity of polyurethane/Cu compositecoatings [J]. Appl. Surf. Sci.,2009,255(12):6077~6081.
    [97] N. P. Tavandashti, S. Sanjabi, T. Shahrabi. Corrosion protection evaluation of silica/epoxy hybridnanocomposite coatings to AA2024[J]. Prog. Org. Coat.,2009,65(2):182~186.
    [98] R. Vera, F. Bastidas, M. Villarroel, et al. Corrosion inhibition of copper in chloride media by1,5-bis(4-dithiocarboxylate-1-dodecyl-5-hydroxy-3-methylpyrazolyl)pentane [J]. Corros. Sci.,2008,50(3):729~736.
    [99] A. M. S. El Din, M. E. El Dahshan, A. M. T. El Din. Dissolution of copper and copper-nickelalloys in aerated dilute HCl solutions [J]. Desalination,2000,130(1):89~97.
    [100] X. Y. Chen, S. P. Armes, S. J. Greaves, et al. Synthesis of hydrophilic polymer-grafted ultrafineinorganic oxide particles in protic media at ambient temperature via atom transfer radicalpolymerization: use of an electrostatically adsorbed polyelectrolytic macroinitiator [J].Langmuir,2004,20(3):587~595.
    [101] P. Wang, R. Qiu, D. Zhang, et al. Fabricated super-hydrophobic film with potentiostaticelectrolysis method on copper for corrosion protection [J]. Electrochim. Acta,2010,56(1):517~522.
    [102] M. Scendo. Inhibition of copper corrosion in sodium nitrate solutions with nontoxic inhibitors[J]. Corros. Sci.,2008,50(6):1584~1592.
    [103] Z. M. Dang, H. Y. Wang, H. P. Xu. Influence of silane coupling agent on morphology anddielectric property in BaTiO3/polyvinylidene fluoride composites [J]. Appl. Phys. Lett.,2006,89(11):112902.
    [104] Q. X. Ha, Y. P. Wu, Y. Q. Wang, et al. Enhanced interfacial interaction of rubber/claynanocomposites by a novel two-step method [J]. Compos. Sci. Technol.,2008,68(3-4):1050~1056.
    [105] E. M. Sherif, S. M. Park.2-Amino-5-ethyl-1,3,4-thiadiazole as a corrosion inhibitor for copperin3.0%NaCl solutions [J]. Corros. Sci.,2006,48(12):4065~4079.
    [106] C. H. Lin, J. G. Duh. Corrosion behavior of (Ti-Al-Cr-Si-V)xNycoatings on mild steels derivedfrom RF magnetron sputtering [J]. Surf. Coat. Technol.,2008,203(5-7):558~561.
    [107] J. Creus, H. Mazille, H. Idrissi. Porosity evaluation of protective coatings onto steel, throughelectrochemical techniques [J]. Surf. Coat. Technol.,2000,130(2-3):224~232.
    [108] P. Herrasti, A. I. del Rio, J. Recio. Electrodeposition of homogeneous and adherent polypyrroleon copper for corrosion protection [J]. Electrochim. Acta,2007,52(23):6496~6501.
    [109] S. Chaudhari, P. P. Patil. Corrosion protective poly (o-ethoxyaniline) coatings on copper [J].Electrochim. Acta,2007,53(2):927~933.
    [110]石锋,李玉国,孙钦军. CuO/SiO2复合薄膜的微观结构和发光特性分析[J].无机材料学报,2009,24(2):234~238.
    [111] H. Y. Li, R. G. Wang, H. L. Hu, et al. Surface modification of self-healingpoly(urea-formaldehyde) microcapsules using silane-coupling agent [J]. Appl. Surf. Sci.,2008,255(5):1894~1900.
    [112] X. X. Yan, D. L. Xu, D. F. Xue. SO2-4ions direct the one-dimensional growth of5Mg(OH)2·MgSO4·2H2O [J]. Acta Mater.,2007,55(17):5747~5757.
    [113] P. M. Karlsson, A. Baeza, A. E. C. Palmqvist, et al. Surfactant inhibition of aluminium pigmentsfor waterborne printing inks [J]. Corros. Sci.,2008,50(8):2282~2287.
