基于DMD的红外双波段共光路投影物镜设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于温度高于绝对零度的所有物体都有红外辐射,为探测和识别目标提供了客观基础。红外系统的主要工作方式为被动式,它接收目标自身发射或反射其他光源的红外辐射,优点是隐蔽性好,不被敌方电子干扰。因而红外技术被广泛应用于军事领域,为警戒、侦查、防空和制导提供了有力的技术支持。随着红外技术的进步,红外制导技术由点源跟踪制导逐渐发展为成像跟踪制导。成像跟踪制导技术是通过光机扫描和多元探测器获取目标和图像信息,经信息处理和鉴别,自动跟踪和打击目标。但现有的红外导引头绝大多数只针对单波段设计,在复杂背景、恶劣环境或存在目标伪装时,红外探测器接收到的信息量明显不足,给目标的探测和识别带来了一定影响。随着红外焦平面阵列的发展和可同时响应两个红外波段的焦平面阵列问世,使红外双波段成像制导成为可能。双波段导引头的性能测试也成为了研究的焦点。传统的场外试飞实验不仅耗时费钱,而且数据采集困难,精度低;因此针对双波段导引头研制红外双波段景象生成器具有重大意义。
     本文根据双波段导引头的特点,结合红外成像原理开展双波段景象生成器的研究,完成了如下工作:
     (1)介绍了红外双波段景象发生器的研究基础。主要包括红外双色成像制导技术、景象生成技术的发展及基于DMD的红外双波段景象发生器的结构和工作原理。并对其核心原件数字微镜器件(DMD)进行了着重研究,就DMD应用于红外双波段景象发生器需改进的问题进行了说明和讨论。
     (2)介绍变焦系统的原理,对不同补偿方式的变焦系统进行了对比和分析,根据其特点和系统的设计要求,选择了合适的变焦补偿方式。讨论了基于高斯光学理论而建立的机械补偿变焦系统的变焦方程,为变焦系统的结构设计作了理论准备。
     (3)叙述了红外光学系统的结构形式,分析了其优缺点后,确定了本设计采用折射式共光路这种形式来实现。红外双波段共光路光学系统的设计难点是校正双波段的像差;使两个波段同时达到良好的成像质量,本文简述了红外成像系统产生的各种像差及如何校正,着重介绍了双波段色差的产生原理以及如何对双波段共光路系统消除色差,并指出了双波段像差校正的关键。深入讨论了衍射元件及非球面的原理,为系统结构的简化及像差的消除提供了理论支持。
     (4)根据红外景象生成器的使用要求确定了红外双波段共光路投影物镜设计参数及指标。使用Zemax光学设计软件设计了符合要求的双波段共光路投影物镜,工作波段为3-5μm和8.12μm;F数为2.8;焦距为200mm。并对设计完成的投影物镜进行了像质评价,传递函数在空间截止频率为171p/mm时红外中波波段能达到0.7以上,红外长波波段能达到0.4以上;点列图中几乎所有能量均集中在艾里斑以内;波像差满足瑞利判据。其像质能够满足设计要求,设计结果良好,最后对设计结果进行了规划,以满足加工要求。
     (5)在红外双波段共光路投影物镜的基础上,为了实现模拟不同大小目标的需求,设计了红外双波段共光路两档变焦投影物镜。焦距范围为50-200mm,工作波段为3-5μm和8-12μm,变焦过程中F数为3且恒定不变。对设计完成的投影物镜进行了像质评价,两个波段传递函数在空间截止频率为171p/mm时均能达到0.3以上;点列图中大部分能量均集中在艾里斑以内。其像质能够满足设计要求,设计结果良好,最后对设计结果进行了规划,以满足加工要求。
     (6)最后对两个设计结果进行了公差分析,证明了其设计的可行性。
When the temperature is above absolute zero, all the objects produce infrared radiation. Detecting and reorganizing the target is based on the infrared radiation of the object. The main working mode of infrared system is passive. It accepts the infrared radiation of target itself emitting or reflecting from another source. The advantage is good for hiding and no electronic interference from enemy. Thus the infrared technology is widely used in military field. It provides a strong technical support for the warning, detection, air defense and guidance. With the development of infrared technology, the Image tracking guidance gradually replaces the point source tracking guidance. The technology of the Image tracking guidance gets the information of the target and background through optical mechanical scanning and infrared detector. Than processed and analyzed the information, it could automatically track and the attack targets.But currently the vast majority of infrared seeker only works for single-band. The infrared detectors received information obviously insufficient when environment is harsh and background is complex or a pseudo target existed.It affects the detected and reorganized the target. With the development of the infrared focal array plane, it could respond two wavebands at the same time have come out. It is possible to develop the dual-band infrared imaging guidance. The performance testing of dual-band seeker has also become a focus of research. The traditional flight test at outside not only needs a high cost and more time, but also has a low accuracy and gets the data difficultly. Therefore, the dual-band infrared scene generator is developed for dual-band infrared seeker has a great significance.
