基于热致变色原理的表面热辐射特性及其控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着被控温系统与设备的散热功率密度和热负荷的迅速增加、内外热流变化程度的加剧以及控温精度的进一步提高,对基于热辐射表面的热控制与热管理技术提出了更新更高的要求。传统的热辐射表面因其热辐射特性不具备自动调节控制能力,无法根据系统与设备的发热量变化、外部热流变化去调节自身的热辐射特性,无法满足系统与设备的温度自主控制要求。基于热致变色原理的热辐射表面可根据系统与设备的温度水平、内外热流变化状况,自动调节自身辐射特性,从而可实现系统与设备温度的主动控制。因此开展基于热致变色原理的表面辐射特性转变机制与控制方法研究具有重要的现实意义和应用价值。本文以钙钛矿型锰氧化物La1-xAxMn03(A=Ca,Sr,K)为基础材料制作基于热致变色原理的热辐射表面,研究其热辐射特性,探索其辐射特性的控制方法,揭示其空间粒子辐照效应,对于研制基于热致变色原理的智能型热控器件、对提高系统与设备的热控技术水平有重大的科学意义。论文的主要研究内容包括以下几个方面:
     (1)热致变色功能材料制备与表征
     以稀土氧化镧,碳酸盐,二氧化锰为原料,拟用固相反应法制备块体热致变色功能材料,拟用等离子喷涂法制备热致变色涂层。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、样品振动磁强计(VSM)和多功能物理量测试系统(PPMS)对热致变色功能材料的物相、微观形貌、表面粗糙度、磁性能、电输运性能进行表征和测量。分析了掺杂碱金属元素或碱土金属元素的种类、掺杂浓度、烧结温度对热致变色功能材料晶体结构、或致密度、或电磁输运特性、或相变温度的影响,为研制智能型热控器件提供技术支持。
     (2)基于热致变色原理的表面热辐射特性研究
     以热致变色器件和热致变色涂层为研究对象,用红外光谱仪和分光光度计测量其反射率光谱,根据反射计光学方法间接测量其红外发射率和太阳吸收率。分析掺杂元素种类、浓度以及表面状况对基于热致变色原理的表面热辐射特性的影响,揭示其发射率可调特性。结果表明:Ca和/或Sr掺杂的热致变色器件,反射率随温度升高而降低;在合适的Ca和/或Sr浓度下,热致变色器件出现金属-绝缘转变,从而引起热致变色器件发射率急剧转变,其中,仅有Ca掺杂时,发射率在相转变温度附近变化最剧烈,但转变温度较低;而仅有Sr掺杂时,发射率也发生急剧转变,但转变温度较高;同时掺杂Ca和Sr,可将热致变色器件的转变温度调节到所需的范围,并维持发射率的剧烈变化,发射率变化幅度超过0.5;不同掺杂情况下,热致变色器件的太阳吸收率都较高,达到0.78;通过优化等离子喷涂参数,获得发射率可调特性的热致变色涂层;由于受涂层表面粗糙度、喷涂工艺的影响,涂层的发射率变化幅度有所不同,其中最大可调幅度为0.33,而太阳吸收率高达0.85;以Ca, Sr, K三种元素为基础,采用不同的组合方式、掺杂浓度,都不能达到降低热致变色器件高太阳吸收率的目的。
     (3)热致变色器件辐射特性耦合控制方法研究
     针对热致变色器件太阳吸收率较大的问题,开展热致变色器件热辐射特性的控制方法研究,探索降低热致变色器件短波太阳吸收率、同时维持热致变色器件长波红外发射率可调的方法,实现热致变色器件热辐射特性在不同波段范围的耦合控制。将基于多层薄膜结构的选择性光谱控制用于实现热致变色器件表面热辐射特性控制,采用模拟退火遗传算法优化设计多层薄膜结构,建立多层薄膜结构内部热辐射传递理论模型,计算分析多层薄膜材料属性、膜层数、膜层厚度、以及膜层排列方式对多层薄膜结构热辐射特性的影响,研究由多层薄膜结构和原热致变色器件组成的复合型热致变色器件结构的热辐射特性。理论计算表明,增设多层薄膜结构后,太阳吸收率从原来的0.78降低到0.21,有效地削弱了到达热致变色器件表面的太阳辐射,并较好地透过红外热辐射。采用电子束蒸发沉积法将最优多层薄膜结构沉积到原热致变色器件表面以制备复合型热致变色器件,并测试其热辐射特性,结果发现,复合型热致变色器件不仅具有低太阳吸收率(αs=0.28)的特性,而且还维持了发射率的可调特性,其可调幅度与原热致变色器件相同,也验证了红外发射率与太阳吸收率的耦合控制方法。
     (4)热致变色器件空间粒子辐照效应研究
     热致变色器件用于卫星热控领域,会受到空间环境中诸多因素的影响,特别是来自于空间环境的粒子辐照影响。为了弄清楚热致变色器件是否能经受空间环境的考验,本文通过地面模拟空间粒子辐照实验,研究不同能量的电子和质子辐照对热致变色器件热辐射性能的影响,探索热致变色器件在空间环境中应用的稳定性。结果表明:空间粒子辐照诱导非复合型热致变色器件内部晶体结构氧缺陷,引起其太阳吸收率和红外发射率增大,造成其热辐射性能退化;而复合型热致变色器件在空间粒子辐照环境下具有非常好的稳定性,其太阳吸收率和红外发射率没有发生退化。
With the power density of heat dissipation and the heat load in a system increas-ing, there is a growing demand for a better performance of thermal radiative surface because these with constant emissivity cannot meet the demand any more. For ex-ample, thermal radiative surface, such as ZnO coating and OSR reflector, are usually used to dissipate heat from the satellite surface. However, these traditional thermal radiative surface have a constant emissivity, they don't adjust their thermal radiative properties alone in response to the violent fluctuation of exterior heat flux. Therefore, there is a serious need for developing novel thermal radiative surface with its radia-tive properties automatically adjusting in response to a variation temperature for the next generation thermal control system applications. In this dissertation, perovskite-type manganese oxides La1-xAxMn03(A=Ca, Sr, K) were selected as a basic material to prepare a novel thermal radiative surface, and investigation on thermal radiative properties of surface and its control method based on thermochromic phenomenon was performed. The contents of this thesis mainly include the following parts.