    [114] M. J. Jiang, Z. M. Dang, S. H. Yao, et al. Effects of surface modification of carbon nanotubes onthe microstructure and electrical properties of carbon nanotubes/rubber nanocomposites [J].Chem. Phys. Lett.,2008,457(4-6):352~356.
    [115] Y. Wang, S. Lim, J. L. Luo, et al. Tribological and corrosion behaviors of Al2O3/polymernanocomposite coatings [J]. Wear,2006,260(9-10):976~983.
    [116] S. H. Ahn, J. H. Yoo, Y. S. Choi, et al. Corrosion behavior of PVD-grown WC-(Ti1-xAlx)N filmsin a3.5%NaCl solution [J]. Surf. Coat. Technol.,2003,162(2-3):212~221.
    [117] W. Tato, D. Landalt. Electrochemical determination of the porosity of single and duplex PVDcoatings of titanium and titanium nitride on brass [J]. J. Electrochem. Soc.,1998,145(12):4173~4181.
    [118] G. S. Wu, X. Q. Zeng, W. B. Ding, et al. Characterization of ceramic PVD thin films on AZ31magnesium alloys [J]. Appl. Surf. Sci.,2006,252(20):7422~7429.
    [119] V. D. Lins, G. F. D. Reis, C. R. de Araujo, et al. Electrochemical impedance spectroscopy andlinear polarization applied to evaluation of porosity of phosphate conversion coatings onelectrogalvanized steels [J]. Appl. Surf. Sci.,2006,253(5):2875~2884.
    [120] K. N. Allahar, M. E. Orazem, K. Ogle. Mathematical model for cathodic delamination using aporosity-pH relationship [J]. Corros. Sci.,2007,49(9):3638~3658.
    [121] S. K. Mishra, D. Panda. Studies on the adsorption of Brij-35and CTAB at the coal-waterinterface [J]. J. Colloid Interface Sci.,2005,283(2):294~299.
    [122] B. N. Zand, M. Mahdavian. Corrosion and adhesion study of polyurethane coating on silanepretreated aluminum [J]. Surf. Coat. Technol.,2009,203(12):1677~1681.
    [123] T. Wang, Y. J. Tan. Electrodeposition of polyaniline on aluminium alloys for corrosionprevention-a study using the wire beam electrode (WBE)[J]. Mater. Sci. Eng. B,2006,132(1-2):48~53.
    [124] F. Chen, H. Zhou, B. Yao, et al. Corrosion resistance property of the ceramic coating obtainedthrough microarc oxidation on the AZ31magnesium alloy surfaces [J]. Surf. Coat. Technol.,2007,201(9-11):4905~4908.
    [125] H. T. Hai, J. G. Ahn, D. J. Kim, et al. Developing process for coating copper particles with silverby electroless plating method [J]. Surf. Coat. Technol.,2006,201(6):3788~3792.
    [126] M. Zidoune, M. H. Grosjean, L. Roue, et al. Comparative study on the corrosion behavior ofmilled and unmilled magnesium by electrochemical impedance spectroscopy [J]. Corros. Sci.,2004,46(12):3041~3055.
    [127] M. H. Grosjean, M. Zidoune, L. Roue, et al. Effect of ball milling on the corrosion resistance ofmagnesium in aqueous media [J]. Electrochim. Acta,2004,49(15):2461~2470.
    [128] S. H. Hong, D. W. Lee, B. K. Kim. Manufacturing of aluminum flake powder from foil scrap bydry ball milling process [J]. J. Mater. Process. Technol.,2000,100(1-3):105~109.
    [129] M. Qian, A. M. Soutar, X. H. Tan, et al. Two-part epoxy-siloxane hybrid corrosion protectioncoatings for carbon steel [J]. Thin Solid Films,2009,517(17):5237~5242.
    [130]王东权.硬脂酸盐的生产工艺研究,[硕士学位论文].南京:南京理工大学,2007.
    [131] H. Yan, X. H. Zhang, L. Q. Wei, et al. Hydrophobic magnesium hydroxide nanoparticles viaoleic acid and poly(methyl methacrylate)-grafting surface modification [J]. Powder Technol.,2009,193(2):125~129.
    [132] E. Ando, M. Miyazaki. Durability of doped zinc oxide/silver/doped zinc oxide low emissivitycoatings in humid environment [J]. Thin Solid Films,2008,516(14):4574~4577.