     According to the characteristics of dual-band seeker, the research of dual-band scene generator combined with the principle of infrared imaging is conducted. This paper completed the following work:
     (1)The basic knowledge of infrared optical system is studied. It includes the dual-band infrared imaging guidance technology, the development of scene generation technology, the structure and working principle based on DMD.DMD is the core device of the dual-band infrared scene generator.So it has been studied significantly. It is discussed and described the problem of DMD what needs improvement used in infrared dual-band scene generator.
     (2) The principles of zoom system are described. It is compared and analyzed the zoom system what has different ways of compensation mode. According to its characteristics and the system design requirements, the appropriate zoom compensation mode is selected. It is prepared for the zoom system design that discussed the zoom equations of mechanical compensation zoom system based on the Gaussian optical theory.
     (3) The structure of infrared optical system is described.Compared with the three structures; we can get the advantages and disadvantages. Then the design uses a refractive co-axial structure. The design difficulty of the infrared dual-band coaxial optical system is correct the dual-band aberration and get the prefect image quality of dual-band at the same time.This paper describes theprinciple of dual-band chromatic aberration and how to correct various aberrations of infrared optical system. Then we get the key of corrected the dual-band aberration.The principle of diffraction and the asphericalelement is discussed.lt provides theoretical support for simplified the system structure and correctedthe aberrations
     (4) The design parameters and indicators of Infrared Dual-band of optical projection lens is determined according to the requirements of infrared sense generation. The infrared dual-waveband coaxial projection lens is designed used the Zemax software. The working waveband is3-5μm and8-12μm. The focal length is200mm. The F-number is2.8. At cut-off frequency17cy/mm, the MTF of the infrared medium-wave is greater than0.7for each field of view, and MTF of the infrared long-wave is greater than0.4for each field of view. The root mean square radius of spot diagram for the each field of view is much smaller than airy disk radius. The wave-front aberration meets the Rayleigh criterion. The image quality of this projector objective is perfect and meets the design requirements. Finally, the design results were normalized to meet the processing requirements.
     (5)Based on the infrared dual-waveband coaxial projector objective, infrared dual-waveband coaxial two step zoom projector objective is designed in order to realize the requirements of simulated different sizes target. The working waveband is3-5μm and8-12μm. The focal length range is50-200mm. The F-number is3. At cut-off frequency17cy/mm, the MTF of the infrared dual-wave is greater than0.3for each field of view.The root mean square radius of spot diagram for the each field of view is much smaller than airy disk radius. The image quality of this projector objective is perfect and meets the design requirements. Finally, the design results were normalized to meet the processing requirements.
     (6) Finally, the tolerance analysis is conducted for all the results of design. It proved the result is feasible.
引文
[1]赵秀丽.红外光学系统设计.北京:机械工业出版社.1986.
    [2]蔡建荣,严高师,刘昌松等.基于DMD的红外动态图像生成技术.激光与红外,2008,38(4):338-341.
    [3]张凯,孙力.闫杰.基于DMD的红外场景仿真器设计及测试.红外与激光工程,2008,37(6):369-372.
    [4]Beasley D B, Saylor D A. Application of multiple IR projector technologies for AMCOM HWIL simulations. SPIE, 1999,3697:223-231.
    [5]李守荣,梁平治.动态红外景象产生技术.红外与激光工程,2001,30(3):9-15.
    [6]张宇,李正,郭俊等.基于DMD的红外景象投影系统光学设计.仪器仪表学报,2011,32(6):86-90.
    [7]王永仲.现代军用光学技术.北京:科学出版社.2007.
    [8]N. K. Del Grande, etal. Dual-band infrared capabilities for imaging birdied object Sites. SPIE,1993,1942:166-177.
    [9]P. Jacobs. Carabas-A programmable radiometer for the characterization of backgrounds in thethermal infrared. International Journal of Remote Sensing,1992(10):2865-2871.