     (1) Preparation of thermochromic functional material
     Solid stated reaction is used to prepare the bulk thermochromic functional ma-terial, and the plasma spray method is used to prepare the thermochromic coating. XRD, SEM, AFM, VSM, and PPMS are used to detect the phase structure, surface to-pography, RMS roughness, magnetic properties and electronic properties, respectively. These effects of doping element, doping level, or sintering temperature on the phase structure, densification, or phase transition temperature of thermochromic functional material are analyzed.
     (2) Thermal radiative properties of thermochromic functional material
     Reflectivity spectra of thermochromic device or coating are measured using the FT-IR spectrometer and spectrophotometer. The emissivity and solar absorptivity are deduced from the experimental reflectivity data. The mainly factors to affect the ra-diation properties of surface are presented. Experimental investigations are reported as follow:For the Ca and/or Sr doped samples, their reflectivity spectra increase with temperature decreasing. In an appropriate doping level of Ca and/or Sr, ther- mochromic functional surface shows a transition from metallic state to insulator, as a result, its emissivity is increases with temperature. If only the Ca element was doped in A site, the emissivity of sample changed dramatically in the vicinity of transition temperature, but the transition temperature is low. If only the Sr element was doped in A site, the emissivity of sample shows a sudden change near the transition temper-ature, and the transition temperature is high. So, it is possible that the the transition temperature can be adjust according to application needs and the emissivity variation can be maintained. Thermochromic coating with tunable emissivity properties is ob-tained by adjusting the plasma spraying parameters. The variation range of emissivity of thermochromic coatings are relation to the surface condition, and spray parameter. The largest increment of emissivity is0.33at present. A limitation of application was found in the thermal radiative surface due to its large solar absorptivity, which is difficult to be reduced only changing the doping level or element, such as Ca, Sr, or K.
     (3) Coupling control method of radiation properties of surface based on ther-mochromic phenomenon
     The optical control method based on the multi-layer thin films is introduced to investigate the control of radiation properties of surface. A multi-layer thin films structure is designed onto the surface based on thermochromic phenomenon using sim-ulated annealing genetic algorithm. The effect factors on the thermal radiative prop-erties of complex functional surface, which consists of surface based on thermochromic phenomenon and multi-layer thin films, are shown in this thesis. The calculated re-sults reveal that multi-layer thin films can effectively reduce the solar radiation, which arrives to the surface of thermal radiative surface, and transmit infrared radiation simultaneously.
     According to the calculated results, the multi-layer thin films are deposited onto the thermochromic functional surface using the electron beam evaporation. The ther-mal radiative properties of complex functional surface are experimental studied. The experimental results show that complex functional surface is not only obtain a low solar absorptivity, but also maintain the temperature-dependent emissivity properties of thermochromic functional surface. Thus, the coupling control of solar absorptivity and infrared emissivity is confirmed.
     (4) Particles irradiation-induced degradation of radiation properties for the sur-face basing on thermochromic phenomenon
     Influence of particles irradiation,60-1000KeV electrons and100KeV protons in energy, on the thermal radiative behaviors of surface basing on thermochromic phe-nomenon (i.e., thermochromic functional surface and complex functional surface) have been investigated. To evaluate thermal radiative degradation, their solar absorptivity, temperature-dependent reflectivity, and thermal emissivity are studied before and after particles irradiation. The thermal radiative degradation behavior in thermochromic functional surface is reported, and the degradation mechanism is discussed. In addi-tion, it is revealed that the thermal radiative properties of complex functional surface shows a excellent stability without degradation in simulation environment.
引文
1余金培,杨根庆,梁旭文.现代小卫星技术与应用[M].第1版,上海:上海科学普及出版社,2004.
    2高云国.现代小卫星及其相关技术[J].光学精密工程,1999,7:16-21.
    3张正强.基于MAS的分布式成像卫星系统任务规划与控制问题研究[D].长沙:国防科学技术大学,2006.
    4 E. K. Casani, B. Wilson. The New Millennium Program:Technology Develop-ment for the 21st Century[C]//34th Aerospace Sciences Meeting and Exhibit. Reno:AIAA,1996.
    5 J. Rotteveel, A. Bonnema. Thermal Control Issues for Nano-and Picosatel-lites[C]//AIAA 57th International Astronautical Congress. NASA Reference Publication,2006:3490-3497.
    6潘增富.微小卫星热控关键技术研究[J].航天器工程,2007,16:16-21.
    7任大海,田景峰,尤政.MEMS变发射率真空热控器件研究进展[J].真空科学与技术学报,2009,29:403-410.
    8闵桂荣,张正纲,何知朱.卫星热控技术[M].第2版,北京:中国宇航出版社,2009.
    9侯增祺,胡金刚.航天器热控制技术—原理及其应用[M].北京:中国科学技术出版社,2007.
    10 R. Osiander, J. Champion, A. Darrin, et al. Micromachined Louver Arrays for Spacecraft Thermal Control Radiators [C]//39th AIAA Aerospace Sciences Meet-ing & Exhibit. Reno:AIAA,2001.