    [133] Z. B. Huang, D. M. Zhu, F. Lou, et al. An application of Au thin-film emissivity barrier on Nialloy [J]. Appl. Surf. Sci.,2008,255(5):2619~2622.
    [134] H. J. Yu, G. Y. Xu, X. M. Shen, et al. Preparation of leafing Cu and its application in lowinfrared emissivity coatings [J]. J. Alloys Compd.,2009,484(1-2):395~399.
    [135] J. Creus, E. H. Top, C. Savall, et al. Mechanical and corrosion properties of dc magnetronsputtered Al/Cr multilayers [J]. Surf. Coat. Technol.,2008,202(16):4047~4055.
    [136] G. Ruhi, O. P. Modi, A. S. K. Sinha, et al. Effect of sintering temperatures on corrosion andwear properties of sol-gel alumina coatings on surface pre-treated mild steel [J]. Corros. Sci.,2008,50(3):639~649.
    [137] R. Siegle, J. R. Howell. Thermal radiation heat transfer. Washington: Hemisphere Pub. Corp.,1981:1~7.
    [138] C. Zhang, R. Janssen, N. Claussen, et al. Pressureless sintering of β-sialon with improved greenstrength by using metallic Al powder [J]. Mater. Lett.,2003,57(22-23):3352~3356.
    [139] S. M. Mirabedini, M. Mohseni, S. PazokiFard, et al. Effect of TiO2on the mechanical andadhesion properties of RTV silicone elastomer coatings [J]. Colloids Surf. A,2008,317(1-3):80~86.
    [140] P. W. Shum, Z. F. Zhou, K. Y. Li, et al. Mechanical and tribological properties of amorphouscarbon films deposited on implanted steel substrates [J]. Thin Solid Films,2004,458(1-2):203~211.
    [141] N. Souissi, E. Sidot, L. Bousselmi, et al. Corrosion behaviour of Cu-10Sn bronze in aeratedNaCl aqueous media-Electrochemical investigation [J]. Corros. Sci.,2007,49(8):3333~3347.
    [142] B. S. Unlu, E. Atik, C. Meric. Effect of loading capacity (pressure-velocity) to tribologicalproperties of CuSn10bearings [J]. Mater. Des.,2007,28(7):2160~2165.
    [143] L. L. Zhai, G. P. Ling, Y. W. Wang. Effect of nano-Al2O3on adhesion strength of epoxyadhesive and steel [J]. Int. J. Adhes. Adhes.,2008,28(1-2):23~28.
    [144]陈慧敏,王雅君,徐国跃,等.低红外发射率涂层的力学性能研究[J].材料科学与工艺,2010,18(6):873~877.
    [145] C. J. Patel, A. Dighe. Novel isocyanate-free self-curable cathodically depositable epoxycoatings: influence of epoxy groups on coating properties [J]. Prog. Org. Coat.,2007,60(3):219~223.
    [146] X. X. Yan, G. Y. Xu. Effect of surface modification of Cu with Ag by ball-milling on thecorrosion resistance of low infrared emissivity coating [J]. Mater. Sci. Eng. B,2010,166(2):152~157.
    [147] X. X. Yan, G. Y. Xu. Corrosion and mechanical properties of polyurethane/Al compositecoatings with low infrared emissivity [J]. J. Alloys Compd.,2010,491(1-2):649~653.
    [148] Q. D. Bing, C. T. Sun. Modeling and testing strain rate-dependent compressive strength ofcarbon/epoxy composites [J]. Compos. Sci. Technol.,2005,65(15-16):2481~2491.
    [149] Z. B. Bao, Q. M. Wang, W. Z. Li, et al. Corrosion behaviour of AIP NiCoCrAlYSiB coating insalt spray tests [J]. Corros. Sci.,2008,50(3):847~855.
    [150] P. M. Natishan, S. H. Lawrence, R. L. Foster, et al. Salt fog corrosion behavior of high-velocityoxygen-fuel thermal spray coatings compared to electrodeposited hard chromium [J]. Surf. Coat.Technol.,2000,130(2-3):218~223.
    [151] M. Bethencourt, F. J. Botana, M. J. Cano, et al. Lifetime prediction of waterborne acrylic paintswith the AC-DC-AC method [J]. Prog. Org. Coat.,2004,49(3):275~281.