    [10]H. Jiang. Right-speed dual-spectra infrared imaging. Opt. Eng.,1993,32(6):1281-1283.
    [11]W. C. Sweatt. Describing holographic and optical elements as lenses. J. Opt. Soc. Am. A.,1997,7(11):803-808.
    [12]M. H. Russell, U. K. Thomas. Hybrid refractive/diffractive elements in lenses for staring focalplanearrays. SPIE, 1992,1690:80-91.
    [13]D. W. Sweeney, G. E. Sommargren. Harmonic diffractive lenses. Applied Optics,1995,34(14):2469-2475.
    [14]D. Faklis, M. G. Morris. Spectral properties of multiorder diffractive lenses. Applied Optics,1995,34(14): 2462-2468.
    [15]王海涛,耿安兵.一体化红外双波段成像光学系统.红外与激光工程,2008,37(3):489-492.
    [16]龙夫年,王治乐.折反式双波段凝视成像系统.申请号200910072655.9
    [17]程珂.红外变焦系统的研究.西安:西安光学精密机械研究所,2005.
    [18]Allen Mann. Design and analysis of a compact wide-field unobscured zoommirror system. SPIE,1997, Vol.3129: 97-107.
    [19]R.Barry Johnson. Compact Infrared Zoom Lens for the 3 to 5μm Spectral Band. SPIE.1996, Vol.2744:181-192.
    [20]Li Weizhuo, Abeysinghe Don C, Boyd Joseph T. Wavelengh multiplexing of microelectromechanical system pressure and temperature sensors using fiber Bragg gratings and arrayed waveguide gratings. Optical Engineering, 2003,42(2):431-438.
    [21]Thomas H. Jamieson. Diffraction Limited Infrared Zoom Collimator. SPIE,1997, Vol.3129:131-137.
    [22]刘朝华,潘兆鑫.用于红外焦平面成像的变焦距光学系统.红外.2004,8:10-16.
    [23]崔庆丰.用二元光学元件实现复消色差.光学学报.1994,14(8):876-881.
    [24]袁涛,熊衍建,吴晗平.空间相机共轴三反红外光学系统设计.光电技术应用,2011,26(2):21-26.
    [25]卜江萍.用于凝视式相机的大视场离轴三反光学系统的研究.西安:西安光学精密机械研究所.2006.
    [26]柴利飞.一种折反射式远红外光学系统设计.长春:长春理工大学,2012.
    [27]江伦.大变倍比长焦距中波红外连续变焦距系统研究.长春:长春光学精密机械与物理研究所,2012.
    [28]王鹏,赵文才,胡明勇等.折反式大口径三组元红外变焦系统设计.光学学报,2002,22(5):577-581.
    [29]Vellamp Wilfrid B. Overview of microoptics:past, present and future. SPIE,1991,1544:287-299.
    [30]Veldkamp Wilfrid B, McHugh T J. Binary optics. Scientific American,1992,266(5):92-97.
    [31]Herzig Hans Peter. Micro-optics Elements, System and Applications. Taylor & Francis Inc.,1997.
    [32]金国藩,严瑛白,邬敏贤等.二元光学.北京:国防工业出版社.1998.
    [33]Shakher Chandra, Prakash Shashi, Nand Daya, et al. Collimation testing with circular gratings. Applied Optics,2001, 40(8):1175-1179.
    [34]Ayliffe Michael H, Chateauneuf Marc, Rolston David R, et al. Six-degrees-of-freedom alignment of two-dimensional array components by use of-axis linear Fresnel zone plates.Applied Optics,2001,40(35): 6515-6526.
    [35]Li Yi, Yi Xinjian, Hao Jianhua. Design and fabrication of 128×128 diffractive micro-lens arrays for infrared focal plane arrays. SPIE,1998,3545:210-213.
    [36]Harchaoui Bouchra, Guerineau Nicolas, Caes Marcel, et al. Modulation transfer function measurement of an infrared focal plane array using a nondiffracying array generator. SPIE,2000,4130:218-225.
    [37]Shaoulov Vesselin, Rolland Hannick P. Design and assessment of microlenslet-array relay optics. Applied Optics, 2003,42(34):6838-6845.
    [38]Blanchard Paul M, Greenaway Alan H. Simultaneous multiplane imaging with a distorted diffraction grating. Applied Optics,1999,38(32):6692-6699.