    11 M. A. Beasley, S. L. Firebaugh, R. L. Edwards, et al. MEMS Thermal Switch for Spacecraft Thermal Control[J]. Proceedings of SPIE,2004,5344:98-105.
    12 P. Chandrasekhar, B. Zay, G. Birur, et al. Large, Switchable Electrochromism in the Visible Through Far-infrared in Conducting Polymer Devices [J]. Advanced Functional Materials,2002,12:95-103.
    13 Y. Shimakawa, T. Yoshitake, Y. Kubo, et al. A Variable-emittance Radiator Based on a Metal-insulator Transition of (La,Sr)MnO3 Thin Films[J]. Appl. Phys. Lett.,2002,80:4864-4866.
    14 M. H. Phan, V. Franco, N. S. Bingham, et al. Tricritical Point and Critical Exponents of La0.7Ca0.3-xSrxMnO3 (x=0,0.05,0.1,0.2,0.25) Single Crystals[J]. Journal of Alloys and Compounds,2010,508:238-244.
    15 A. Urushibara, Y. Moritomo, T. Arima, et al. Insulator-metal Transition and Gi-ant Magnetoresistance in La1-xSrxMnO3[J]. Physica Reviews B,1995,51:14103.
    16 S. Tachikawa, A. Ohnishi, K. Shimazaki, et al. Smart Radiation Device:Design of an Intelligent Material with Variable Emittance[C]//SAE Technical Paper. 2001.
    17 S. Tachikawa, A. Ohnishi, Y. Shimakawa, et al. Development of a Variable Emit-tance Radiator Based on a Perovskite Manganese Oxide [C]//8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Louis, Missouri,2002:24-26.
    18 T. D. Swanson, G. C. Birur. NASA Thermal Control Technologies for Robotic Spacecraft [J]. Applied Thermal Engineering,2003,23(9):1055-1065.
    19 R. Osiander, J. L. Champion, M. Darrin, et al. MEMS Shutters for Spacecraft Thermal Control[C]//Proc. NanoTech. Houston, Texas:AIAA,2002.
    20 R. Osiander, S. L. Firebaugh, J. L. Champion, et al. Microelectromechanical Devices for Satellite Thermal Control[J]. IEEE Sensors Journal,2004,4:525-531.
    21 K. C. Shannon Ⅲ, H. Demiryont, H. Groger, et al. Thermal Manage-ment Integration Using Plug-and-play Variable Emissivity Devices[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materi-als Conference. AIAA,2008.
    22 E. Franke, H. Neumann, M. Schubert, et al. Low-orbit-environment Protective Coating for All-solid-state Electrochromic Surface Heat Radiation Control De-vices[J]. Surface and Coatings Technology,2002,151:285-288.
    23 J. S. Hale, J. A. Woollam. Prospects for IR Emissivity Control Using Elec-trochromic Structures[J]. Thin Solid Films,1999,339:174-180.
    24 J. S. Hale, M. DeVries, B. Dworak, et al. Visible and Infrared Optical Constants of Electrochromic Materials for Emissivity Modulation Applications [J]. Thin Solid Films,1998,313-314:205-209.
    25徐娜,沈晓冬,崔升.电致变色材料的研究进展及发展前景[J].稀有金属,2010,34:610-617.
    26郭宁.可变发射率热控器件的研究进展[J].真空与低温,2003,9:187-190.
    27 S. Tachikawa, A. Ohnishi, K. Shimazaki, et al. Development of a Variable Emit-tance Radiator [C]//29th International Conference on Environment Systems. Denver, Colorado:SAE,1999.
    28 W. Sun, J. Q. Li, W. Q. Ao, et al. Hydrothermal Synthesis and Magnetocaloric Effect of La0.7Ca0.2Sr0.1Mn03[J]. Powder Technology,2006,166:77-80.
    29 J. Yang, H. Muroyama, T. Matsui, et al. A Comparative Study on Polariza-tion Behavior of (La,Sr)MnO3 and (La,Sr)CoO3 Cathodes for Solid Oxide Fuel Cells[J]. International Journal of Hydrogen Energy,2010,35(19):10505-10512.
    30 T.-J. Huang, C.-Y. Wu, C.-C. Wu. Effect of Temperature and Concentra-tion on Treating NO in Simulated Diesel Exhaust via SOFCs with Cu-added (LaSr)MnO3 Cathode[J]. Chemical Engineering Journal,2011,168(2):672-677.
    31 K. Chen, S. P. Jiang. Failure Mechanism of (La,Sr)MnO3 Oxygen Electrodes of Solid Oxide Electrolysis Cells [J]. International Journal of Hydrogen Energy, 2011,36(17):10541-10549.
    32 T. Jin, K. Lu. Surface and Interface Behaviors of (Lao.sSro.2)xMn03 Air Electrode for Solid Oxide Cells[J]. Journal of Power Sources,2011,196(20):8331-8339.
    33 C. Wang, X. Xin, Y. Xu, et al. Performance of a Novel La(Sr)MnO3-Pd Composite Current Collector for Solid Oxide Fuel Cell Cathode [J]. Journal of Power Sources, 2011,196(8):3841-3845.
    34 R. Watanabe, Y. Sekine, M. Matsukata, et al. Novel Perovskite-type Oxide Cat-alysts for Dehydrogenation of Ethylbenzene to Styrene[J]. Catal Lett,2009, 131:54-58.
    35任倩茹,张泽凯,徐摇彪,等.负载型钙钛矿Lao.8Sro.2Mn03/SBA-15催化燃烧甲苯的研究[J].燃料化学学报,2012,40:1142-1146.