    [152] A. N. Akdogan, M. N. Durakbasa. Thermal cycling experiments for glass moulds surfacetexture lifetime prediction-evaluation with the help of statistical techniques [J]. Measurement,2008,41(6):697~703.
    [153] M. Celina, K. T. Gillen, R. A. Assink. Accelerated aging and lifetime prediction: review ofnon-Arrhenius behaviour due to two competing processes [J]. Polym. Degrad. Stab.,2005,90(3):395~404.
    [154] X. X. Yan, G. Y. Xu. Synergy effect of silane and CTAB on corrosion-resistant property of lowinfrared emissivity Cu/polyurethane coating formed on tinplate [J]. Surf. Coat. Technol.,2010,204(9-10):1514~1520.
    [155] X. M. Li, Y. J. Weitsman. Sea-water effects on foam-cored composite sandwich lay-ups [J].Composites B,2004,35(6-8):451~459.
    [156] F. C. Walsh, C. P. de Leon, C. Kerr, et al. Electrochemical characterisation of the porosity andcorrosion resistance of electrochemically deposited metal coatings [J]. Surf. Coat. Technol.,2008,202(21):5092~5102.
    [157] J. Voracek. Prediction of mechanical properties of cast irons [J]. Appl. Soft Comput.,2001,1(2):119~125.
    [158] K. Strzelec, P. Pospiech. Improvement of mechanical properties and electrical conductivity ofpolythiourethane-modified epoxy coatings filled with aluminium powder [J]. Prog. Org. Coat.,2008,63(1):133~138.
    [159] C. Hu, G. Y. Xu, X. M. Shen. Preparation and characteristics of thermal resistancepolysiloxane/Al composite coatings with low infrared emissivity [J]. J. Alloy. Compd.,2009,486(1):371~375.
    [160] X. Colin, L. Audouin, J. Verdu, et al. Aging of polyethylene pipes transporting drinking waterdisinfected by chlorine dioxide. part II-lifetime prediction [J]. Polym. Eng. Sci.,2009,49(8):1642~1652.
    [161] S. M. Ghoreishi, S. Komeili. Modeling of fluorinated tetraphenylporphyrin nanoparticles sizedesign via rapid expansion of supercritical solution [J]. J. Supercrit. Fluids,2009,50(2):183~192.
    [162] Q. Zhao, Y. Liu. Comparisons of corrosion rates of Ni-P based composite coatings in HCl andNaCl solutions [J]. Corros. Sci.,2005,47(11):2807~2815.
    [163] H. J. Yu, G. Y. Xu, X. M. Shen, et al. Corrosion resistance and infrared emissivity properties ofEPDM (EPDM-g-MAH) film on low infrared emissivity PU/Cu coating [J]. Electrochim. Acta,2010,55(5):1843~1847.
    [164] G. E. Kiourtsidis, S. M. Skohanos. Pitting corrosion of artificially aged T6AA2024/SiCpcomposites in3.5wt.%NaCl aqueous solution [J]. Corros. Sci.,2007,49(6):2711~2725.
    [165] L. Li, C. Wang, S. Chen. Investigation into designed current oscillations during anodicdissolution of Al in NaCl+NaNO2solutions [J]. Electrochim. Acta,2007,53(4):1655~1662.
    [166] S. P. Mahulikar, H. R. Sonawane, G. A. Rao. Infrared signature studies of aerospace vehicles [J].Prog. Aerosp. Sci.,2007,43(7-8):218~245.
    [167] E. Suaste, V. Castillo, R. Gonzalez. Determination of the phase transition inPb0.88Ln0.08Ti0.98Mn0.02O3(Ln=La, Sm, Eu) piezoceramics based on the Stefan-Boltzmann law[J]. Mater. Charact.,2004,52(4-5):279~282.
    [168] C. Guillen, J. Herrero. Stability of sputtered ITO thin films to the damp-heat test [J]. Surf. Coat.Technol.,2006,201(1-2):309~312.
    [169] C. Hu, G. Y. Xu, X. M. Shen. The epoxy-siloxane/Al composite coatings with low infraredemissivity for high temperature applications [J]. Surf. Coat. Technol.,2010,256(11):3459~3463.
    [170] P. Furcas, R. De Palo, M. E. Patella, et al. Damp Heat test on LiNbO optical modulators [J].Microelectron. Reliab.,2001,41(9-10):1603~1607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700