    [39]Chen C Bill Hegg Ronald G, Todd Johnson W, et al. Visible-band tested projector with a replicated diffractive optical element. Applied Optics,1999,38(34):7105-7111.
    [40]Chang chong-Min, Shieh Han-Ping D. Design of illumination and projection optics for projectors with single digital micromirror devices. Applied Optics,2000,39(19):3202-3208.
    [41]Michael Morris G, Raguin Daniel R, Rossi Markus, et al. Diffractive optics technology foe projection displays. SPIE, 1996,2650:112-119.
    [42]Jang Ju-Seog, Javidi Bahrain. Three-dimensional synthetic aperture integral imaging. Optics Letters,2002,27(13): 1144-1146.
    [43]Ura Shogo, Sasaki Takahiro, Nishihara Hirodhi. Combination of gating lenses for color splitting and imaging. Applied Optics,2001,40(32):5819-5824.
    [44]Parikka Marko, Kaikuranta Terho, Laakkonen Pasi, et al. Deterministic diffuser for dispaly. Applied Optics,2001, 40(14):2239-2246.
    [45]Early James T, Hyde Roderick, Baron Richard L. Twenty-meter space telescope based on diffractive Fresnel lens. SPIE,2004,5166:148-156.
    [46]Hyde Roderick A.Eyeglass I. Very large aperture diffractive telescopes. Applied Optics,1999,38(19):4198-4212.
    [47]Barton Ian M, Britten Jerald A, Dixit Shamasundar N, et al. Fabrication of large-aperture lightweight diffractive lenses for use in space. Applied Optics,2001,40(4):447-451.
    [48]Mchugh T J. An overview of binary optics at Perkin-Elmer Corporation. SPIE,1988,884:100
    [49]Cox J A. Overview of diffraction optics at Honetwell. SPIE,1988,884:127-132.
    [50]Ricks Douglas W, Wayne Willhite H. Hand-held imaging laser radar. SPIE,1997,3065:34-41.
    [51]Marron Joseph C, Schroeder Kirk S. Holographic laser radar. Optics Letters,1993,18(5):385-387.
    [52]Missig Michael D, Michael Morris G. Diffractive optics applied to eyepiece design. Applied Optics,1995,34(14): 2452-2461.
    [53]Wang Zhao-Qi, Zhang Hui-Juan, Fu Ru-Lian, et al. Hybrid diffractive-refractive ultra-wide-angle eyepiece. Optik, 2002,113(4):159-162.
    [54]Hua Hong, Ha Yonggang, Rolland Jannick P. Design of an ultra-light and compact projection lens. Applied Optics, 2003,42(1):97-107.
    [55]Bill Chen C, Hegg Ronald G, Todd Johnson W, et al. Visible-band tested projector with a replicated diffractive optical element. Applied Optics,1999,38(34):7105-7111.
    [56]Bacchus Jean-Marie. Using new opticak materials and DOE in low-cost lenses for un-cooled IR cameras. SPIE,2004, 5249:425-432.
    [57]Rouke Jennifer L, Kate Crawford Mary,Fischer David J, et al. Design of three-element night-vision goggle objectives. Applied Optics,1998,37(4):622-626.
    [58]Mait Joseph N, Hoppe Michael. Design of a diffranctive variable magnification telescope. SPIE,1994,2152:14-20.
    [59]Yoon Youngshik. Design and tolerancing of achromatic and anastigmatic diffractive-refractive lens systems compared with equivalent conventional lens systems. Applied Optics,2000,39(16):2551-2558.
    [60]Kerget I V, Korneychik V L, Ludryashov A A. Infrared dual-magnification telescope using diffractive optics. SPIE, 2000,4340:152-154.
    [61]Ornelas-Rodriguez Manuel, Calixto Sergio, Sheng Yunlong, et al. Thermal embossing of mid-infrared diffractive optical elements by use of a self-processing photopolymer master. Applied Optics,2002,41(22):4590-4595.
    [62]ISO/DIS 101 10-Part2. Optics and optical instruments-Preparation of drawings for optical elements and system-Part2: Material Imperfections-Stess birefringence,1996.
    [63]杨力.先进光学制造技术.北京:科学出版社,2001.
    [64]Feit M D, Rubenchik A M. Influence of subsurface cracks on laser induced surface damage. Proc. SPIE,2004,5273: 264-272.
    [65]李圣怡,戴一帆等.大中型光学非球面镜制造与测量新技术.北京:国防工业出版社,2011.