    36白雪,刘源,王晓燕,等.La1-x-gBaxREgMnO3复合氧化物的制备及其对甲烷燃烧的催化性能[J].催化学报,2004,25:577-580.
    37 R. von Helmolt, J. Wecker, B. Holzapfel, et al. Giant Negative Magnetoresistance in Perovskitelike La2/3Ba1/3MnOx Ferromagnetic Films[J]. Phys. Rev. Lett., 1993,71:2331-2333.
    38 S. Jin, T. H. Tiefel, M. McCormack, et al. Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films[J]. Science,1994,264:413-415.
    39 P. Laffez, C. Napierala, M. Zaghrioui, et al. Thermal Emittance Changes at the Charge Ordering Transition of Sm0.35Cao.65Mn03[J]. Appl. Phys. Lett.,2008, 93:151910(1-3).
    40 P. Laffez, M. Zaghrioui, L. Reversat, et al. Electron Doped Sm1-xCaxMn03 Perovskite Manganite as Potential Infrared Thermochromic Switch[J]. Appl. Phys. Lett.,2006,89:081909(1-3).
    41 M. R. Ammar, C. Napierala, P. Laffez. Infrared Thermochromic Behaviour of a Composite Smo.65Cao.35Mn03-poly(styrene-co-acrylonitrile) Film[J]. Smart Mater. Struct.,2009,18:055002.
    42 A.-M. Haghiri-Gosnet, J.-P. Renard. CMR Manganites:Physics, Thin Films and Devices[J]. J. Phys. D:Appl. Phys.,2003,36:R127.
    43 G. H. Jonker, J. H. VanSanten. Ferromagnetic Compounds of Manganese with Perovskite Structure[J]. Physica,1950,16:337-349.
    44 G. H. Jonker, J. H. V. Santen. Magnetic Compounds Wtth Perovskite Structure Ⅲ. Ferromagnetic Compounds of Cobalt [J]. Physica,1953,19(1-12):120-130.
    45 G. H. Jonker. Semiconducting Properties of Mixed Crystals with Perovskite Structure[J]. Physica,1954,20(7-12):1118-1122.
    46 C. Zener. Interaction between the D-shells in the Transition Metals. Ⅱ. Ferromag-netic Compounds of Manganese with Perovskite Structure[J]. Physical Review, 1951,82:403-405.
    47 E. O. Wollan, W. C. Koehler. Neutron Diffraction Study of the Magnetic Proper-ties of the Series of Perovskite-type Compounds [(1-x)La,xCa]MnO3[J]. Physica Review,1955,100:545-563.
    48 J. B. Goodenough. Theory of the Role of Covalence in the Perovskite-type Man-ganites [La,M(II)]MnO3[J]. Phys. Rev.,1955,100:564-573.
    49 P.-G. D. Gennes. Effects of Double Exchange in Magnetic Crystals [J]. Physical Review Letters,1960,118:141-154.
    50 C. W. Searle, S. T. Wang. Studies of the Ionic Ferromagnet (LaPb)MnO3. V. Electric Transport and Ferromagnetic Properties [J]. Canadian journal of physics, 1970,48:2023-2031.
    51 R. M. Kusters, J. Singleton, D. A. Keen, et al. Magnetoresistance Measurements on the Magnetic Semiconductor Nd0.5Pb0.5MnO3[J]. Physica B:Condensed Mat-ter,1989,155:362-365.
    52 Y. Okimoto, T. Katsufuji, T. Ishikawa, et al. Anomalous Variation of Optical Spectra with Spin Polarization in Double-exchange Ferromagnet La1-xSrxMnO3[J]. Physical Review Letters,1995,75:109-112.
    53 K. Shimazaki, A. Ohnishi, Y. Nagasaka. Development of Spectral Selective Mul-tilayer Film for a Variable Emittance Device and its Radiation Properties Mea-surements[J]. Int. J. Thermophys.,2003,24:757-769.
    54 K. Shimazaki, S. Tachikawa, A. Ohnishi, et al. Temperature Dependence of Total Hemispherical Emittance in Perovskite-type Manganese Oxides, La1-xSrxMnO3[J]. High Temperatures-High Pressures,2001,33:525-531.
    55 K. Shimazaki, S. Tachikawa, A. Ohnishi, et al. Radiative and Optical Proper-ties of La1-xSrxMnO3(0    56 A. Ochi, T. Mori, Y. Shimakawa, et al. Variable Thermal Emittance Radiator Using Metal-insulator Phase Transition in La1-xSrxMnO3[J]. Jpn. J. Appl. Phys., 2002,41:7263-7265.
    57 H. Nagano, S. Tachikawa, A. Ohnishi. Passive and Active Thermal Control Devices—Variable Emittance Radiator and Reversible Control Panel[C]//4th Space and Astronautical Symposium. Sagamihara,2004.
    58 D. Nikanpour, X. X. Jiang, S. Genaron, et al. An Autonomous Variable Emittance Thermal Radiatior for Small & Microsat Temperature Control [C]//4th sympo-sium of Small Satellites Systems and Services. Noordwijk,The Netherlands:ESA, 2008.
    59 X. Shen, L. Li, X. Wu, et al. Infrared Emissivity of Sr Doped Lanthanum Man-ganites in Coating Form[J]. Journal of Alloys and Compounds,2011,509:8116-8119.
    60 G. Tang, Y. Yu, W. Chen, et al. The Electrical Resistivity and Thermal Infrared Properties of La1-xSrxMnO3 Compounds [J]. Journal of Alloys and Compounds, 2008,461:486-489.
    61 G. Tang, Y. Yu, W. Chen, et al. Thermochromic Properties of Manganese Oxides La1-xAxMnO3 (A=Ca, Ba)[J]. Materials Letters,2008,62:2914-2916.
    62 G. Tang, Y. Yu, Y. Cao, et al. The Thermochromic Properties of La1-xSrxMnO3 Compounds[J]. Solar Energy Materials & Solar Cells,2008,92:1298-1301.
    63 X. Shen, G. Xu, C. Shao. The Effect of K+, Na+ Doping on Infrared Emissivity of Lanthanum Manganites[J]. Solid State Communications,2009,149:852-854.
    64 X. Shen, G. Xu, C. Shao, et al. Temperature Dependence of Infrared Emissivity of Doped Manganese Oxides in Different Wavebands (3-5 and 8-14 μm) [J]. Journal of Alloys and Compounds,2009,479:420-422.
    65 X. Shen, G. Xu, C. Shao. The Effect of B Site Doping on Infrared Emissivity of Lanthanum Manganites La0.8Sr0.2Mn1-xBxO3 (B=Tior Cu)[J]. Journal of Alloys and Compounds,2010,499:212-214.
    66 X. Shen, G. Xu, C. Shao. Influence of Structure on Infrared Emissivity of Lan-thanum Manganites [J]. Physica B,2010,405:1090-1094.
    67马欣新,江少群,唐光泽,等.磁控溅射La-Sr-Mn-0薄膜的可变发射率性能研究[J].材料保护,2008,41:242-245.
    68 C. Wu, J. Qiu, J. Wang, et al. Thermochromic Property of La0.8Sr0.2Mn03 Thin-film Material Sputtered on Quartz Glass[J]. Journal of Alloys and Compounds, 2010,506:L22-L24.
    69张锐.陶瓷工艺学[M].第1版,北京:化学工业出版社,2007.
    70 P. H. Keck, M. J. E. Golay. Crystallization of Silicon from a Floating Liquid Zone[J]. Phys. Rev.,1953,89:1297-1297.
    71 C. Monterrubion-Badillo, H. Ageorges, T. Chartier, et al. Preparation of LaMnO3 Perovskite Thin Films by Suspension Plasma Spraying for SOFC Cathodes [J]. Surface Coatings and Technology,2006,200:3743-3756.
    72 P. Fauchais. Understanding Plasma Spraying [J]. Journal of Physics D:Applied Physics,2004,37:R86-R108.
    73 D. P. Lim, D. S. Lim, J. S. Oh, et al. Influence of Post-treatments on the Con-stact Resistance of Plasma-sprayed La0.8Sr0.2Mn03 Coatings on SOFC Meatallic Interconnector[J]. Surface Coatings and Technology,2005,200:1248-1251.
    74 H.-K. Kang, P. R. Taylor. Direct Production of Porous Cathode Material La1-xSrxMnO3 Using a Reactive DC Thermal Plasma Spray System[J]. Journal of Thermal Spray Technology,2001,10:526-531.
    75 H. K. Kang, P. R. Taylor, J. H. Lee. Characterization of La0.8Sr0.2MnO3 Produced by a Reactive DC Thermal Plasma Spray System [J]. Plasma Chemistry and Plasma Processing,2003,23:223-232.
    76 H. W. Nie, T.-L. Wen, H. Y. Tu. Protection Coatings for Planar Solid Oxide Fuel Cell Interconnect Prepared by Plasma Spraying[J]. Materials Research Bulletin, 2003,38:1531-1536.
    77 X.-M. Wang, C.-X. Li, C.-J. Li, et al. Effect of Microstructures on Electrochem-ical Behavior of La0.8Sr0.2MnO3 Deposited by Suspension Plasma Spraying[J]. Int. J. Hydrogen Energy,2010,35:3125-3158.
    78 I. Golosnoy, A. Cipitria, T. Clyne. Heat Transfer Through Plasma-sprayed Ther-mal Barrier Coatings in Gas Turbines:A Review of Recent Work[J]. Journal of thermal spray technology,2009,18(5):809-821.
    79唐忠伟.薄膜材料制备原理技术及应用[M].第2版,北京:冶金工业出版社,2007.
    80 E. S. Vlakhov, K. Dorr, K.-H. Muller, et al. Magnetoresistance of Lao.7Sro.3Mn03 Thin Films Obtained by Magnetron Sputtering on Different Substrates [J]. Vac-uum,2000,58:364-368.
    81 E. Vlakhov, T. Donchev, A. Spasov, et al. Structural and Magnetotransport Properties of Magnetron Sputtered La0.7Sr0.3MnO3 Thin Films[J]. Vacuum,2002, 69(1-3):249-253.
    82 Y. S. Du, B. Wang, T. Li, et al. Effects of Annealing Procedures on the Struc-tural and Magnetic Properties of Epitaxial Lao.7Sr0.3Mn03 Films[J]. Journal of Magnetism and Magnetic Materials,2006,297:88-92.
    83 C. B. Samantaray, A. Dhar, M. L. Mukherjee, et al. RF Magnetron Sput-tered High-k Barium Strontium Titanate Thin Films on Magnetoresistive Electrode[J]. Materials Science and Engineering:B,2002, 88(1):14-17.
    84 D. R. Sahu, D. K. Mishra, S. H. Hung, et al. La0.67Ca0.33MnO3 Thin Films on Si (100) by DC Magnetron Sputtering Technique Using Nanosized Powder Compacted Target [J]. Materials Research Bulletin,2007,42(6):1119-1127.