    [66]E Heynacher. Asheric optics. Physical Technology,1979,56(3):10-20.
    [67]潘君骅.光学非球面设计加工与检验.北京:科学出版社,1994.
    [68]M. Rocktacblel, H. J. Tiziani. Limitations of the Shack-Hartmarm sensor for testing optical aspherics. Optics & Laser technology,2002,34(2):631-637.
    [69]镐洪云,熊涛.中波红外两档变焦光学系统.光学精密工程,2008,16(10):1891-1894.
    [70]Gao Hongyun, Fu Rulian,Zhuo Ranran. Novel high magnification zoom laser beam expander Optoelectronics Letters,2006,2(6):39-41.
    [71]郜洪云,熊涛,杨长城.中波红外连续变焦光学系统.光学精密工程.2007,15(7):1038-1042.
    [72]徐南荣,卞南华.红外辐射与制导.北京:国防工业出版社,1997.
    [73]M. Welkowsky. IR Simulation Using the Liquid Crystal Light Valve. SPIE.1987,765:89-93.
    [74]B. Philippe, C. Lionel. Design of a Low-Cost Cooled Dynamic Infrared SceneGenerator Including a Non-Uniformity Correction Device. SPIE,1999,3697:172-181.
    [75]G. Rusche. IR Emitting CRT. SPIE,1987,765:85-87.
    [76]王云萍,赵长明.基于DMD的动态红外景象仿真系统.红外与激光工程,2009,38(6):966-970.
    [77]D. B. Beasley, J. B. Cooper. Diode Laser Arrays for Dynamic Infrared SceneProjection. SPIE,1993,1967:77-88.
    [78]D. B. Beasley, J. B. Cooper, S. Mobley, et al. Diode Laser Based Infrared SceneProjector. SPIE,1995,2469:20-29.
    [79]D. B. Beasley, J. B. Cooper. Performance Capabilities and Utilization of MICOM's Diode Laser Based Infrared Scene Projector Technology. SPIE,1996,2741:110-118.
    [80]D. B. Beasley, D. A. Saylor. Current Status of the Laser Diode Array ProjectorTechnology. SPIE,1998,3368:88-96.
    [81]M. Daehler. Infrared Display Array. SPIE,1987,765:94-101.
    [82]S. P. Lake, A. P. Pritchard,I. M. Sturland, et al. Description and Performance ofan Electrically Heated Pixel IR Scene Generator. SPIE,1991,1486:286-293.
    [83]B. E. Cole, C. J. Han, R. E. Higashi, et al.512×512 Infrared Cryogenic SceneProjector Arrays. Sensors and Actuators A.1995,48:193-202.
    [84]B. E. Cole, R. E. Higashi, J. Rdley.512×512 WISP (Wideband Infrared SceneProjector) Arrays. SPIE,1996,2741: 81-93.
    [85]B. E. Cole, R. E. Higashi, J. Rdley. Large-area Infrared Microemitter Arrays for Dynamic Scene Projection. SPIE, 1998,3368:57-70.
    [86]葛成良,范国滨,梁正.基于电阻阵列动态红外场景产生器发展现状.激光与光电子学进展.2005,42(7):17-25.
    [87]Easley D B, Benderm, Crosbyj, etal. Dynamic infrared scene projectors based upon the DMD. SPIE,2009,7210: 721001-1-2.
    [88]王明刚.DLP光机特性的分析与测量研究.杭州:浙江大学,2005.
    [89]Michael R D. DMD reliability:A MEMS success story. SPIE,2003,4980:1-11.
    [90]陈二柱,梁平治.数字微镜器件动态红外景象投影技术.红外与激光工程,2003,32(4):331-334.
    [91]Knipe R L. Challenges of a DigitalMicro-mirrorDevice:modeling and design. SPIE,1996,2783:135-145.
    [92]刘莞尔.红外动态图像仿真系统中DMD芯片的灰度调制技术研究.成都:电子科技大学,2008.
    [93]贾建援,陈恭华.数字微反射镜的机械光学特征研究.电子机械工程,2000,86(4):3-7.
    [94]Matthew S. Brennesholtz, Edward H. Strpp. Projection Displays (SencondEdition). John Wiley & Sons Ltd.2008
    [95]刘旭,李海峰编.现代投影显示技术.杭州:浙大出版社出版社,2009.