    85 D. R. Sahu. The Properties of La0.7Sr0.3Mn03 Films Prepared by DC Magnetron Sputtering Using Nanosized Powder Compacted Target:Effect of Substrate Tem-perature[J]. Applied Surface Science,2008,255:1870-1873.
    86毕见强,赵萍,邵明梁,等.特种陶瓷工艺与性能[M].第1版,哈尔滨:哈尔滨工业大学出版社,2008:46.
    87滕凤恩,王煜明.X射线分析原理与晶体衍射实验[M].第1版,长春:吉林大学出版社,2002.
    88 V. M. Goldschmidt. Geochemistry[M]. Oxford University Press,1958.
    89 H. Y. Hwang, S.-W. Cheong, P. G. Radaelli, et al. Lattice Effects on the Magne-toresistance in Doped LaMnO3[J]. Physical Review Letters,1995,75:914-917.
    90 G. D. Marzi, Z. V. Popovic, A. Cantarero, et al. Effect of A-site and B-site Sub-stitution on the Infrared Reflectivity Spectra of La1-y/Ay/Mn1-xBxO3(A=Ba,Sr; B=Cu, Zn, Sc; 0< y≤0.3;0≤x≤0.1) Manganites[J]. Phys. Rev. B,2003, 68:064302.
    91 R. M. Eremina,I.I. Fazlizhanov, I. V. Yatsyk, et al. Phase Separation in Para-magnetic Eu0.6La0.4-xSrxMnO3[J]. Phys. Rev. B,2011,84:064410.
    92 Y. Okimoto, Y. Tokura. Optical Spectroscopy of Perovskite-type Manganites [J]. Journal of Superconductivity:Incorporating Novel Magnetism,2000,13:271.
    93 C. Boudaya, L. Laroussi, E. Dhahri, et al. Magnetic and Magnetoresistance Prop-erties in Rhombohedral La1-xKxMnO3 Perovskite-type Compounds [J]. J. Phys.: Condens. Matter.,1998,10:7485-7492.
    94亓淑艳,冯静,侯湘钰,等.K+掺杂对钙钛矿氧化物Lao.7Sro.3-xKxMn03(0.05≤ x≤0.3)的结构及磁性的影响[J].应用化学,2008,25:825-828.
    95 J. Zhao,1. Li, G. Wang. Synthesis and Magnetocaloric Properties of La0.85K0.15Mn03 Nanoparticles[J]. Advanced Powder Technology,2011, 22(1):68-71.
    96 A. M. Aliev, A. G. Gamzatov, A. B. Batdalov, et al. Structure and Magne-tocaloric Properties of La1-xKxMn03 Manganites[J]. Physica B:Condensed Matter,2011,406(4):885-889.
    97 R. D. Shannon. Revised Effective Ionic Radii and Systematic Studies of Inter-atomic Distances in Halides and Chalcogenides[J]. Acta Cryst.,1976, A32:751-767.
    98 申星梅.掺杂型镧锰氧化物的制备及其红外发射率研究[D].南京:南京航空航天大学,2010.
    99 A. N. Ulyanov, G. V. Gusakov, V. A. Borodin, et al. Ferromagnetic Ordering Temperature and Internal Pressure in Manganites La0.7Ca0.3-xSrxMnO3[J]. Solid State Communications,2001,118:103-105.
    100 A. N. Ulyanov, S. C. Yu. Anomaly of Magnetization under the Structural Phase Transition in La0.7Cao.165Sr0.135Mn03 Manganite[J]. Physica B,2005,368:42-45.
    101廖乾初,蓝芬兰.扫描电镜原理及应用技术[M].北京:冶金工业出版社,1990.
    102 P. Radaelli, G. Iannoe, H. Y. Marezio, M.and Hwang, et al. Structural Ef-fects on the Magnetic and Transport Properties of Perovskite A1-xA'xMnOs (x=0.25,0.3)[J]. Physica Reviews B,1997,56:8265-8276.
    103 Y.-M. Kang, N.-H. Ka, D.-G. Yoo, et al. Magneto-transport Properties of La0.7Ca0.3-xSrxMnO3 Thin Films Deposited by Pulsed Electron Deposition[J]. IEEE Transactions on Magnetics,2009,45:2572-2575.
    104 G. Garbarino, C. Acha. A Phenomenological Model for the Pressure Sensitivity of the Curie Temperature in Hole-doped Manganites[J]. Europhys. Lett.,2009, 88:46003.
    105 N. Zhang, W. Ding, W. Zhong, et al. Tunnel-type Giant Magnetoresistance in the Granular Perovskite La0.85Sr0.15MnO3[J]. Physical Review B,1997,56:8138-8142.
    106 P. Kameli, H. Salamati, A. Aezami. Influence of Grain Size on Magnetic and Transport Properties of Polycrystalline La0.8Sr0.2MnO3 Manganites[J]. Journal of Alloys and Compounds,2008,450:7-11.
    107 N. Ibrahim, A. Yahya, S. Rajput, et al. Double Metal-insulator Peaks and Effect of Sm3+ Substitution on Magnetic and Transport Properties of Hole-doped La0.85Ag0.15Mn03[J]. Journal of Magnetism and Magnetic Materials,2011, 323:2179-2185.
    108杨世铭,陶文铨.传热学[M].第3版,北京:高等教育出版社,2004.
    109李强,匡柳,宣益民.热致变色可变发射率材料的制备与辐射特性研究[J].工程热物理学报,2009,30:1005-1008.
    110 P. Herve, N. Rambure, A. Sadou, et al. Direct Measurement of Total Emissivities at Cryogenic Temperatures:Application to Satellite Coatings[J]. Cryogenics, 2008,48:463-468.
    111 C. Fabron, A. Meurat. Measurements of Total Hemispheric Emissivity at Low Temperatures—Designing a Cryogenic Test Bench [C]//B. Schurmann. Fourth International Symposium Environmental Testing for Space Programmes. ESA, 2001,467:51-59.
    112 R. Siegel, J. R. Howell. Thermal Radiation Heat Transfer[M].3rd. ed., Washing-ton:Hemisphere Publishing Corp.,1992.
    113 P. P. Altermatt, Y. Yang, J. Wang, et al. Optical Modeling of Nanostructured Films for Selective Coatings[C]//B. K. Tsai. SPIE Proceedings. San Diego, Cal-ifornia:SPIE,2008,7046:704607-1-9.
    114 A. Mecherikunnel, C. H. Duncan. Total and Spectral Solar Irradiance Measured at Ground Surface[J]. Appl. Opt.,1982,21:554-556.
    115 C. A. Gueymard. The sun's Total and Spectral Irradiance for Solar Energy Applications and Solar Radiation Models[J]. Solar Energy,2004,76(4):423-453.
    116 T.-h. Arima, Y. Tokura. Optical Study of Electronic Structure in Perovskite-type RM03 (R=La,Y; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu)[J]. Journal of the Physical Society of Japan,1995,64:2488-2501.
    117 Y. Okimoto, T. Katsufuji, T. Ishikawa, et al. Variation of Electronic Structure in La1-xSrxMnO3,(0    118 Y. Tomioka, A. Asamitsu, Y. Tokura. Magnetotransport Properties and Magne-tostructural Phenomenon in Single Crystals of La0.7(Ca1-gSry)0.3MnO3[J]. Phys. Rev. B,2000,63:024421-1-7.
    119 P. Schiffer, A. P. Ramirez, W. Bao, et al. Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La1-xCaxMnO3[J]. Physical Review Letters, 1995,75:3336-3339.
    120 J. R. Sun, G. H. Rao, Y. Z. Zhang. Effects of Inhomogeneous Oxygen Content in (La,Gd)0.7Ca0.3MnO3+δperovskites[J]. Appl. Phys. Lett.,1998,72:3208.
    121 K. H. Kim, J. Y. Gu, H. S. Choi, et al. Frequency Shifts of the Internal Phonon Modes in La0.7Ca0.3MnO3[J]. Physical Review Letters,1996,77:1877-1880.
    122 P. Dore, A. Funaro, A. Sacchetti, et al. Study of Infrared Phonons in the Lao.7Sro.3Mn03 Manganite by Means of Reflectance Measurements on Epitax-ial Films[J]. Eur. Phys. J. B,2004,37:339-344.
    123 D. Fan, Q. Li, Y. Xuan. Emissivity and Optical Properties of Thermochromic Ma-terial La0.7Ca0.3-xSrxMnO3 (0    124 V. Lucarini, J. Saarinen, K.-E. Peiponen, et al. Kramers-Kronig Relations in Optical Materials Research[M]. Springer,2005.
    125傅竹西,林碧霞,何一平,等.ZnO薄膜光学常用数[J].发光学报,2004,25:159-162.
    126 J. HUANG, Y. XUAN, Q. LI. Investigation on Emissive Properties of Peroskite-type Oxide Lsmo with Grating Surface[J]. SCIENCE CHINA Technological Sci-ences,2011,54:220.
    127 K. Takenaka, K. Iida, Y. Sawaki, et al. Optical Reflectivity Spectra Measured on Cleaved Surfaces of La1-xSrxMnO3:Evidence Against Extremely Small Drude Weight [J]. Journal of the Physical Society of Japan,1999,68:1828-1831.
    128 F. Gervais, J.-L. Servoin, A. Baratoff, et al. Temperature Dependence of Plas-mons in Nb-doped SrTiO3[J]. Physical Review B,1993,47:8187-8194.
    129 P. S. Ricardo, M. Lobo, F. Gervais. Bismuth Disproportionation in BaBiO3 Studied by Infrared and Visible Reflectance Spectra[J]. Physical Review B,1995, 52:13294-13299.
    130 A. V. Boris, N. N. Kovaleva, A. V. Bazhenov, et al. Infrared Optical Properties of La0.7Ca0.3Mn03 Epitaxial Films[J]. J. Appl. Phys,1997,81:5756-5758.
    131沈学础.半导体光谱和光学性质[M].第2版,北京:科学出版社,2002.
    132 J. G. Fleming, S. Y. Lin, I. El-Kady, et al. All-metallic Three-dimensional Pho-tonic Crystals with a Large Infrared Bandgap[J]. Nature,2002,417(6884):52-55.
    133 H. Sai, Y. Kanamori, H. Yugami. Tuning of the Thermal Radiation Spectrum in the Near-infrared Region by Metallic Surface Microstructures[J]. J. Micromech. Microeng.,2005,15:S243-S249.
    134 A. Narayanaswamy, G. Chen. Thermal Emission Control with One-dimensional Metallodielectric Photonic Crystals[J]. Phys. Rev. B,2004,70:125101.
    135邢文训,谢金星.现代优化计算方法[M].第1版,北京:清华大学出版社,2003.
    136唐晋发,顾培夫,刘旭.薄膜光学与技术[M].第1版,浙江:浙江大学出版社,2006.
    137 P. Berning, A. Turner. Induced Transmission in Absorbing Films Applied to Bandpass Filter Design[J]. J. Opt. Soc. Am.,1957,47(3):230-239.
    138 H. A. Macleod. Thin-film Optical Filters[M].2nd ed., New York:Macmillan, 1986.
    139王洪昌,王占山.多层膜优化设计方法[J].应用光学,2005,26(5):50253-50256.