    [96]J. W. Pan, C. M. Wang, W. S. Sun. Portable Digital Micro-mirror Device Projector Using APrism. Applied Optics, 2007,46(22):5097-5102.
    [97]杨凤和.DLP技术及其投影显示应用.长春:长春光学精密机械与物理研究所,2005.
    [98]邹静娴,吴荣治.数字光处理(DLP)投影系统.电视技术,2003(4):36-38.
    [99]李健敏.DLP投影仪光电成像原理及特点.重庆科技学院学报(自然科学版),2008(10):108-110.
    [100]Beasley D B, Saylor D A, Buford J. Overview of dynamic scene projectors at the US Army Aviation and Missile Command. SPIE,2002,4714:147-157.
    [101]陈二柱.DMD动态红外景象投影技术.红外,2004(2):28-35.
    [102]D. B. Beasley, D. A. Saylor. Advancements in Dynamic Scene ProjectionTechnologies at the US Army Aviation and Missile Command. SPIE,2000,4027:278-289.
    [103]陈建华,朱明,黄德天.数字微镜器件动态场景投影技术.中国光学与应用光学,2010(3):325-336.
    [104]王文生,尚吉扬,张宇等.用于红外******棱镜系统.申请号201110014814.7.
    [105]李娟.红外变焦距光学系统的设计.西安:西安电子科技大学,2007.
    [106]陈吕吉,李萍.光学补偿中波红外变焦光学系统设计.红外技术,2010,32(11):645-648.
    [107]尹娜,孟庆超,齐雁龙等.中波红外连续变焦光学系统设计.红外技术,2009,31(12):694-697.
    [108]张良.中波红外变焦距系统的光学设计.应用光学,2006,27(1):32-34.
    [109]韩莹,王肇圻,吴环宝等.紧凑型8-12μm波段折/衍混合双位置两档变焦光学系统设计.光子学报.2007,36(5):886-889.
    [110]陶纯堪.变焦距光学系统设计.北京:国防工业出版社,1988.
    [111]严树华.衍射微光学设计.北京:国防工业出版社,2011.
    [112]马韬.多层衍射光学元件设计理论及其在混合光学系统中的应用.杭州:浙江大学,2006.
    [113]杨鹏.双视场折/衍混合中波红外变倍望远系统研究.哈尔滨:哈尔滨工业大学,2008.
    [114]唐大为.折/衍混合红外双视场光学系统设计.长春:长春光学精密机械与物理研究所,2010.
    [115]马永利.红外双波点导引头光学系统设计.长春:长春理工大学,2011.
    [116]余怀之.红外光学材料.北京:国防工业出版社,2007.
    [117]Zhang Yu. Shang Jiyang, Wang Wensheng. Design of Athermalized Infrared Telephoto Lens. Key Engineering Materials,2013, Vol.552:8-13.
    [118]周海宪,程云芳.光学材料手册.北京:化学工业出版社,2010.
    [119]王文生.应用光学.武汉:华中科技大学出版社,2010.
    [120]袁旭沧.光学设计.北京:科学出版社,1983.
    [121]薛慧.红外搜索与跟踪系统中光学系统的设计.光学学报,2010,30(8):2383-2386.
    [122]焦明印,冯卓祥.采用衍射元件实现消热差的混合红外光学系统.光学学报,2001,21(11):1364-1367.
    [123]刘峰,徐熙平,孙向阳等.折/衍射混合红外目标搜索/跟踪光学系统设计.光学学报,2010,30(7):2084-2088.
    [124]张宇,王文生.制冷式红外双波段共光路折衍混合摄远物镜设计.光学学报,2013,33(5):0522006-1-6.
    [125]张以谟.应用光学.北京:机械工业出版社,1982.
    [126]李林.现代光学设计方法.北京:北京理工大学出版社,2009.
    [127]刘钧,高明.光学设计.西安:西安电子科技大学出版社,2006.
    [128]王文生,张宇,尚吉扬等.红外双波段*********路摄远物镜.申请号201218000453.6
    [129]常虹.基于DMD的双色红外成像制导仿真系统研究.哈尔滨:哈尔滨工业大学,2006.
    [130]王文生,张宇,尚吉扬等.折射式红外*******投影物镜.申请号201110014812.8。
    [131]徐春云,张肃,董家宁等.基于联合变换相关器的远红外变焦光学系统设计.光子学报,2012,41(12):1447-1451.
    [132]波恩,沃尔夫.北京:光学原理.北京:科学出版社,1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700