    140 A. Tikhonravov, M. Trubetskov, G. W. DeBell. Application of the Needle Op-timization Technique to the Design of Optical Coatings[J]. Appl. Opt.,1996, 35(5):493-5508.
    141 C. Chang, Y. Lee. Optimization of a Thin-film Multiplayer Design by Use of the Generalized Simulated-annealing Method[J]. Opt. Lett.,1990,15(11):595-597.
    142 S. Martin, J. Rivory, M. Schoenauer. Synthesis of Optical Multilayer Systems Using Genetic Algorithms [J]. Appl. Opt.,1995,34:2247-2254.
    143 M. Srinivas, L. M. Patnaik. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms [J]. IEEE Transactions on Systems, Man and Cybernetics, 1994,24:656-667.
    144 J. Zhang, Z. Xu, Y. Liang. Integrated Anneal Genetic Algorithm and its Sufficient Convergence Preconditio[J]. Science in China (Series B),1997,27(2):154-164.
    145 S. M. Libelli, P. Alba. Adaptive Mutation in Genetic Algorithms [J]. Soft Com-puting,2000,4:76-80.
    146 J. H. Holland. Adaptation in Natural and Artificial Systems[M]. University of Michigan Press,1975.
    147 L. Davis. Handbook of Genetic Algorithms[M]. New York:Van Nostrand Rein-hold,1991.
    148 D. G. Li, A. C. Watson. Optical Thin Film Optimization Design Using Ge-netic Algorithms[C]//IEEE International Conference on Intelligent Processing Systerms. Beijing,in China,1997:132-136.
    149 K. Shimazaki, A. Ohnishi, Y. Nagasaka. Computational Design of Solar Reflec-tion and Far-infrared Transmission Films for a Variable Emittance Device [J]. Appl. Opt.,2003,42:1360-1366.
    150 E. Palik. Handbook of Optical Constants of Solids[M].1st ed., New York: Academic Press,1985.
    151 IL-Kwon.Jeong, Ju-Jang.Lee. Adaptive Simulated Annealing Genetic Algorithm for System Identification [J]. Engineering Applications of Artificial Intelligence, 1996,9:523-532.
    152刘广平.微结构热辐射光谱控制特性及其应用研究[D].南京:南京理工大学,2008:81-83.
    153 D. Fan, Q. Li, Y. Xuan, et al. Temperature-dependent Infrared Properties of Ca Doped (La,Sr)MnO3 Compositions with Potential Thermal Control Applica-tion[J]. Applied Thermal Engineering,2013,51(1-2):255-261.
    154 J. Milton. Paradise Lost:A Poem in Twelve Books[M].1667.
    155韩虹,王子玉,钟兴旺.空间环境对飞行器的影响[J].空间电子技术,2011,1:1-6.
    156王同权,沈永平,王尚武,等.空间辐射环境中的辐射效应[J].国防科技大学学报,1999,21:36-39.
    157沈自才,赵春晴,丁义刚,等.电子辐照ITO/F46/Ag热控涂层的电学性能退化及损伤机理[J].强激光与粒子束,2010,22:1364-1368.
    158 C. Tonon, C. Duvignacq, G. Teyssedre, et al. Degradation of the Optical Proper-ties of ZnO-based Thermal Control Coatings in Simulated Space Environment [J]. J. Phys. D:Appl. Phys.,2001,34:124-130.
    159 D. E. Bowles, S. S. Tompkins, G. F. Sykes. Electron Radiation Effects on the Thermal Expansion of Graphite Resin Composites [J]. Journal of Spacecraft and Rockets,1986,23:625-629.
    160 R. Mishra, S. Tripathy, D. Sinha, et al. Optical and Electrical Properties of some Electron and Proton Irradiated Polymers [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2000,168(1):59-64.
    161 A. Sharma, N. Sridhara. Degradation of Thermal Control Materials under a Simulated Radiative Space Environment [J]. Advances in Space Research,2012, 50(10):1411-1424.
    162卢榆孙,冯煜东,王陇民,等.柔性热控材料性能的实验方法研究[J].真空与低温,2000,6:8-14.
    163 H. Xiao, C. Li, M. Sun, et al. An Analysis on Optical Degradation of ZnO/silicone White Paint under Proton Exposure [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2008, 266(1):86-92.
    164 H. Xiao, M. Sun, C. Li, et al. Formation and Evolution of Oxygen Vacancies in ZnO White Paint During Proton Exposure [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2008,266(14):3275-3280.
    165 H. Xiao, C. Li, D. Yang, et al. A Study on Damage Effects of<200 KeV Protons on ZnO/silicone White Paint[J]. Journal of Materials Research,2006,21:3022-3028.
    166冯伟泉,丁义刚,闫德葵,等.地球同步轨道长寿命卫星热控涂层太阳吸收率性能退化研究[J].中国空间科学技术,2005,25:34-40.
    167 S. Jiang, X. Ma, G. Wang, et al. Characteristics of La0.7Sr0.3Mn03_δ Films Treated by Oxygen Plasma Immersion Ion Implantation [J]. Surface and Coatings Technology,2012.
    168焦正宽,曹光旱.磁电子学[M].第1版,杭州:浙江大学出版社,2006.
    169 P. Potts. A Handbook of Silicate Rock Analysis[M]. Glasgow:Blackie,1987:336.
    170 J. F. Ziegler, M. Ziegler, J. Biersack. SRIM—the Stopping and Range of Ions in Matter (2010), SRIM Available:www.srim.org[J]. Nucl. Instrum. Meth. B, 2010,268:1818-1823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700